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ARTICLE

Antimicrobial resistant enteric bacteria are widely
distributed amongst people, animals and the
environment in Tanzania
Murugan Subbiah1,7, Mark A. Caudell1,2,7*, Colette Mair3,7, Margaret A. Davis1, Louise Matthews3,

Robert J. Quinlan1,4, Marsha B. Quinlan 1,4, Beatus Lyimo 5, Joram Buza5, Julius Keyyu6 & Douglas R. Call1,5

Antibiotic use and bacterial transmission are responsible for the emergence, spread and

persistence of antimicrobial-resistant (AR) bacteria, but their relative contribution likely

differs across varying socio-economic, cultural, and ecological contexts. To better understand

this interaction in a multi-cultural and resource-limited context, we examine the distribution

of antimicrobial-resistant enteric bacteria from three ethnic groups in Tanzania. Household-

level data (n= 425) was collected and bacteria isolated from people, livestock, dogs, wildlife

and water sources (n= 62,376 isolates). The relative prevalence of different resistance

phenotypes is similar across all sources. Multi-locus tandem repeat analysis (n= 719) and

whole-genome sequencing (n= 816) of Escherichia coli demonstrate no evidence for host-

population subdivision. Multivariate models show no evidence that veterinary antibiotic use

increased the odds of detecting AR bacteria, whereas there is a strong association with

livelihood factors related to bacterial transmission, demonstrating that to be effective,

interventions need to accommodate different cultural practices and resource limitations.
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By 2030 the rising demand for livestock products in low- and
middle-income countries (LMICs) will increase global
antimicrobial consumption in the agriculture sector by

almost 70%1. This prospect has motivated calls for increased
antimicrobial stewardship in agriculture, including the reduction
and elimination of antimicrobials as growth promoters and
unnecessary prophylaxis. In theory, these changes should reduce
the magnitude of antibiotic use, leading to a reduction in the
abundance of antimicrobial-resistant bacteria and related transfer
of resistance traits to zoonotic pathogens, and a reduction in
transmission of antimicrobial-resistant bacteria through the food
chain and environment2–9.

Besides the use of antimicrobials, transmission of genetic traits
and of resistant bacteria is a key component of the antimicrobial-
resistance challenge. Because tracking specific transmission events
is rarely practical, transmission is often evaluated indirectly by
characterizing the distribution of different bacterial phenotypes
and genotypes within and between different host organisms. This
comparative data can then be evaluated in the context of anti-
microbial use, sociocultural and economic variables to identify
correlations and potential risk factors for bacterial transmission.
Importantly, risk factors can vary considerably depending on the
sociocultural and economic context. For example, Mathers
et al.10,11 documented a limited degree of phenotypic and geno-
typic similarity between multidrug-resistant Salmonella collected
from people and livestock in Scotland, and similar patterns were
found for ESBL/AmpC Escherichia coli (E. coli) isolates in the
Netherlands12, and for resistant Salmonella isolates in the United
States13. The lack of overlap is consistent with limited direct
contact between food-animal reservoirs and the population in
general, and probably limited zoonotic transmission via food and
water. In contrast, similar studies conducted in LMICs document
overlap between people and their animals. In Uganda, where
there are extensive interactions between people and livestock,
there is also considerable genotypic similarity between resistant
Salmonella isolates from people and their animals14. Similar

overlap has been reported for ESBL-producing E. coli in Tanza-
nia15. While a study conducted within the Netherlands found
overlap between livestock (pigs) and people, the overlap was
dependent on intensity of contact and was more pronounced in
farming communities16.

In these cases, transmission likely arises through food- and
water-borne transmission, as well as transmission through envir-
onmental contact. Finding overlap between bacteria from people
and animals is important, but to develop effective interventions we
must determine what risk factors are most correlated with potential
transmission opportunities. Evidence of overlap also stresses that
successful efforts to reduce the burden of antimicrobial-resistant
bacteria in lower-income settings must simultaneously addresses
risk factors for both people and livestock.

For the current study, we use antimicrobial-resistant Gram-
negative, lactose-fermenting enteric bacteria (Enterobacteriaceae)
as a model for how zoonotic bacteria might spread to different
hosts. We identify risk factors for carriage of antimicrobial-
resistant bacteria under the assumption that colonization with
resistant bacteria is associated with previous microbial trans-
mission, particularly in cases where antibiotic exposure is unlikely
(e.g., wildlife). To assess how different risk factors might con-
tribute to the prevalence of antimicrobial-resistant bacteria in
different contexts, our study includes three ethnic groups; Maasai
pastoralists, Arusha agropastoralists, and Chagga highland
farmers (see Fig. 1). While inhabiting similar areas in northern
Tanzania, the three groups vary considerably across sociocultural
and economic dimensions that have been proposed as risk factors
for antimicrobial resistance, including patterns of antimicrobial
use, animal husbandry practices, proximity to urban environ-
ments, and hygiene and sanitation practices17. Our goals include
documenting the magnitude of phenotypic (Enterobacteriaceae)
and genetic (E. coli) overlap between isolates collected from
people and animals (domestic and wildlife), and identifying the
household-level practices (e.g., antibiotic use, animal husbandry)
that may contribute to a higher prevalence of antibiotic-resistant
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Fig. 1 Map of study area and areas surveyed. Arusha= 103 households, Chagga= 101 households, and Maasai= 201 households. Maps were created
using ArcGIS software by Esri. The base map is sourced from Esri and modified in ArGIS Pro. “Light Gray Canvas” [basemap] https://www.arcgis.com/
home/item.html?id=ee8678f599f64ec0a8ffbfd5c429c896. 30 October 2019.
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E. coli at the household level. Our results show widespread
overlap of resistance across species and multivariate models
provide no evidence that veterinary antibiotic use increased the
odds of detecting AR bacteria whereas there is a strong associa-
tion with livelihood factors related to bacterial transmission.
These results highlight that AMR intervention philosophies must
adapt to situations where increased risk of transmission following
selection from antimicrobial use is overwhelmed by the general
transmission of bacteria across hosts and the environment. To
identify the practices promoting this transmission across cultures
will require input from interdisciplinary teams from the natural
and social sciences.

Results
Methods assessment. For this study, we employed methodologies
for selecting and characterizing bacteria from fecal samples that
were conducive to moderately high throughput assays. We iso-
lated Gram-negative, lactose-fermenting bacteria by testing
samples with MacConkey agar plates. Our goal was to select up to
48 isolates per sample, where samples consisted of pooled feces
from up to three individuals of each host at each household. As
reported earlier18, this sample size of 48 isolates provided >50%
probability of detecting at least one isolate from a stool sample
that was resistant to a given antibiotic when the true prevalence of
that resistance phenotype was only 2%.

While our goal was to focus on Escherichia coli, simple
selection from MacConkey agar lacks specificity. We conducted
whole-genome sequencing for a subset of 1317 isolates and found
that for people, 90.7% of the isolates were E. coli18, but the
diversity of recovered isolates varied for cattle (71.1% E. coli),
chickens (92.5%), dogs (70.3%), and sheep and goats (91.4%).
Consequently, the antimicrobial resistance data presented below
includes mixed species that we refer to as Enterobacteriaceae, but
the genetic analysis was restricted to E. coli isolates that were
confirmed by either sequencing or by PCR19.

We assessed antimicrobial resistance using a breakpoint assay.
For this assay, single isolates of bacteria were transferred to
MacConkey agar plates containing fixed concentrations of
individual antibiotics. Isolates that formed colonies were consid-
ered resistant, while isolates that failed to grow were considered
susceptible. To assess the reliability of this technique we compared
genome sequences from a subset of 732–742 E. coli isolates from

this study with their expected antimicrobial resistance phenotypes
(Table 1). Restricting this analysis to the five most prevalent
resistance phenotypes (the other resistance phenotypes were
represented by only 4 to 16 isolates), the percentage of isolates
having identifiable antibiotic resistance genes and a corresponding
resistance phenotype was 87% (diagnostic sensitivity). The
percentage of isolates having no identifiable antimicrobial-
resistance genes and that were typed as susceptible to the five
antibiotics was 95% (diagnostics specificity). Streptomycin resis-
tance, for which there is no Clinical and Laboratory Standard
Institute recommended breakpoint20, had the greatest error with
75% sensitivity and 95% specificity. This reduced sensitivity likely
reflects our use of a higher-than-necessary concentration of
streptomycin in our agar plates, but this error should be distributed
randomly across all samples. When streptomycin data were
removed, diagnostic sensitivity and specificity increased to 90%
and 94%, respectively. We attribute the 6–10% discrepancy for
diagnostic sensitivity and specificity to (1) true error, (2) isolates
having intermediate resistance, which could be interpreted as
resistant or susceptible using agar plates with fixed concentrations
of antibiotics, (3) isolates having characteristics that confer intrinsic
resistance, and (4) isolates having nonfunctional antimicrobial-
resistance genes21. For the analysis presented below, we have
assumed that these errors are randomly distributed across sources.

Similar distribution of resistant bacteria across groups. Our
first finding was that the relative distribution of antimicrobial-
resistant bacteria is similar across groups, but there were differ-
ences in the prevalence between groups. From 315 households, a
total of 43,691 Gram-negative, lactose-fermenting bacteria
(Chagga= 11,755; Maasai= 24,635; Arusha= 7301) were iso-
lated from cattle, small stock (goats and sheep), dogs and
chickens (Table 2). An additional 11,470 isolates were isolated
from human stool samples and were reported elsewhere18, but
these findings were used here as a point of reference. Generally,
the mean prevalence of antimicrobial-resistant bacteria across
livestock types was higher for Maasai and Arusha compared to
Chagga households (Fig. 2). In addition, resistance to ampicillin,
streptomycin, sulfamethoxazole, trimethoprim, and tetracycline
across livestock types was higher (>35% in Arusha, >30% in
Maasai, and >10% in Chagga) compared to ceftazidime, chlor-
amphenicol, ciprofloxacin, and kanamycin. An exception to this

Table 1 Presence and absence data.

Antibiotic G+/P+ G−/P+ G+/P− G−/P− Sensitivitya Specificityb

Ampicillin 164 8 27 539 0.86 0.99
Ceftazidime 7 1 10 724 0.41 >0.99
Chloramphenicol 12 3 46 677 0.21 >0.99
Ciprofloxacin 5 11 44 678 0.10c 0.98
Kanamycin 0 4 0 734 n.a.d >0.99
Streptomycin 165 23 55 489 0.75 0.96
Sulfamethoxazole 186 34 23 495 0.89 0.94
Tetracycline 237 42 19 440 0.93 0.91
Trimethoprim 153 35 11 539 0.93 0.94
Amp+ Str+ Sul+ Tet+ Trie 905 142 135 2502 0.87 0.95
Amp+ Sul+ Tet+ Trif 740 119 80 2013 0.90 0.94

Comparison of the presence (+) or absence (−) of antimicrobial-resistance genotypes (G) and phenotypes (P), and associated estimates of diagnostic sensitivity and specificity of the phenotype results
relative to the presence of a corresponding antimicrobial-resistance gene
aDiagnostic sensitivity is the proportion of isolates that were antibiotic resistant based on a breakpoint assay and that had a corresponding antimicrobial-resistance gene based on whole-genome
sequencing (i.e., correctly identifies a true positive)
bDiagnostic specificity is the proportion of isolates that were antimicrobial-susceptible based on a breakpoint assay and that had no corresponding antimicrobial-resistance gene based on whole-genome
sequencing (i.e., correctly identifies a true negative)
cDiagnostic sensitivity for ciprofloxacin resistance is very low even when considering the limited sample size. This is likely due to resistance being conveyed by chromosomal mutations in contrast to the
presence of specific resistance genes that would normally be identified using ResFinder49 software
dNot applicable due to zero value n the G+/P+cell
ePooled analysis for ampicillin, streptomycin, sulfamethoxazole, tetracycline and trimethoprim tests
fPooled analysis for ampicillin, sulfamethoxazole, tetracycline, and trimethoprim tests
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pattern was resistance to ceftazidime and chloramphenicol in
Arusha where ~20% of isolates were resistant. A comparable
distribution and prevalence of antimicrobial-resistant bacteria
was found for opportunistically collected wildlife fecal samples
(Fig. 3). In some cases, the prevalence of resistant bacteria was
higher in waters from Chagga and Arusha communities com-
pared to Maasai. The prevalence of the nine antimicrobial-
resistance phenotypes was highly correlated between bacterial
isolates from households and bacteria from wildlife (r2= 0.91;
multivariate analyses of variance (MANOVA), P < 0.001).

E. coli genotypes randomly distributed across hosts. Our sec-
ond finding was that E. coli genotypes are distributed randomly
across communities and host sources. Multilocus variable-
number of tandem repeats (MLVA) are highly mutable genetic
markers that are useful for distinguishing between closely related
strains of bacteria22. For this MLVA comparison, a haplotype was
defined as the combination of different alleles detected for five
different tandem-repeat loci, and for the current analysis there
were 388 unique haplotypes (combinations of MLVA alleles).
MLVA analysis for 324 E. coli isolated from cattle, small stock,

Table 2 Number of households and isolates from animals, water, and wildlife.

Chagga Maasai Arusha

# of isolates # of HHs # of isolates # of HHs # of isolates # of HHs

Cattle 3696 63 6371 118 1892 43
Chickens 3117 62 4872 96 2234 56
Dogs 624 13 5910 110 1435 34
Sheep/goat 4318 70 7482 140 1740 38
Peoplea 4608 85 4274 79 2405 58
Waterb 110 n.a. 427 n.a. 1397 n.a.
Wildlifec 5464

HHs households
aHuman isolate data published in ref. 18
bWater was collected from sources within or near Chagga, Maasai and Arusha communities23
dWildlife isolates were collected opportunistically and without reference to specific communities
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Fig. 2 Prevalence of antimicrobial resistant bacteria in people, animals, and water. Bacteria isolated from fecal samples collected from Maasai, Arusha,
and Chagga people (n= 11,287 isolates) and animals (n= 43,691 isolates) and water samples (n= 1934 isolates). Antibiotics included amp (a mpicillin),
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chickens, dogs, people, wildlife and water showed that ≥90% of
haplotypes were shared between these hosts. In addition, over
98% of E. coli haplotypes from livestock were shared between E.
coli isolated from water and wildlife (Table 3). These findings
indicate that there was little distinctiveness for the haplotypes of
E. coli that were collected from different sources when compared
to the diversity of haplotypes found within sources. This was also
consistent with minimum spanning tree from MLVA data (Fig. 4
& Supplementary Fig. 1 for comparisons between hosts), and with
MLST-based (Fig. 5) and core-genome-based phylogenetic trees
(Supplementary Fig. 2) that were constructed from E. coli
sequence data (n= 84 isolates) that originated from eight Massai
households (see methods). We identified a number of older-
antimicrobial resistance genes from the subset of sequenced E.
coli (Supplementary Data 1)23–25 Sixteen isolates (2%) harbored
blaCTX-M-15 and one isolate harbored blaCMY-42.

Prevalence associated with general transmission of bacteria.
Our third set of findings derived from multilevel logistic models,
clustered at the household level, that were used to assess the
livelihood factors associated with detection of antimicrobial
resistant bacteria (see Identification of risk factors in Methods for
variable descriptions). Our primary outcome was whether an
isolate was resistant to an antibiotic(s) (1) or was susceptible (0).
Models were specified for the five most prevalent resistance
phenotypes (ampicillin, streptomycin, sulfamethoxazole, tetra-
cycline and trimethoprim) and for multi-drug resistant pheno-
types (MDR), which we define as resistance to three or more of
these five antibiotics. We restricted our results to those variables
that were statistically significant for at least three phenotypes, and
results are presented as odds ratios where odds above 1 indicate
increased odds of resistance and <1 decreased odds.

Livestock, pooled analysis: as households increased the number
of people with whom they exchanged livestock there was an

increasing probability of detecting antimicrobial-resistant bacteria
in livestock across all ethnic groups, with large increases in odds
for ampicillin (odds ratio (OR): 3.5, 95% confidence interval (CI):
2.05–5.95), streptomycin (OR: 2.19, CI: 1.52–3.15), sulfamethox-
azole (OR: 2.08, CI: 1.41–3.05), tetracycline (OR: 1.91, CI:
1.35–2.71), trimethoprim (OR: 2.7, CI: 1.68–4.36), and MDR
(OR: 2.93, CI: 1.92–4.47) (see Supplementary Data 2 for full
model results and Identification of risk factors in Methods for
variable descriptions). Increasing use of livestock markets was
also associated with large increases in odds of detecting bacteria
resistant to ampicillin (OR: 2.83, CI: 1.79–4.47), streptomycin
(OR: 2.58, CI: 1.69–3.94), sulfamethoxazole (OR: 1.95, CI:
1.30–2.93), tetracycline (OR: 1.95, CI: 1.30–2.91), trimethoprim
(OR: 1.87, CI: 1.22–2.86), and MDR (OR: 2.98, CI: 1.81–4.88).
Increasing distance between households and major urban centers
(i.e., towns of Arusha and Moshi) decreased the odds of detecting
bacteria resistant to ampicillin (OR: 0.4, CI: 0.29–0.57),
streptomycin (OR: 0.66, CI: 0.49–0.89), tetracycline (OR: 0.59,
CI: 0.44–0.78), trimethoprim (OR: 0.48, CI: 0.35–0.65), and MDR
(OR: 0.44, CI: 0.29–0.66).

Arusha livestock only: the only livelihood factor significantly
related to antimicrobial resistance in Arusha livestock (n= 58
households) was the number of livestock exchange partners with
which a household interacted (see Supplementary Data 3 for full
model results). As the numbers of these partners increased, the
odds of detecting resistant bacteria increased for ampicillin (OR:
2.88, CI: 1.31–6.30), streptomycin (OR: 3.05, CI: 1.26–7.37),
sulfamethoxazole (OR: 2.29, CI: 1.01–5.23), trimethoprim (OR:
2.37, CI: 1.05–5.33), and MDR (OR: 3.21, CI: 1.29–8.03).

Chagga livestock only: for the Chagga (n= 72), households that
purchased more livestock in the last year had livestock with
reduced odds of having E. coli resistant to streptomycin (OR:
0.39, CI: 0.21–0.70), tetracycline (OR: 0.63, CI: 0.41–0.97) and
trimethoprim (OR: 0.43, CI: 0.26–0.72) (see Supplementary
Data 4 for full model results). Households further away from
the city of Moshi exhibited lower odds of resistance to ampicillin
(OR: 0.43, CI: 0.23–0.82), trimethoprim (OR: 0.38, CI: 0.21–0.70),
and MDR (OR: 0.29, CI: 0.12–0.68).

Maasai livestock only: for Maasai livestock (n= 100), the odds
of harboring antimicrobial-resistant E. coli were significantly
lower for households with higher rates of veterinary antibiotic use
(see Supplementary Data 5 for full model results). Households
keeping more antibiotics/syringes at home and reporting higher
use rates had lower odds of resistance to ampicillin (OR: 0.26, CI:
0.10–0.64), streptomycin (OR: 0.39, CI: 0.21–0.74), sulfamethox-
azole (OR: 0.37, CI: 0.19–0.73), trimethoprim (OR: 0.42, CI:
0.20–0.87) and MDR (OR: 0.23, CI: 0.10–0.53). Having a larger
number of livestock exchange partners increased the odds of
resistance to all antibiotics, including ampicillin (OR: 2.95, CI:
1.73–5.03), streptomycin (OR: 2.02, CI: 1.50–2.73), sulfamethox-
azole (OR: 2.05, CI: 1.44–2.91), tetracycline (OR: 1.83, CI:
1.31–2.56), trimethoprim (OR: 2.39, CI: 1.59–3.60), and MDR
(OR: 2.66, CI: 1.85–3.83). Likewise, as the number of livestock a
person managed for somebody outside the household increased
so did the odds of resistance to streptomycin (OR:1.42, CI:
1.05–1.93), sulfamethoxazole (OR: 1.47, CI: 1.08–2.00), trimetho-
prim (OR: 1.73, CI: 1.21–2.49), and MDR (OR: 1.52, CI:
1.02–2.28). Households that utilized more livestock markets
exhibited higher odds of resistance to ampicillin (OR: 2.38, CI:
1.04–5.45), streptomycin (OR: 2.09, CI: 1.17–3.74), and MDR
(OR: 2.3, CI: 1.11–4.77).

Chickens and Dogs Pooled: no livelihood factors were
associated with the odds of detecting antimicrobial-resistant
bacteria from chickens across a majority of antibiotics (see
Supplementary Data 6 for full model). The only factor related to a
majority of resistance phenotypes was ethnic affiliation, with

= People/livestock/chicken/dog
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Fig. 3 Prevalence of antimicrobial-resistant bacteria in wildlife. Bacteria
isolated from fecal samples collected from wildlife (n= 5464 isolates)
compared to mean prevalence of resistance from people/livestock/
chicken/dog combined (triangles; n= 54,978 isolates). Wildlife fecal
samples were opportunistically collected from wildebeest (Connochaetes
taurinus), zebra (Equus quagga), impala (Aepyceros melampus), giraffe
(Giraffa camelopardalis), elephant (Loxodonta africana), gazelle (Eudorcas
thomsonii), dik-dik (Madokua kirkii), and buffalo (Syncerus caffer).
Antibiotics included amp (ampicillin), cfd (ceftazidime), chm
(chloramphenicol), cip (ciprofloxacin), and kan (kanamycin), str
(streptomycin), sul (sulfamethoxazole), tet (tetracycline), tri
(trimethoprim). Error bars are 95% standard errors.
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Chagga chickens exhibiting much lower odds of resistance to
ampicillin (OR: 0.02, CI: 0.20–0.71), streptomycin (OR: 0.13, CI:
0.03–0.62), trimethoprim (OR: 0.18, CI: 0.04–0.78), and MDR
(OR: 0.03, CI: 0.01–0.21) after controlling for livelihood variables
related to selection and transmission (consistent with Supple-
mentary Fig. 2C). For dogs, the odds of harboring resistant E. coli
were significantly lower for households that reported boiling milk,
including for ampicillin (OR: 0.3, CI: 0.13–0.72), streptomycin
(OR: 0.43, CI: 0.19–0.97) and tetracycline (OR: 0.4, CI: 0.17–0.93)
(see Supplementary Data 7 for full model). In households that
took more steps to avoid disease in their animals (e.g., graze sick
animals separately, spray/dip livestock), dogs exhibited decreased
odds to ampicillin (OR: 0.62, CI: 0.4–0.96), sulfamethoxazole
(OR: 0.53, CI: 0.32–0.88), and trimethoprim (OR: 0.58, CI:
0.38–0.88). As households purchased more livestock, odds of
resistant bacteria from dogs decreased for streptomycin (OR:
0.59, CI: 0.35–0.99), sulfamethoxazole (OR: 0.46, CI: 0.25–0.84)
and trimethoprim (OR: 0.49, CI: 0.29–0.82). As distance from
urban centers increased there was a large increase in the odds of
detecting resistant bacteria from dogs to all antibiotics, including
ampicillin (OR: 2.06, CI: 1.14–3.72), streptomycin (OR: 3.2, CI:
1.82–5.62), sulfamethoxazole (OR: 3.46, CI: 1.77–6.77), tetracy-
cline (OR: 2.47, CI: 1.39–4.38), and trimethoprim (OR: 3.11, CI:

1.76–5.49). After controlling for the proposed risk factors for
antimicrobial resistance, dogs owned by Chagga households had
much lower odds of resistance to ampicillin (OR: 0.01, CI:
0.0–0.13), streptomycin (OR: 0.09, CI: 0.01–0.71), sulfamethox-
azole (OR: 0.06, CI: 0.00–0.67), trimethoprim (OR: 0.06, CI:
0.01–0.53), and MDR (OR: 0.01, CI: 0.0–0.11).

Discussion
We examined the distribution of antimicrobial-resistant enteric
bacteria from animals, people and water in northern Tanzania,
and we examined the probability of detecting these bacteria
relative to livelihood factors from three culturally diverse ethnic
groups. Our findings highlight four main points. First, enteric
bacteria in northern Tanzania exhibit a high prevalence of anti-
microbial resistance with over 50% of the ≈50,000 isolates from
domestic animals, wildlife, and water sources displaying resis-
tance to at least one antibiotic. In addition, resistance to five
specific antibiotics (ampicillin, streptomycin, sulfamethoxazole,
tetracycline, and trimethoprim) was consistently higher than
resistance to other antimicrobials tested across animals and
environmental samples, a result that we also documented for
people in northern Tanzania18. Second, comparison of MLVA

a b c

Fig. 4 Minimum spanning tree for E. coli MLVA haplotypes. Each circle or pie-slice represents a single E. coli isolate from people or animal. Most of the
isolates differed by a single locus (solid lines) and no host-specific clustering was apparent. Sample sizes are people (n= 99), livestock (n= 68), dog (n=
94), chicken (n= 63), wildlife (n= 90), water (n= 136).

Table 3 The distribution of E. coli haplotypes within and between different sources.

Within sources % variation Between sources % variation Sample size n vs n

People vs. water 91.05 8.95 99, 136
People vs. wildlife 90.96 9.04 99, 90
People vs. chickens 93.7 6.4 99, 63
People vs. dogs 91.5 8.5 99, 94
People vs. (chickens, dogs) 92.8 7.2 99, 157
People vs. livestock 93.5 6.5 99, 68
Livestock vs. (chickens, dogs) 92.6 7.4 68, 157
Livestock vs. water 98.3 1.7 68, 136
Livestock vs. wildlife 98.2 1.8 68, 90
Livestock vs. (people, dogs, chickens) 94.3 5.7 68, 256
Water vs. wildlife 98.7 1.3 136, 90
Water vs. (people, dogs, chickens, livestock, wildlife) 92.8 7.2 136, 414
Wildlife vs. (people, dogs, chickens, livestock) 96.1 3.8 90, 324

Results are from the analysis of MLVA data using AMOVA. Sample sizes are people (N= 99), livestock (n= 68), dog (n= 94), chicken (n= 63), wildlife (n= 90), water (n= 136)
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data demonstrated that E. coli isolates from our sampled popu-
lations are genetically diverse and are widely distributed across all
sources. This lack of host-association was validated for the subset
of E. coli that were characterized genetically (MLST typing and
whole-genome comparisons). Over 80% of isolates exhibited
MLVA haplotypes that were also present in people, livestock,
wildlife, and water sources. These results are consistent with
studies documenting high degrees of overlap in low-income
countries, including Uganda14 and Tanzania15, but are in contrast
to most studies conducted in high-income countries10–13. Con-
sistent with the phylogenic analysis, our third finding was that
livelihood factors that could promote the general transmission of
bacteria, such as visiting markets, sharing water sources, and
distance to major urban centers, were more strongly associated
with prevalence of antimicrobial-resistant bacteria relative to
factors related to antibiotic use. That is, within these three
communities, any specific effect of antibiotic use on the trans-
mission of resistant bacteria appears to be overshadowed by
livelihood factors that promote the transmission of bacteria
generally. The importance of these livelihood factors is also
consistent with our fourth finding that the prevalence of

antimicrobial-resistant bacteria was not uniformly distributed
across ethnic groups. Indeed, samples from Maasai pastoralist-
and Arusha agropastoralist-households exhibited prevalence
levels ~two-fold greater than Chagga highland farmers. These
cross-cultural differences are consistent with Maasai and Arusha
subsistence practices that include keeping larger herds and
drawing from a wider range of sources (i.e., markets, livestock
exchange partners) compared to the Chagga17.

Cross-cultural differences in livelihood factors related to anti-
microbial resistance highlight the necessity of incorporating
interdisciplinary social science perspectives to understand the
complexity of behaviors that may be driving the emergence,
spread, and persistence of these bacteria. Developing this
understanding will be particularly essential for designing inter-
ventions within LMICs given the diversity of livelihoods that
continue to be pursued (pastoralism, agro-pastoralism, farming,
paid labor). In addition, limited input from the professional
health sector within many LMICs ensures that animal treatment
practices are informed by traditional ethnomedical belief systems.
These systems impact risk communication strategies, which must
consider, for example, how cultural understandings of contagion
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Fig. 5 Phylogenetic tree derived from 81 E. coli isolates. Isolates were collected from eight selected Maasai households and also include wildlife and
waters isolates. No clustering of isolates was apparent based on host species or households. Labels show barcode id, house id, year of collection, and host
name (e.g. 10435D5466Human; 10435D5—barcode id, 466—household id, and Human—host species).
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impact comprehension of antimicrobial resistance26. Under-
standing of ethnomedical belief systems can also give rise to novel
intervention approaches. Our intervention among Maasai, for
example, has shown how promoting milk pasteurization, over the
common method of boiling, can increase the frequency of milk
heat-treatment, thereby reducing a major risk of bacterial trans-
mission to people27,28.

A more nuanced understanding of antimicrobial resistance as
a sociocultural phenomenon is needed given, as our results
suggest, seemingly related livelihood factors between different
communities could be inversely correlated with the likelihood of
detecting antimicrobial resistance. For example, practices that
promote animal movement in Maasai and Arusha communities
(i.e., livestock exchange relationships and the number of mar-
kets visited) were associated with large increases (≈200–350%)
in the odds of detecting bacteria from livestock that were
resistant to one of five antibiotics and a multidrug-resistance
phenotype. These results are consistent with studies finding that
the introduction of new animals to herds increases the like-
lihood of introducing novel strains of bacteria29. In contrast,
livestock movement in Chagga highland farmers, as defined by
the number of animals purchased in the last year, was associated
with reduced odds (≈40–60%) of detecting antimicrobial-
resistant bacteria from livestock. This finding may reflect how
livestock are integrated into Chagga households relative to
Maasai and Arusha households. Most Chagga households have
very few cattle (mean ≈ 1 animal) and they keep cattle primarily
for production of dairy products. Consequently, when Chagga
households report having purchased cows in the last year (as
asked through our questionnaire) they are more likely to pur-
chase older animals that can start producing milk sooner. This is
important because young cattle normally harbor a much higher
prevalence of antimicrobial-resistant enteric bacteria compared
with older animals30,31. If this pattern holds in Tanzania, pur-
chasing presumptively older animals would lead to a reduced
overall prevalence of antimicrobial-resistant bacteria simply as a
function of animal age. In contrast, Maasai and Arusha house-
holds are more likely to purchase younger cattle as an invest-
ment for later return after a few years of grazing the animal. As a
result, livestock purchasing patterns in the Maasai and Arusha
may ensure that younger animals are introduced to the herd
thereby increasing overall prevalence of antimicrobial-resistant
bacteria independent of other livelihood factors.

Cross-cultural differences may also explain different patterns of
antimicrobial resistance for bacteria collected from dogs. Dogs
from households that boiled milk had lower odds (≈60–70%) of
having enteric bacteria that were resistant to ampicillin, strepto-
mycin, and tetracycline. Earlier results from this project showed
that consuming raw milk is a major risk factor for detecting
antimicrobial-resistant bacteria in people18. Maasai households,
given limited use of toilets [≈20% of households17], are likely to
leave human fecal waste unprotected and dogs may be scavenging
this waste and consequently acquiring antimicrobial-resistant
bacteria from people. Many households also feed milk directly to
dogs as a porridge mix with crushed corn (once per day, biased to
the rainy season), which could lead to direct transmission from
milk as we surmise occurs for people18. Another result linked to
cultural differences may be the unexpected relationship between
increasing distance to urban centers and the odds of dogs har-
boring more antimicrobial-resistance bacteria. This association
may reflect a correlation between larger herds that would not be
otherwise sustainable closer to urban areas, and this in turn might
may lead to dogs receiving more milk. It is also possible that there
are more waste scavenging opportunities at outlying households
given that the likelihood of improved waste management systems
(e.g., toilets, sewers, etc.) decreases with distance to urban centers.

Based on our analysis, there was no evidence that veterinary
antibiotic use increased the odds of detecting antimicrobial-
resistant bacteria. At one level, this is not totally unexpected. The
primary veterinary antibiotic used in these communities is an
injectable tetracycline [oxytetracycline17. When injected, most of
this drug is eventually excreted in urine rather than in feces and
consequently, there probably isn’t much direct selection pressure
in vivo from this application32. Some excreted antibiotics can
enrich populations of resistant bacteria in exposed soils [e.g.,
florfenicol32, but if there is a clay component to the soil it is likely
that oxytetracycline will adsorb to the soil and will be mostly
unavailable33. It is also possible that our methods for collecting
antibiotic use data (i.e., household inventories and self-report) did
not accurately reflect long-term antibiotic use patterns. Indeed,
the Chagga had much lower levels of resistance overall and this
may reflect a cultural history of less antibiotic use due to smaller
herd sizes and better herd health, and greater reliance on pro-
fessional veterinary services. The possible influence of these his-
torical patterns highlights the importance of applying a mixed-
methods approach to understand distributions of antimicrobial-
resistant bacteria in the present.

One remarkable consistency from this study was that regard-
less of host, environmental source or cultural group, there was a
relatively high prevalence of bacteria that were resistant to
ampicillin, streptomycin, sulfamethoxazole, tetracycline, and tri-
methoprim. This was true for the current study, an earlier report
focused on people18, and other studies from food animals from
the Arusha peri-urban area34–36. All of these studies characterized
antimicrobial resistance using the same methodology whereby
bacteria were grown on agar plates with a fixed concentration of
antibiotics. This is a low-cost means of assessing antibiotic
resistance, but it provides no estimate for the variance in the
magnitude of resistance for individual isolates as would be pos-
sible with disc-diffusion or microdilution assays. This method is
also subject to interpretation issues if the population of bacteria
being tested are not representative of the strains that are used to
develop international standards for antibiotic breakpoint con-
centrations (although this does not preclude relative comparisons
within studies). Our analysis of whole-genome sequences suggests
that our methods provide a high degree of diagnostic sensitivity
and specificity for detection of antimicrobial resistance. Never-
theless, it is possible that our breakpoint methodology produces
systematic artefacts. For example, if a breakpoint concentration is
too high (as suggested here for streptomycin, Table 1), the pre-
valence of resistant organisms will appear low. Such artefacts
could produce a similar distribution of resistant organisms across
different hosts (e.g., high prevalence of resistance to Amp, Str,
Sul, Tet and Tri). To examine this possibility, we isolated and
characterized E. coli from a very different source (municipal
wastewater in Pullman, WA) using the same methods described
for the current study. The pattern of resistance (n= 381 isolates)
was quite different from our findings in Tanzania, including
considerably lower prevalence overall for four out of the five most
common resistance phenotypes (see Supplementary Fig. 3).
Consequently, it is unlikely that our reported findings for the
prevalence of antimicrobial-resistant bacteria are due to metho-
dological artifacts.

Documentation of the widespread similarity of antimicrobial-
resistant bacteria between animals, people, and the environment
represents an important step forward in the promotion of
evidence-based approaches to address antimicrobial-resistance on
a global scale. On a regional level, stark differences in the pre-
valence of antimicrobial-resistant bacteria documented in this
study (i.e., higher prevalence) compared to studies from high-
income countries (i.e., lower prevalence) suggests that broad
intervention philosophies must adapt to situations where

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13995-5

8 NATURE COMMUNICATIONS |          (2020) 11:228 | https://doi.org/10.1038/s41467-019-13995-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


increased risk of transmission following selection from anti-
microbial use is overwhelmed by the general transmission of
bacteria across hosts and the environment. While prudent-use
approaches are often the centerpiece of intervention efforts37–39,
as well as the motivation behind efforts to understand anti-
microbial resistance, our study suggests that higher priority
should be given to improving sanitation, hygiene, and healthcare
infrastructures than to prudent-use strategies, especially in
resource limited settings40. This assignment of intervention
priorities is especially critical given the limited availability of
public health resources and competing demands at both inter-
national and national levels. As this study highlights, assigning
priorities and subsequent development of targeted strategies will
require cross-cultural investigations developed and implemented
by interdisciplinary teams from the natural and social sciences.

Methods
Study design. A team of veterinarians, livestock extension officers, microbiologists,
ecologists, epidemiologists, social scientists, and local community members nego-
tiated and coordinated the research design, planning, logistics, project imple-
mentation, data management, and analysis. We used a mixed-methods strategy
that combined qualitative and quantitative data collection beginning with 20 for-
mal, qualitative, key informant and focus group interviews among Maasai and
Chagga livestock owners across a range of communities in 2012. We interviewed
livestock extension officers and veterinarians in different communities to deter-
mine common practices in different areas and the course of professional veterinary
training in Tanzania. We used data from initial interviews to refine our survey
instruments. We observed livestock management and veterinary care in multiple
Maasai and Chagga households in 2012 including use of veterinary antimicrobials,
chemical dips, and traditional treatments. We observed necropsy of recently
deceased animals, slaughter and butchering, milking and milk handling, breeding,
birthing, branding, grazing and fodder provision, and castration. Informal inter-
views were conducted during the course of direct observation, including con-
versations that recounted people’s health experiences, those of their livestock, and
additional detail on the circumstances surrounding illness events. Iterative quali-
tative interviewing helped to add or modify existing survey instruments as different
ethnic groups were studied and as lab results of fecal and milk samples suggested
new items for inclusion. We visited multiple animal drug shops in Monduli,
Simanjiro, Arusha City, and Moshi districts, and interviewed attendants about
veterinary antibiotic sales and recommended usage. We held three community
meetings after quantitative data collection was complete in those communities.
Meetings served as focus groups and opportunities to report our preliminary
results. These meetings also allowed us to discuss public health solutions relevant to
the study communities. Unless otherwise indicated, our ethnographic description
of livestock management and veterinary practices draws on these materials.

A 200-item questionnaire was administered across 13 villages between March
2012 and July 2015, with village selection based upon consultation with local
research assistants and officials and in consideration of other research projects in
the area17. Across villages, 425 households were randomly selected using census
lists provided by village- or ward-executive offices. Focal villages with sampling
season and year are provided in Supplementary Table 1. Research assistants fluent
in English, Swahili and Maa or Chagga were trained and employed (Maasai
assistants in Maasai and Arusha villages and Chagga assistants in Chagga villages)
for data collection and to facilitate participation. Surveys were conducted in Maa
among Maasai and in Kiswahili among Chagga and Arusha. Participant consent
was verbally attained given high rates of illiteracy within the study populations.
Verbal consent was documented in a separate data file indicating informant ID
numbers, agreement to participate, and payment/receipt of informant fees. The
study was reviewed and approved by the Washington State University (IRB
#12355) and Tanzania National Institute for Medical Research institutional review
boards, and a research permit was issued by the Tanzania Commission for Science
and Technology (permit 2012-151). A research permit for collecting voided wildlife

fecal samples were issued by the Tanzania Wildlife Research Institute (No.
2015–127-ER-2012-51). Other ethical review for animal use was not required
because fecal samples were collected from voided materials.

Study groups Arusha Chagga Maasai. Study groups were selected as they varied
across a spectrum of subsistence systems, animal healthcare practices, and devel-
opment indicators (e.g., education, hygiene and sanitation) proposed as drivers of
AMR. Many Maasai people in this region continue to inhabit remote geographic
areas where they combine maize and bean farming with the tending of large, free-
ranging herds of livestock that congregate at communal waterholes that are used by
people, livestock, and wildlife41. Access to human and animal healthcare remains
limited and many Maasai use antibiotics without seeing a healthcare professional.
Most Maasai households administer antibiotics to their animals without oversight
from veterinary services17. Arusha people inhabit peri-urban areas around the city
of Arusha, a major urban area (population ~ 400,000), combining cultivation of
maize and banana with the tending of smaller herds that may access water at
neighborhood standpipes17,42. Close proximity to the city allows greater access to
modern education and healthcare systems, including access to professional veter-
inary services17. This proximity also means Arusha face many of the health issues
typical of rapidly urbanizing populations, including those associated with high
population densities and poor sanitation services43. Chagga peoples live near
Moshi town, another major urban center (population ~ 200,000) where they
practice banana cultivation, keep home gardens and tend small herds that are
confined/tethered and brought fodder and water44. Compared to the other groups,
the Chagga rely the most on professional healthcare services and almost always
seek livestock health professionals to diagnose and treat their animals17 (Table 4).

Fecal sampling and laboratory methods. Fresh voided fecal samples from people,
livestock, chickens, and dogs were collected at the households and placed into
sterile plastic bags. Fresh voided wildlife fecal samples were collected opportunis-
tically from surrounding areas. Bacterial isolates from water sources were obtained
from a previous study23. Fecal samples were kept in a portable refrigerator and
were transported to a laboratory at Nelson-Mandela African Institution of Science
and Technology (NM-AIST) in Arusha, Tanzania. Fecal samples were serially
diluted and plated onto MacConkey agar and were then incubated overnight at
37 °C. Up to 48 Gram-negative, lactose-fermenting colonies (per sample) were
picked and inoculated individually into wells (containing 150 µl LB broth) of
96-well assay plates. After inoculation, the plates were incubated overnight at 37 °C
and glycerol (20% final concentration) was added before storing at −80 °C. For
transportation, archived plates were used to prepare 40 µl of fresh overnight cul-
tures in 96-well plates where it was allowed to air-dry before sealing and shipping
to Washington State University under ambient conditions. Once received, cultures
were revived with the addition of 150 µL of LB broth into each well and incubated
overnight at 37 °C.

For the MLVA assay, the identity of presumptive E. coli isolates was confirmed
by PCR testing for the presence of uidA following the methods of Bej et al., 199119

with modification. Briefly, overnight cultures of each isolate (1-mL LB broth) were
centrifuged, pelleted and then suspended in 1-mL sterile water and boiled in a
water bath for 15 min. The boiled suspensions were briefly centrifuged at 500 rpm
for 2 min and supernatants were used as template for PCR. Template (1 μl) was
added to a reaction mixture with primers uidA-specific primers (F: 5′
TGGTAATTACCGACGAAAACGGC 3′; R: 5′ ACGCGTGGTTACAGTCTTGCG
3′). Cycles included denaturation at 95 °C (3 min) followed by 35 cycles of 95 °C
(30 sec), 58 °C for 30 s and 72 °C for 1 min followed by final extension at 72 °C for
10 min.

A previously described breakpoint assay45 was used to test for susceptibility to
nine antibiotics. Briefly, isolates were allowed to thaw and were transferred using a
96-pin replicator into a new 96-well plate with fresh media for overnight
incubation at 37 °C. Isolates were then manually transferred using the pin-
replicator onto MacConkey agar plates (150 mm) made with a fixed concentration
of a single antibiotic (ampicillin, amp, 32 µg/ml; ceftazidime, cef, 8 µg/ml;
chloramphenicol, chm, 32 µg/ml; ciprofloxacin, cip, 4 µg/ml; kanamycin, kan,
32 µg/ml; streptomycin, str, 120 µg/ml; sulfamethoxazole, sul, 512 µg/ml;
tetracycline, tet, 16 µg/ml; trimethoprim, tri, 8 µg/ml) and incubated overnight at
37 °C. Isolates were considered resistant if well-formed colonies were visible, but

Table 4 Livelihood dimension differences between the Maasai, Arusha, and Chagga.

Maasai Arusha Chagga

Characteristics Mean Median IQR Mean Median IQR Mean Median IQR

Mean number of livestock (cattle and shoats) 291 147 251 15 3.5 15 5 5 6
Some formal education 30% 0 1 67% 1 1 92% 1 0
Self-administer veterinary antibiotics 98% 1 0 42% 0 1 2% 0 0
Seek professional veterinary services 24% 0 0 30% 0 1 92% 1 0

Numbers are reported as averages and are rounded. IQR is the interquartile range
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susceptible if poorly grown colonies (presumptive intermediate) or no growth
were observed. After incubation, the numbers of resistant and susceptible bacteria
were enumerated and the average prevalence of resistant bacteria per antimicrobial
per sample per household was estimated for summary figures (e.g., 24 out of
48 isolates were resistant to ampicillin, average ampicillin resistance prevalence
is 24/48= 50%).

Genotyping of E. coli. To characterize genetic similarities between E. coli strains
from different sources, 719 confirmed E. coli isolates were selected and genotyped
using a MLVA assay22,46. At the household level, only one randomly selected
isolate per unique combination of antimicrobial resistance per fecal sample was
included. Overall, these isolates represented all available hosts (animals and people)
from each household from 11 villages (3 Arusha, 4 Chagga, and 4 Maasai) and 44
households (4 households per village that had the maximum number of hosts
represented). In addition, isolates from wildlife feces (mixed species), and waters23

were also included. Overnight cultures (1-mL LB broth) were centrifuged, pelleted
and then suspended in 1-mL sterile water and boiled in a water bath for 15 min.
The boiled suspensions were briefly centrifuged at 500 rpm for 2 min and super-
natants were used as template for PCR.

Five primer sets were used to amplify five MLVA loci. Forward primers from
each primer set were tagged with fluorescent reporters (Supplementary Table 2)
and involved two independent multiplex PCR reactions (mix 1 or 2). PCR reactions
were assembled with commercial reagents (Qiagen Multiplex PCR-kit, Hilden,
Germany) as detailed by the manufacturer. DNA template was prepared as
described for uidA PCR. Template (1 µL) was added to the PCR reaction for a total
volume of 25 µL. Both multiplex PCR reactions were processed by using a
thermocycler (Bio-Rad, Hercules, CA, USA) with the following conditions: 95 °C
for 15 min, then 30 cycles of 94 °C for 30 s, 60 °C for 90 s and 72 °C for 90 s,
followed by a hold at 72 °C for 10 min. PCR amplicons were then diluted 1:100 in
water, and 5 µL of the diluted PCR-amplicon was added to 14.7 µL of formamide
(Ambion Inc., Austin, TX, USA) and 0.3 µL of Genscan 600 LIZ internal size
standard (Applied Biosystems, Foster City, CA, USA). This mix was then subjected
to capillary electrophoresis using an ABI 3730 DNA Analyzer (Thermo Fisher,
Waltham, MA USA) at the Molecular Biology and Genomics Core, Washington
State University, Pullman, WA. Capillary electrophoresis was run at 66 °C with
POP7 polymer (Thermo Fisher) for 20 min at 15 kV. MLVA data were imported to
Bionumerics (version 6.6) program as character data and MST clusters were
identified22. Variation in the distribution of MLVA haplotypes within and between
host species was evaluated by using analysis of molecular variances (AMOVA,
R-version 3.5.1; ade4; popr.amova).

Multi-locus sequence typing of E. coli. DNA extractions from 854 E. coli isolates
were sent to a service center (MicrobesNG, University of Birmingham, UK; https://
microbesng.uk/) for whole-genome sequencing using an Illumina platform. Isolates

were originally selected from ten Maasai households, water and wildlife samples to
address a separate question about the degree of genetic similarity relative to
household social and physiographic connectivity, and thus this sample was not a
random sample from the study population. Nevertheless, the sequence data pro-
vided an opportunity to validate MLVA findings with respect to the distribution of
different E. coli strains amongst hosts. The sequencing service provided assembled
contigs from each genome using an in-house bioinformatics pipeline. This included
trimming with Trimmomatics and quality control evaluation using in-house scripts
combined with Samtools, BedTools and bwa-mem (MicrobesNG, University of
Birmingham, UK; https://microbesng.uk/).

Bioinformatic utilities from the Center for Genomic Epidemiology (CGE) were
used to identify the sequence types (STs, MLST 1.8 – MultiLocus Sequence
Typing47), to detect plasmid sequences (PlasmidFinder 1.348), and to detect
antimicrobial-resistance genes (ResFinder 3.049). The batch upload mode was used
to upload multiple sequences at the same time (a total of 816 E. coli whole-genome
sequences), and default settings were used (e.g., a 90% sequence similarity
threshold was used to identify antimicrobial-resistance genes).

For construction of a core-genome phylogenetic model, sequences from seven
housekeeping genes (adk, fumc, gybr, icd, mdh, pura, and recA) for each E. coli
strain (n= 816) and E. coli K12 (substrain MG1655; NCBI accession number:
NC_CP032667) genome were extracted, concatenated and aligned as a single
FASTA file and uploaded to CGE (CSI Phylogeny 1.4) to identify sequence variants
(single-nucleotide polymorphisms, SNPs). Out of 816 E. coli sequences, one
sequence per host per household from each clade was randomly picked (n= 81
isolates) and uploaded to MEGA6 software50 to create a maximum-likelihood
phylogenetic tree.

To assess the resolution of the ST-based phylogenetic tree, a phylogenetic tree
was also constructed based on whole-genome alignment of these 81 sequences.
Command-line-based parsnp and gingr programs from a core-genome analysis
suite Harvest were used to construct the tree51. Output from gingr was extracted as
a Newick file and was uploaded to iTOL (Interactive Tree of Life, an online based
tool)51,52 to display and manage the phylogenetic tree. The clades of ST- and
whole-genome-based phylogenetic trees were compared visually.

Identification of risk factors. From our household surveys, we compiled sets of
variables that have the potential to be associated with transmission and/or selection
for antimicrobial-resistant bacteria in livestock, chicken, and dogs (Table 5 and
Supplementary Data 8 for statistics by ethnic group). Variables were selected based
upon results from reviews of antimicrobial resistance in low- and middle-income
countries (e.g., the WHO Global Action Plan2) and from our ethnographic work
(i.e., recurrent practices we observed that likely impacted transmission/selection)17.

For the livestock models, we first pooled ethnic groups together and then
presented group-specific models. For dog and chicken models, we only used a
pooled analysis due to sample size restrictions (10–20 households for one or more
ethnic groups). For these latter models we included ethnic affiliation as a control

Table 5 Description of variables entered into multivariate models.

Variable Description

Boil Milk (1= Yes 0=No) Whether a household normally boiled their drinking milk before consumption
Distance from HH to nearest urban center Geodesic distance in kilometers between household and the nearest urban center. Nearest urban center

was Arusha or Moshi
HH health care visits The number of times any member of the household went to visit a clinic in the last six months
HH antibiotic use A scale of antibiotic use potential that include the number of antibiotics, syringes, and recalled use of

antibiotics in last month
HH vaccination use The number of diseases all livestock had been vaccinated against. Importantly, this did not indicate

whether an entire herd had been vaccinated for a particular disease
Vet services used The number of veterinary services used including government veterinarians, private veterinarians,

community animal health workers, agrovets shopkeepers, and animal health laboratory workers
Livestock exchange partners The number of unique individuals a household had exchanged cattle with in the last year
Livestock in and out of home The number of livestock (cattle, sheep, goats) that moved in and out of the household on a daily basis. The

herd would leave to graze/water in the morning and return near sunset
Livestock purchased The number of livestock (cattle, sheep, goats) purchased in the last year
Markets used The number of markets a household used to buy and sell livestock (cattle, sheep, goats)
Outside livestock managed The number of livestock (cattle, sheep, goats) that a person managed for someone outside the household.
Scale of urbanity A scale of urbanity including whether the household had any form of electricity, radio, tv, refrigerator,

motorcycle, vehicle, and number of cellphones
Steps taken to avoid disease The number of steps taken by households to avoid diseases in their herds including, keeping calves

separate, making an isolation shed, grazing sick cattle separately, supplementing feed, vaccinating, and
spraying

Toilet (1= Yes 0=No) Whether the household used a flush/pit toilet
Total animals at home The total number of animals kept at the household including cattle, sheep, goats, donkeys, chickens,

pigs, ducks
Waterholes used The number of waterholes NORMALLY used by a household throughout the year
Water source shared with animals A variable indicating whether livestock, wildlife, and people shared the same water source
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variable and tested for interaction effects between significant risk factors and ethnic
affiliation. Results were summarized as odds ratios (OR), with odds ratios >1.0
indicating a higher odd of detecting antimicrobial-resistant bacteria and <1.0 one
indicating a lower odd of exhibiting resistance. Variables were reported as Z-scores
so that changes in odds ratios should be interpreted as changes relative to changes
in standard deviation. To minimize attention to potentially spurious correlations,
we restricted our inferences to variables that were significantly associated with
resistance to three or more of the six possible antimicrobial-resistance phenotypes.
Model fit was assess using McKelvey and Zavoina Pseudo R2, a goodness of fit
measure that is based on variance decomposition of the estimated logits and has
been recommended as measure for logistic multilevel models53–55. Most values of
McKelvey and Zavoina Pseudo R2 were 0.3 or above, indicating good model fit. See
Supplementary Data 9 for McKelvey and Zavoina Pseudo r2 values for estimations
using both the fixed and random effects, the fixed-effects only, and the intraclass
correlations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study have been deposited in GenBank at
National Center for Biotechnology Information [repository name “BioProject ID
PRJNA578301; Genome submission SUB6444306”] with the accession codes
SAMN13068707 through SAMN1068790. The socioeconomic data that support findings
of this survey are available at figshare with identifier doi: 10.6084/m9.figshare.10185077.

Code availability
No custom code was used in the analyses.
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