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ABSTARCT 

In this research, a metapopulation model is formulated as a system of ordinary differential 

equations to study the impact of vaccination on the spread of measles. An expression for the 

effective reproduction number 𝑅𝐶 for the metapopulation system and 𝑅𝐶𝑖  (𝑖 = 1,2) for the two 

patches when there are no individual movements between them are derived using the next 

generation approach for controlling the disease. The disease-free equilibrium is computed and 

proved to be locally and globally asymptotically stable if  𝑅𝐶 < 1 and unstable if 𝑅𝐶 > 1. We 

show that when there are no movements between the two patches, there exists at least one endemic 

equilibrium for all 𝑅𝐶𝑖 > 1 and bifurcation analysis of the endemic equilibrium point proves that 

forward (supercritical) bifurcation occurs in each patch. Sensitivity analysis of the basic 

reproduction number 𝑅0 for metapopulation system is performed and we found that movement rates 

from patch 2 to patch 1 tend to increases measles infection in a metapopulation while movement rates 

from patch 1 to patch 2 tend to decrease measles infection in a metapopulation. Numerical simulation 

results are also presented to validate analytical results and to show the impact of vaccination on 

incidence and prevalence of measles in the metapopulation. 
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CHAPTER ONE 

Introduction 

This chapter gives brief background information on measles disease, illustrates the problem 

statement, objectives, explains the significance of addressing the study problem, and gives the 

structure of the dissertation and the different lists of publication. 

1.1 Background Information 

Measles is a contagious disease and is due to infection of Paramyxovirus of the genus 

Morbillivirus (Ochoche et al., 2014; Onyejekwe et al., 2014). An incubation period for measles 

is found somewhere between 9 and 12 days and its infectivity period is found between 4 and 9 

days (Doungmo Goufo et al., 2014). Globally, the disease is said to be one of the most 

prominent causes of death among young children, despite the presence of an effective vaccine 

(WHO, 2014). Measles is easily transmitted by coughing and sneezing, especially when 

someone stays in direct contact with an infected nasal secretions (WHO, 2014). It has been 

pointed out that in the year 2013 there were 145 700 measles induced deaths globally, which is 

equivalent to 400 deaths every day or 16 deaths every hour (WHO, 2014). 

Measles cases occur if there is no high coverage of vaccination (Gahr et al., 2014). The high 

number of cases occur in places where there is an aggregation of individuals who have not been 

vaccinated or infected by the disease (WHO, 2001). Measles has a basic reproduction number 

of the range 6 to 45 which implies that the mean number of secondary infections caused by a 

single infected individual in a susceptible population is found somewhere between 6 and 45 

(Ejima et al., 2012). 

The earliest sign of measles is usually a high fever, which begins about 10 to 12 days after 

exposure to the virus, and lasts 4 to 7 days. A runny nose, a cough, red and watery eyes, and 

small white spots inside the cheeks can develop in the initial stage. After several days, a rash 

erupts, usually on the face and upper neck. Over about 3 days, the rash spreads, eventually 

reaching the hands and feet. The rash goes on for 5 to 6 days, and then fades. On average, the 

rash occurs 14 days after exposure to the virus within a range of 7 to 18 days (WHO, 2014). 

No specific antiviral treatment exists for measles virus. Severe complications from measles can 

be avoided through supportive care that ensures good nutrition, adequate fluid intake and 

treatment of dehydration with WHO-recommended oral rehydration solution. This solution 
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replaces fluids and other essential elements that are lost through diarrhea or vomiting. 

Antibiotics should be prescribed to treat eye and ear infections, and pneumonia (WHO, 2014). 

Several studies have been done on the use of mathematical models to control measles 

(Abubakar et al., 2003; Adewale et al., 2014; Momoh et al., 2013; Fred et al., 2014; Mossong 

et al., 2000; Ochoche et al., 2014; Tessa, 2009) . These studies respectively, studied the effect 

of vaccination (Momoh et al., 2013) and area (Adewale et al., 2014) on transmission dynamics 

of measles, estimated basic reproduction number for measles (Mossong et al., 2000), studied 

control of measles by vaccination incorporating two phases of infectiousness (Ochoche et al., 

2014), used bifurcation theory on the mathematical model to study measles dynamics 

(Abubakar et al., 2003), and predicted an optimal vaccine coverage level needed to control 

measles (Fred et al., 2014; Tessa, 2006). There are also other studies which use metapopulation 

models to control measles (Arino et al., 2006; Arino, 2009; Doungmo Goufo et al., 2014; 

Salmani et al., 2006; Xia et al., 2004). These models play an important role in studying disease 

epidemics because they can describe the dynamics of individuals between patches which may 

be cities, towns, and so forth. The studies respectively, presented a system of 4p ordinary 

differential equations to describe disease spread in an environment divided into p patches and 

extended their system to include cross infection between several patches and keeping track of 

both the current patch and the patch in which an individual usually resides (Arino et al., 2006; 

Arino, 2009), presented a fractional SEIR metapopulation system modelling the spread of 

measles by considering 4 distinct patches which are cities (Doungmo Goufo et al., 2014), 

proposed a metapopulation model for regional measles dynamics on the basis of a gravity 

coupling model and a time series susceptible-infected-recovered (TSIR) model for local 

dynamics (Xia et al., 2004), formulated a disease transmission model as a system of ordinary 

differential equations for a population with individuals traveling between discrete geographic 

patches (Salmani et al., 2006). 

In this study, we propose a metapopulation mathematical model as a system of ordinary 

differential equations to study the impact of vaccination on the spread of measles. Our 

metapopulation model consists of two regions one with high measles infection (patch 1) and 

the other region with a low measles infection (patch 2) and movement of individuals between 

the patches in all direction at constant rates is considered. 
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1.2 Research Problem  

Several studies have been done for example (Momoh et al., 2013; Doungmo Goufo et al., 2014; 

Ochoche et al., 2014; Mossong et al., 2000; Fred et al., 2014) among others to address measles 

epidemic dynamics but the disease still persist despite the availability of interventions. Only 

few of them tried to consider measles epidemic in a metapopulation. Doungmo Goufo et al., 

2014 studied the spread of measles in a city metapopulation, but did not consider the impact of 

vaccination. Thus, there is a need to assess the impact of vaccination on the disease epidemic 

in a metapopulation. Therefore, this study aims to study the impact of vaccination on 

epidemiology of measles in a metapopulation. 

1.3 Research Justification 

i. The study improves current knowledge and attitudes related to measles and its 

complications, prevention and treatment. 

ii. This work acts as a platform for further research on measles spread in a 

metapopulation. 

iii. The study will be useful for policy makers to establish programs and suitable plans 

and control of the disease. 

iv. The model will help healthcare sector to quantify the effect of vaccination to the 

spread of the disease. 

1.4 Objectives 

1.4.1 Main objective 

The main objective of this research is to model the impact of vaccination on the epidemiology 

of measles in a metapopulation. 

1.4.2 Specific objectives 

The specific objectives were: 

i. To formulate a mathematical model for studying the impact of vaccination on the 

epidemiology of measles in a metapopulation.  

ii. To analyze the stability of disease free and endemic equilibrium points for measles 

metapopulation model.  

iii. To perform sensitivity analysis of various parameters of the model. 
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1.5 Research Questions 

The research questions are:- 

i. How can the mathematical model for studying the impact of vaccination on the 

epidemiology of measles in a metapopulaton be formulated?  

ii. What is the stability of the disease free and endemic equilibrium point? 

iii. How can the sensitivity analysis of the basic reproduction number with respect to model 

parameters be performed? 

1.6 Dissertation outline 

This dissertation consists of four chapters.   

Chapter one includes the introduction of the problem and literature reviews that are closely 

related to this study.  

Chapter two is based on the paper: Modelling and sensitivity analysis for dynamics of measles 

in a metapopulation incorporating vaccination, Leopard C. Mpande, Damian Kajunguri and 

Emmanuel Mpolya. The paper is accepted for publication in the American journal of 

Computational and Applied Mathematics. This chapter consists of model formulation, 

derivation of the effective and basic reproduction number as well as an analysis of the 

reproduction number of the measles metapopulation model which incorporates vaccination as 

a control strategy. The chapter also discusses sensitivity analysis of the basic reproduction 

number with respect to model parameters. 

In chapter three, we present the second paper having the title: Modelling and stability analysis 

for measles metapopulation model with vaccination, Leopard C. Mpande, Damian Kajunguri, 

and Emmanuel Mpolya. The paper is published in the journal of Applied and Computational 

Mathematics. In this chapter, a clear stability analysis is done for the model formulated in 

chapter two. 

In chapter four we conclude the dissertation by having a general discussion, conclusion and 

recommendation.  
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CHAPTER TWO 

 MODELLING AND SENSITIVITY ANALYSIS FOR DYNAMICS OF MEASLES IN A 

METAPOPULATION INCORPORATING VACCINATION1 

Abstract 

In this chapter, a metapopulation model is formulated as a system of ordinary differential 

equations to study the impact of vaccination on the spread of measles. An expression for the 

effective reproduction number 𝑅𝐶 for the metapopulation system and 𝑅𝐶𝑖  (𝑖 = 1,2) for the two 

patches when individual movements between them do not exist are derived using the next 

generation approach. Numerical simulations of the reproduction numbers show that vaccination 

is the effective way to fight against measles in a metapopulation. Sensitivity analysis of the 

basic reproduction number for the metapopulation system is performed and we found that rates 

of movement from patch 2 to patch 1 tend to increase measles infection in a metapopulation 

while rates of movement from patch 1 to patch 2 tend to decrease measles infection in a 

metapopulation. 

Keywords: Vaccination, Metapopulation, Measles, Sensitivity analysis. 

2.1 Introduction 

Measles is a contagious disease and is due to infection of Paramyxovirus of the genus 

Morbillivirus (Ochoche et al., 2014; Onyejekwe et al., 2014). An incubation period for measles 

is found somewhere between 9 and 12 days and its infectivity period is found between 4 and 9 

days (Doungmo Goufo et al., 2014). Globally, the disease is said to be one of the most 

prominent causes of death among young children despite the presence of an effective vaccine 

(WHO, 2014). Measles is easily transmitted by coughing and sneezing, especially when 

someone stays direct contact with an infected nasal secretions (WHO, 2014). It has been pointed 

out that in the year 2013 there were 145 700 measles induced deaths globally, which is 

equivalent to 400 deaths every day or 16 deaths every hour (WHO, 2014). 

                                                 
1 This chapter is based on the accepted manuscript 

 

Leopard C. Mpande, Damian Kajunguri, and Emmanuel A. Mpolya, “Modeling and Sensitivity Analysis for 

dynamics of Measles in a Metapopulation incorporating Vaccination,” American Journal of Computational and Applied 

Mathematics. 
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Measles cases occur if there is no high coverage of vaccination (Gahr et al., 2014). The higher 

number of cases occur in places where there is an aggregation of individuals who have not been 

vaccinated or infected by the disease (WHO, 2001). Measles has a basic reproduction number 

of the range 6 to 45 which implies that the mean number of secondary infections caused by a 

single infected individual in a susceptible population is found somewhere between 6 and 45 

(Ejima et al., 2012). 

Several studies have been done on the use of mathematical models to control measles 

(Abubakar et al., 2003; Adewale et al., 2014; Momoh et al., 2013; Fred et al., 2014; Mossong 

et al., 2000; Ochoche et al., 2014; Tessa, 2009) . These studies respectively, studied the effect 

of vaccination (Momoh et al., 2013) and area (Adewale et al., 2014) on transmission dynamics 

of measles, estimated basic reproduction number for measles (Mossong et al., 2000), studied 

control of measles by vaccination incorporating two phases of infectiousness (Ochoche et al., 

2014), used bifurcation theory on the mathematical model to study measles dynamics 

(Abubakar et al., 2003), and predicted an optimal vaccine coverage level needed to control 

measles (Fred et al., 2014; Tessa, 2006). There are also other studies which use metapopulation 

models to control infectious diseases such as measles (Arino et al., 2006; Arino, 2009; 

Doungmo Goufo et al., 2014; Salmani et al., 2006; Xia et al., 2004). These models play an 

important role in studying disease epidemics because they can describe the dynamics of 

individuals between patches which may be cities, towns, and so forth. These studies 

respectively, presented a system of 4p ordinary differential equations to describe disease spread 

in an environment divided into p patches and extended their system to include cross infection 

between several patches and keeping track of both the current patch and the patch in which an 

individual usually resides (Arino et al., 2006; Arino, 2009), presented a fractional SEIR 

metapopulation system modeling the spread of measles by considering 4 distinct patches which 

are cities (Doungmo Goufo et al., 2014), proposed a metapopulation model for regional measles 

dynamics on the basis of a gravity coupling model and a time series susceptible-infected-

recovered (TSIR) model for local dynamics (Xia et al., 2004), formulated a disease 

transmission model as a system of ordinary differential equations for a population with 

individuals traveling between discrete geographic patches (Salmani et al., 2006). 

In this study, we proposed a metapopulation mathematical model as a system of ordinary 

differential equations to study the impact of vaccination on the spread of measles. Our 
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metapopulation model consists of two regions one with high measles infection (patch 1) and 

the other region with a low measles infection (patch 2) and movement of individuals between 

the patches in all direction at constant rates is considered. 

2.2 Model Formulation 

In this section we formulate a measles metapopulation model incorporating vaccination as a 

control strategy. Our model consists of two patches, where each patch is divided into the 

following epidemiological classes for 𝑖 = 1,2 : Susceptible 𝑆𝑖, Vaccinated 𝑉𝑖, Exposed 𝐸𝑖, 

Infected 𝐼𝑖, and Recovered 𝑅𝑖. We assume that individuals mix homogeneously. Recruitment 

is assumed to be through birth at a constant rate 𝜋𝑖. Natural mortality rate 𝜇𝑖 = 𝜇 is constant 

for all patches. We assume one dose of vaccination for susceptible individuals at a rate 𝜃𝑖 = 𝜃. 

Once an individual is vaccinated, he or she goes to recovered class with permanent immunity 

at a constant rate 𝜎𝑖 = 𝜎. The average number of effective contacts of an infectious individual 

per unit time is 𝛽𝑖, and standard incidence is assumed. The exposed individuals move from 

exposed class to infectious class at a rate 𝛿𝑖 = 𝛿. The infectious individuals recover 

permanently after treatment at a rate 𝜂𝑖 = 𝜂. Our metapopulation model represents two regions, 

patch 1 with high measles infection and patch 2 with a low measles infection with an 

assumption of individual movements between patches in both directions at equal rates as shown 

in figure 1. The forces of infections for each patch are given by 𝜆1 =
𝛽1𝐼1

𝑁1
 and 𝜆2 =

𝛽2𝐼2

𝑁2
  

respectively.   
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Figure 1. Flow diagram showing measles transmission dynamics in a metapopualtion with 

vaccination in patches 1 and 2. 

Table 1.Parameters used in the model formulation and their description 

Parameter Description 

𝜋𝑖   Per capita birth rate in patch i. 

𝛽𝑖 

 

Contact rate (the average number of adequate contacts per person    

  per unit  time) in patch i. 

𝛿 The rate of progression from latent class to infectious class in patch i. 

𝜃  Vaccine coverage rate in patch i. 

   Recovery rate of treated infectious individuals in patch i. 

    Per capita natural mortality rate in patch i. 

𝜌   Disease induced death rate in patch i. 

𝜎 

 

Recovery rate of vaccinated individuals in patch i. 

 
 

     

From the description of the dynamics of measles and with the aid of the compartmental diagram 

in Figure 1, we have the following set of differential equations. 

 1

1 1 1 2 2 1 1

dS
S b S b S

dt
         

 2 2 2 1 1 2 2

2 S b S b S
dS

dt
         

 1

1 2 2 1

dV
S b V b V

dt
        

 2

2 1 1 2 2

dV
S bV b V

dt
        

 1

1 1 2 2 1 1

dE
S b E b E

dt
                                                      (1) 

 2

2 2 1 1 2 2

dE
S b E b E

dt
        
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 1

1 2 2 1 1

dI
E b I b I

dt
          

 2

2 1 1 2 2

dI
E b I b I

dt
          

 1

1 1 2 2 1 1

dR
I V b R b R

dt
        

 2

2 2 1 1 2 2

dR
I V b R b R

dt
        

with initial conditions  0 0
i

S  ,  0
i

E ,  0
i

I ,  0
i

R ,  0 0
i

V   and ∑ (𝐸𝑖(0) +  𝐼𝑖(0)) > 02
𝑖=1   for 

1,2 i    (Arino, 2009; Arino et al., 2006; Salmani et al., 2006). 

Here, 
i i i i i i

N S E I R V      is the total population in each patch and satisfies

i
i i i

dN
N I

dt
     . The total population size in all patches is    

2

1

i

i

N t N t


 .  

Let 
2

1

Π
i

i




 . The following two lemmas show that the model is well posed and that all variables 

lie in the interval  0, M  where   Πmax 0 ,M N


 . 

Lemma 1: The solution for the model system (1) is positively invariant in the positive orthant 
10


 

Proof.  Suppose that initially, all variables are non-negative. We use the method of contradiction 

to prove this Lemma as done in (Ejima et al., 2012; Ngwenya, 2009 ).  

Consider the first equation. Assume there exist a time 𝑡1 such that 𝑆1(𝑡1) = 0, 𝑆1
′(𝑡1) < 0 and 𝑆1(𝑡) >

0 for   0 < 𝑡 < 𝑡1. 

But we have 𝑆1
′(𝑡1) = 𝜋1 + 𝑏2𝑆2 > 0 which is a contradiction to the assumption 𝑆1

′(𝑡1) < 0. This 

implies that 𝑆1 remains positive for all 𝑡. Similarly, it can be shown that for all 𝑖 = 1,2, the 

variables 𝑆2, 𝐸𝑖, 𝐼𝑖 , 𝑅𝑖 and 𝑉𝑖 remain positive for all 𝑡. Hence solutions remain non-negative for 

nonnegative initial conditions. Therefore the model is considered to be mathematically and 

epidemiologically well-posed. Basing on biological considerations, model system (1) will be 

studied in the region 

Ω = {(𝑆1, 𝑆2, 𝑉1, 𝑉2, 𝐸1, 𝐸2, 𝐼1, 𝐼2, 𝑅1, 𝑅2) ∈ ℝ+
10: 𝑆1 + 𝑆2 + 𝑉1 + 𝐸1 + 𝐸2 + 𝐼1 + 𝐼2 + 𝑅1 + 𝑅2 ≤

Π

𝜇
}. 
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Lemma 2: Consider the system (1) with nonnegative initial conditions. Assume that for all 1,2i 

, the variables ( )
i

S t , ( )
i

E t  , ( )
i

I t , ( )
i

V t , and ( )
i

R t  remain non-negative, then  iN t  remain positive, 

and the total population  N t  is bounded above for 𝑡 ≥ 0. 

Proof.  Assume non-negative initial conditions. 

 For all 1,2i  , we have 
 

 i

i i i

dS t
b S

dt
       . 

Thus    
 

0
i ib t

i iS t S
     

   for 0t   which shows that   0
i

S t  provided  0 0
i

S  . Thus, 

  0
i

N t   provided that  0 0
i

S  . 

By summing all the equations we have 
𝑑𝑁

𝑑𝑡
=

𝑑(∑ 𝑁𝑖
2
𝑖=1 )

𝑑𝑡
= ∑ (𝜋𝑖 − 𝜇𝑁𝑖 − 𝜌𝐼𝑖) ≤ Π − 𝜇𝑁.2

𝑖=1  

If at a certain time 
1

t ,  
1

Π
N t


 , then 0

dN

dt
  at 

1
t , so  N t  is non-increasing at 1

t . Thus  N t  

is bounded above by M  (Salmani et al., 2006). 

The right hand sides of (1) are continuously differentiable, hence basic theorems (Perko, 2000) 

can be used to show that there is a unique solution to the system with given non-negative initial 

conditions and that this solution exists for all 0t  . Therefore the model is considered to be 

mathematically and epidemiologically well-posed. 

2.3 Model analysis 

The model system (1) is analysed qualitatively to give better understanding of the impact of 

vaccination on the epidemiology of measles. 

2.3.1 Disease Free Equilibrium (DFE), 𝑷𝟎 

The metapopulation model is at equilibrium if the time derivatives are zero. In the case of system 

(1), the metapopulation model is at a disease free equilibrium if  𝐸𝑖 = 𝐼𝑖 = 𝑅𝑖 = 0 for all 𝑖 = 1,2. 

Thus, at a disease free equilibrium we have 𝑁𝑖 = 𝑆𝑖 + 𝑉𝑖. 

Solving the system (1), we get a disease-free equilibrium point  0 0 0 0

0 1 2 1 2
,  ,  ,  , 0, 0, 0, 0, 0, 0P S S V V  

where 
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 

  
0 2 2 1 2

1

1 2 1 2

b b
S

b b b b

   

   

  


    
,

 

  
0 1 1 2 1

2

1 2 1 2

b b
S

b b b b

   

   

  


    
,

 

  

0 0

0 2 2 2 1

1

1 2 1 2

b S b S
V

b b b b

   

   

  


    
, and 

 

  

0 0

0 1 1 1 2

2

1 2 1 2

b S b S
V

b b b b

   

   

  


    
 

2.3.2 The Effective Reproduction Number, 𝑹𝑪 

Stability of equilibrium can be analyzed using the basic reproduction number (Castillo-Chavez et 

al., 2002; Hethcote, 2000; Anderson et al., 1991). The basic reproduction number 𝑅0 is the 

expected number of secondary cases produced by a typical infective individual introduced into a 

completely susceptible population, in the absence of any control measure. A general method for 

computing 𝑅0 is the next generation method (Diekman et al., 1990; Van den driessche et al., 2002). 

Mathematically, 𝑅0 is the spectral radius of the so-called next generation matrix. Here, we compute 

the control reproduction number, denoted by 𝑅𝐶, to describe the average number of secondary 

cases generated by primary cases under specified controls such as vaccination (Hethcote, 2000; 

Anderson et al., 1991). Using the method described by (Van den Driessche et al., 2002), we use 

ℱ  to denote the rates of the appearance of new infections in each compartment; 𝒱 =  𝒱+ +  𝒱−, 

𝒱+ being the vector of individual transfer rates into the particular compartment, and 𝒱− the vector 

of individual transfer rates out of the particular compartment. The two vectors are given by  

1 1

2 2

0

0

S

S






 
 
 
 
 
 

, and 

 

 

 

 

1 1 2 2

2 2 1 1

1 1 1 2 2

2 2 2 1 1

b E b E

b E b E

b I E b I

b I E b I

v

 

 

   

   

  

  


    

    

 
 
 
 
 
 

. 

The next generation matrix is defined as 𝐹𝑉−1, where 𝐹 and 𝑉 are both the Jacobian matrices of  ℱ 

and 𝒱 evaluated at disease free equilibrium with respect to exposed and infectious classes. 

After some calculations we found 
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0

1 1

0 0

1 1
0

2 2

0 0

2 2

0 0 0

0 0 0     

0 0 0
0

0 0 0
0

S

S V
S

F
S V









 
 
 
 
 
 
 
 
 

, and 

1 2

1 2

1 2

1 2

0

0     

0

0

0

0

b b

b b

b

V

b

b b

 

 

  

  

  

  

   

   



 
 
 
 
 
 
  

. 

The next generation matrix 𝐹𝑉−1, has a nonzero eigenvalue corresponding to the spectral radius 

which represents the control reproduction number of the model as 

            

  

2 2

1 1 1 1 1 1 2 1

1 1

2 2 2 2 2 2

2 2

4 2 2

2
C

a b b df b b b ce bb b adf ab b bce abb b cd ef ab b bce adf bb b
R

b b cd b b ef

             


 
                                                                                                                                                                                                                   

                                                                                                                                                                                              (2) 

where 𝑐 = 𝜇 + 𝛿 + 𝑏1, 𝑑 = 𝜇 + 𝛿 + 𝑏2, 𝑒 = 𝜇 + 𝜌 + 𝜂 + 𝑏1,  𝑓 = 𝜇 + 𝜌 + 𝜂 + 𝑏2, 𝑎 =
𝛽1𝑆1

∗

𝑆1
∗+𝑉1

∗ , 

and 𝑏 =
𝛽2𝑆2

∗

𝑆2
∗+𝑉2

∗. 

If 𝑅𝐶 < 1,  the disease cannot invade the metapopulation and the infection will die out over a 

period of time, and also, if 𝑅𝐶 > 1, then an invasion is possible and infection can spread through 

the metapopulation. Generally, the larger the value of 𝑅𝐶 , the more severe, and possibly 

widespread the epidemic will be. 

When there is no vaccination in all patches, we set the parameters 𝜃 and 𝜎 to zero and we get 

 𝑎 = 𝛽1 and 𝑏 = 𝛽2. Thus we have the basic reproduction number  

            

  
1 2 2 1 1 2 1 2 1 2 1 2

2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

0

1 2 1 2

4 2 2

2

b b df b b ce b b df b b ce b b cd ef b b ce df b b
R

b b cd b b ef

                       


 
                                                                                                                                                                                                                                                                                                                                                                                                                              

                                                                                                                                                                                              (3) 

where 𝑐 = 𝜇 + 𝛿 + 𝑏1, 𝑑 = 𝜇 + 𝛿 + 𝑏2, 𝑒 = 𝜇 + 𝜌 + 𝜂 + 𝑏1, and  𝑓 = 𝜇 + 𝜌 + 𝜂 + 𝑏2. 

The control reproduction number 𝑅𝐶,  is less than the basic reproduction number 𝑅0, and hence 

we conclude that the endemicity of infection is reduced when vaccination is applied to susceptible 

individuals in all two patches.  
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We now consider the case when there are no movements between the given two patches. This 

means that the parameters 𝑏1 and 𝑏2 become zero. Hence the control reproduction numbers for 

patches 1 and patch 2 are given in the form (for 𝑖 = 1,2) 

( )

( )( )( )
i

CiR
   

       




    
.                                          (4) 

When there are no vaccination strategies, we set the parameter 𝜃 and 𝜎 equal to zero and hence 

the reproduction numbers for the two patches when there are no movements between them are 

given in the form (for 𝑖 = 1,2) 

0
( )( )

i
iR

 

    


  
.                                                           (5) 

The comparison between reproduction numbers is not obvious analytically, so we opt for the 

numerical simulation to see how they behave. In order to support the analytical results, graphical 

representations showing the variations in reproduction numbers with respect to exposure rate will 

be provided  

2.4 Simulation of reproduction numbers 

Most of the parameters were estimated and some were picked from the literature. The natural 

mortality was taken to be 0.02 as in (Ochoche et al, 2014), corresponding to a life expectancy of 

50 years. The Recovery rate of vaccinated individuals was assumed to be varied in the range 

0.52, 0.595, 0.68, and 0.769 (Momoh et al., 2013). We take a value of 0.52 in our model. The 

vaccination rate is varied for different values during simulations. We assume the movement rates 

to take the estimated values of 0.1 and 0.4 respectively which account on the average number of 

individuals travelling from one region to another. We assume contact rate in one region to be twice 

compared to another region. Thus the contact rates in the two regions are estimated to be 0.6 and 

0.3 respectively. Per capita birth rates are estimated to take values of 250 and 245 respectively in 

the two regions. Other parameter values were also estimated in the same way.    
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Table 2.Parameters values for the model system (1) 

     Parameter Value Source 

     1 2
,   250, 245 Estimated 

     
1 2
,     0.6, 0.3 Estimated 

         0.44 Estimated 

         Variable Estimated 

         0.024 Estimated 

        0.01-0.6 Ochoche et al., 2014 

        0.01 Estimated 

      𝜎 0.52 Momoh et al., 2013 

    1 2
,b b  0.1, 0.4 Estimated 

 

  

                                     (a)                                                                      (b) 
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                                      (c) 

Figure 2. 𝑎 and 𝑏 respectively show variations in reproduction numbers for patch 1 and patch 2 

when there are no individual movements between them and 𝑐 shows variations in reproduction 

number for the metapopulation system when individual movements between the patches are 

allowed. 

The basic reproduction numbers 𝑅0, 𝑅01, and 𝑅02 given in (3) and (5) respectively are obtained 

when there are no vaccination strategies to control the epidemic. We see these reproduction 

numbers are at the peak in both figures above, this implies that there is a high increase in 

reproduction numbers which result to the outbreak of measles infection. 

The best case scenario occurs at control reproduction numbers 𝑅𝐶 , 𝑅𝐶1 and 𝑅𝐶2. We know that 𝑅𝐶1 

and 𝑅𝐶2 are obtained when we give vaccinations to susceptible individuals in patch 1 and patch 2 

respectively when there are no individual movements between them and 𝑅𝐶 is obtained when 

vaccination is applied to the metapopulation system in which individual movements between the 

two patches exist. Thus, measles can be eradicated in the community if there is a widely coverage 

of vaccination. 

2.5 Sensitivity analysis 

In order to determine how best to reduce mortality and morbidity caused by measles infection in a 

metapopulation, it is useful to determine the relative importance of various factors which are 

accountable for transmission and prevalence of the disease (Makinde et al., 2011). Thus, in this 
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section we perform a sensitivity analysis of the basic reproduction number with respect to model 

parameters. This will enable us to discover parameters that have a high impact on the basic 

reproduction number and these parameters should be targeted for measles control. We follow the 

approach of (Mlay et al., 2014; Massawe et al., 2015; Chitnis et al., 2008; Makinde et al., 2011; 

Edward et al., 2014) by using the normalized forward sensitivity index, which is said to be 

computationally efficient (Kung’aro et al., 2014). 

Definition 1.1: The normalized forward sensitivity index of 𝑅0, that depends differentiable on a 

parameter Z, is defined as (Chitnis et al., 2008) 

0 0

0

R

Z

R Z
X

Z R


 


. 

For example, using the set of parameter values given in table 2, the sensitivity indices of 𝑅0 with 

respect to parameters 𝛽1and 𝜂 are given as follows 

0

1

0

0

1

1

0.89315025
R R

X
R








  


. 

0 0

0

0.54446158
R R

X
R








   


. 

Other indices can be obtained following the same procedure and tabulated below. We ordered the 

parameters from the most sensitive to the least. 

           Table 3. Sensitivity indices of model parameters to 𝑅0 

Parameter Sensitivity index 

𝛽1 +0.89315025 

𝜂 
 

-0.54446158 

𝜇 

 

-0.24905810 

 

                 𝜌 -0.22685899 

𝛽2 +0.10684997 
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                 𝑏1 -0.08794904 

 

                 𝑏2 +0.08508616 

𝛿                      

 

+0.02324150 

  
 

 

The most sensitive parameters are contact rate 𝛽1 and treated infectious individuals η. The least 

sensitive parameters are the movement rate from patch 2 to patch 1 (i.e. 𝑏2), and the rate of 

progression from latent class to infectious class 𝛿. Positive sensitivity index means that an increase 

or decrease of a given parameter value will lead to the increase or decrease of the basic 

reproduction number. Negative sensitivity index means that an increase or decrease of a given 

parameter value will lead to the decrease or increase of the basic reproduction number. For 

instance, the sensitivity index for η is -0.5444615 which implies that increasing the proportion of 

individuals who recover through treatment by 50%, decreases the value of 𝑅0 by approximately 

27.2% and hence lowering the endemicity of measles in a metapopulation. In contrast, decreasing 

η by 50%, increases the value of 𝑅0 by 27.2% and hence increases the endemicity of the disease. On 

the other hand, the sensitivity index of 𝑏2 is +0.08508616 which means that an increase of movements 

from the patch of low disease incidence (i.e. patch 2) to the patch of high disease incidence (i.e. patch 

1) by 50% increases the value of 𝑅0 by approximately 4.25% and hence increases the endemicity of 

the disease. Therefore, by considering these results, our study suggests that the combination of 

treatment to infected individuals and vaccination to susceptible individuals should be given high 

priority. Also, movement rates from patch 2 to patch 1 need to be controlled to prevent more spread of 

infections in the metapopulation. 

2.6 Conclusion 

In this chapter, we presented a mathematical model for the control of measles in a metapopulation 

by considering two regions (patches). We used estimated data and data from literature in numerical 

simulations. We started by showing nonnegativity of solutions to the metapopulation model, 

thereby addressing the problem of its well posedness. We used estimated data and data from the 

literature in numerical simulation. Sensitivity analysis of the basic reproduction number strongly 
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indicated that the spread of measles largely depends on the contact rate with an infected individual 

in patch 1 and treatment rate of infectious individuals. Furthermore, we showed that the spread of 

measles in our metapopualation model is directly proportional to the movement rate of individuals 

from patch 2 to patch 1 and it is inversely proportional to the movement rates of individuals from 

patch 1 to patch 2. This means that the movement rates from patch 2 to patch 1 increases measles 

infection in a metapopulation while movement rates from patch 1 to patch 2 tend to decrease 

measles infection in a metapopulation. Simulations of the reproduction numbers have proved that 

vaccination is the effective way to eradicate measles in a metapopulation. 
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CHAPTER THREE 

MODELING AND STABILITY ANALYSIS FOR MEASLES METAPOPULATION 

MODEL WITH VACCINATION2 

Abstract 

In this chapter, a metapopulation model is formulated as a system of ordinary differential 

equations to study the impact of vaccination on the spread of measles. The disease-free 

equilibrium is computed and proved to be locally and globally asymptotically stable if 𝑅𝐶 < 1 

and unstable if 𝑅𝐶 > 1. We show that when there are no movements between the two patches, 

there exists at least one endemic equilibrium for all 𝑅𝐶𝑖 > 1 and bifurcation analysis of endemic 

equilibrium point proves that forward (supercritical) bifurcation occurs in each patch. 

Numerical simulation results are also presented to validate analytical results and to show the 

impact of vaccination on the incidence and prevalence of measles in a metapopulation. 

Keywords: Vaccination, Metapopulation, Measles, Bifurcation Analysis.  

3.1 Introduction  

Measles is a contagious disease and is due to infection of Paramyxovirus of the genus 

Morbillivirus (Ochoche et al., 2014; Onyejekwe et al., 2014). An incubation period for measles 

is found somewhere between 9 and 12 days and its infectivity period is found between 4 and 9 

days (Doungmo Goufo et al., 2014). Globally, the disease is said to be one of the most 

prominent causes of death among young children, despite the presence of an effective vaccine 

(WHO, 2014). Measles is easily transmitted by coughing and sneezing, especially when 

someone stays in direct contact with an infected nasal secretions (WHO, 2014). It has been 

pointed out that in the year 2013 there were 145 700 measles induced deaths globally, which is 

equivalent to 400 deaths every day or 16 deaths every hour (WHO, 2014). 

Measles cases occur if there is no high coverage of vaccination (Gahr et al., 2014). The high 

number of cases occur in places where there is an aggregation of individuals who have not been 

vaccinated or infected by the disease (WHO, 2001). Measles has a basic reproduction number 

of the range 6 to 45 which implies that the mean number of secondary infections caused by a 

                                                 
2 This chapter is based on the research paper: 

Leopard C. Mpande, Damian Kajunguri, and Emmanuel A. Mpolya, “Modeling and Stability Analysis for Measles 

Metapopulation Model with Vaccination,” Applied and Computational Mathematics. Vol. 4, No. 6, 2015, pp. 431-

444. doi:10.11648/j.acm. 20150406.16 
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single infected individual in a susceptible population is found somewhere between 6 and 45 

(Ejima et al., 2012). 

Several studies have been done on the use of mathematical models to control infectious diseases 

such as measles (Abubakar et al., 2003; Adewale et al., 2014; Momoh et al., 2013; Fred et al., 

2014; Mossong et al., 2000; Ochoche et al., 2014; Tessa, 2009) . These studies respectively, 

studied the effect of vaccination (Momoh et al., 2013) and area (Adewale et al., 2014) on 

transmission dynamics of measles, estimated basic reproduction number for measles (Mossong 

et al., 2000), studied control of measles by vaccination incorporating two phases of 

infectiousness (Ochoche et al., 2014), used bifurcation theory on the mathematical model to 

study measles dynamics (Abubakar et al., 2003), and predicted an optimal vaccine coverage 

level needed to control measles (Fred et al., 2014; Tessa, 2006). There are also other studies 

which use metapopulation models to control infectious diseases such as measles (Arino et al., 

2006; Arino, 2009; Doungmo Goufo et al., 2014; Salmani et al., 2006; Xia et al., 2004). These 

models play an important role in studying disease epidemics because they can describe the 

dynamics of individuals between patches which may be cities, towns, and so forth. These 

studies respectively, presented a system of 4𝑝 ordinary differential equations to describe 

disease spread in an environment divided into 𝑝 patches and extended their system to include 

cross infection between several patches and keeping track of both the current patch and the 

patch in which an individual usually resides (Arino et al., 2006; Arino, 2009), presented a 

fractional SEIR metapopulation system modeling the spread of measles by considering 4 

distinct patches which are cities (Doungmo Goufo et al., 2014), proposed a metapopulation 

model for regional measles dynamics on the basis of a gravity coupling model and a time series 

susceptible-infected-recovered (TSIR) model for local dynamics (Xia et al., 2004), formulated 

a disease transmission model as a system of ordinary differential equations for a population 

with individuals traveling between discrete geographic patches (Salmani et al., 2006). 

In this study, we proposed a metapopulation mathematical model as a system of ordinary 

differential equations to study the impact of vaccination on the spread of measles. Our 

metapopulation model consists of two regions one with high measles infection (patch 1) and 

the other region with a low measles infection (patch 2) and movement of individuals between 

patches in all direction at constant rates is considered. 
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3.2 Model Formulation 

In this section we formulate a measles metapopulation model which incorporates vaccination 

strategy. Our model consists of two patches, where each patch is divided into the following 

epidemiological classes for 𝑖 = 1,2 : Susceptible 𝑆𝑖, Vaccinated 𝑉𝑖, Exposed 𝐸𝑖, Infected 𝐼𝑖, and 

Recovered 𝑅𝑖. We assume that individuals mix homogeneously. Recruitment is assumed to be 

through birth at a constant rate 𝜋𝑖. Natural mortality rate 𝜇𝑖 = 𝜇 is constant for all patches. We 

assume one dose of vaccination for susceptible individuals at a rate 𝜃𝑖 = 𝜃. Once an individual 

is vaccinated, he or she goes to recovered class with permanent immunity at a constant rate 

𝜎𝑖 = 𝜎. The average number of effective contacts of an infectious individual per unit time is 

𝛽𝑖, and standard incidence is assumed. The exposed individuals move from exposed class to 

infectious class at a rate 𝛿𝑖 = 𝛿. The infectious individuals recover permanently after treatment 

at the rate 𝜂𝑖 = 𝜂. Our metapopulation model represents two regions, patch 1 with high measles 

infection and patch 2 with a low measles infection with an assumption of individual movements 

between patches in both directions at equal rates as shown in figure 3. The forces of infections 

for each patch are given by 𝜆1 =
𝛽1𝐼1

𝑁1
 and 𝜆2 =

𝛽2𝐼2

𝑁2
  respectively.  

 

Figure 3. Flow diagram showing measles transmission dynamics in a metapopualtion with    

vaccination in patches 1 and 2. 
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Table 4. Parameters used in the model formulation and their description 

Parameter Description 

𝜋𝑖   Per capita birth rate in patch i. 

𝛽𝑖 

 

Contact rate (the average number of adequate contacts per person    

  per unit  time) in patch i. 

𝛿 The rate of progression from latent class to infectious class in patch i. 

𝜃  Vaccine coverage rate in patch i. 

   Recovery rate of treated infectious individuals in patch i. 

    Per capita natural mortality rate in patch i. 

𝜌   Disease induced death rate in patch i. 

𝜎 

 

Recovery rate of vaccinated individuals in patch i. 

 
 

     

From the description of the dynamics of measles and with the aid of the compartmental diagram 

in Figure 1, we have the following set of differential equations. 

𝑑𝑆1

𝑑𝑡
= 𝜋1 − 𝜆1𝑆1 + 𝑏2𝑆2 − (𝜇 + 𝜃 + 𝑏1)𝑆1 

𝑑𝑆2

𝑑𝑡
= 𝜋2 − 𝜆2𝑆2 + 𝑏1𝑆1 − (𝜇 + 𝜃 + 𝑏2)𝑆2 

𝑑𝑉1

𝑑𝑡
= 𝜃𝑆1 + 𝑏2𝑉2 − (𝜇 + 𝜎 + 𝑏1)𝑉1 

𝑑𝑉2

𝑑𝑡
= 𝜃𝑆2 + 𝑏1𝑉1 − (𝜇 + 𝜎 + 𝑏2)𝑉2 

𝑑𝐸1

𝑑𝑡
= 𝜆1𝑆1 + 𝑏2𝐸2 − (𝜇 + 𝛿 + 𝑏1)𝐸1 

𝑑𝐸2

𝑑𝑡
= 𝜆2𝑆2 + 𝑏1𝐸1 − (𝜇 + 𝛿 + 𝑏2)𝐸2                                                                   (1) 

𝑑𝐼1

𝑑𝑡
= 𝛿𝐸1 + 𝑏2𝐼2 − (𝜇 + 𝜌 + 𝜂 + 𝑏1)𝐼1 

𝑑𝐼2

𝑑𝑡
= 𝛿𝐸2 + 𝑏1𝐼1 − (𝜇 + 𝜌 + 𝜂 + 𝑏2)𝐼2 
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𝑑𝑅1

𝑑𝑡
= 𝜂𝐼1 + 𝜎𝑉1 + 𝑏2𝑅2 − (𝜇 + 𝑏1)𝑅1 

𝑑𝑅2

𝑑𝑡
= 𝜂𝐼2 + 𝜎𝑉2 + 𝑏1𝑅1 − (𝜇 + 𝑏2)𝑅2 

with initial conditions 𝑆𝑖(0) > 0, 𝐸𝑖(0), 𝐼𝑖(0), 𝑅𝑖(0), 𝑉𝑖(0) ≥ 0 and ∑ (𝐸𝑖(0) +  𝐼𝑖(0)) > 02
𝑖=1  for 

𝑖 = 1,2  (Arino, 2009; Arino et al., 2006; Salmani et al., 2006). 

Here 𝑁𝑖 = 𝑆𝑖 + 𝐸𝑖 + 𝐼𝑖 + 𝑅𝑖 + 𝑉𝑖 is the total population in each patch and satisfies 
𝑑𝑁𝑖

𝑑𝑡
= 𝜋𝑖 −

𝜇𝑁𝑖 − 𝜌𝐼𝑖. 

The total population size in all patches is 𝑁(𝑡) = ∑ 𝑁𝑖(𝑡)2
𝑖=1 .  

Let Π = ∑ 𝜋𝑖
2
𝑖=1 . 

The following two lemmas show that the model is well posed and that all variables lie in the 

interval [0, 𝑀] where 𝑀 = max {𝑁(0),
Π

𝜇
}. 

Lemma 1: The solution for the model system (1) is positively invariant in the positive orthant ℝ+
10

. 

Proof.  Assume that initially, all variables are non-negative. We use the method of contradiction 

to prove this Lemma as done in (Ejima et al., 2012; Ngwenya, 2009). 

Consider the first equation. Assume there exist a time 𝑡1such that 𝑆1(𝑡1) = 0, 𝑆1
′(𝑡1) < 0 and 

𝑆1(𝑡) > 0 for 0 < 𝑡 < 𝑡1. 

But we have 𝑆1
′(𝑡1) = 𝜋1 + 𝑏2𝑆2 > 0 which is a contradiction to the assumption 𝑆1

′(𝑡1) < 0. This 

implies that 𝑆1 remains positive for all 𝑡. Similarly, it can be shown that for all 𝑖 = 1,2, the variables 

𝑆2, 𝐸𝑖, 𝐼𝑖, 𝑅𝑖 and 𝑉𝑖 remain positive for all 𝑡. Hence solutions remain non-negative for nonnegative 

initial conditions. Therefore the model is considered to be mathematically and epidemiologically 

well-posed. Basing on biological considerations, model system (1) will be studied in the region 

Ω = {(𝑆1, 𝑆2, 𝑉1, 𝑉2, 𝐸1, 𝐸2, 𝐼1, 𝐼2, 𝑅1, 𝑅2) ∈ ℝ+
10: 𝑆1 + 𝑆2 + 𝑉1 + 𝑉2 + 𝐸1 + 𝐸2 + 𝐼1 + 𝐼2 + 𝑅1 + 𝑅2 ≤

Π

𝜇
}. 

Lemma 2: Consider the system (1) with nonnegative initial conditions. Assume that for all 𝑖 = 1,2, 

the variables 𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖(𝑡), 𝑉𝑖(𝑡) and 𝑅𝑖(𝑡) remain non-negative, then 𝑁𝑖(𝑡) remain positive, 

and the total population 𝑁(𝑡) is bounded above for 𝑡 ≥ 0. 

Proof.  Assume non-negative initial conditions. 
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 For all 1, 2i  , we have 
 

 i

i i i

dS t
b S

dt
       . 

Thus    
 

0
i ib t

i iS t S
     

  for 𝑡 ≥ 0 which shows that 𝑆𝑖(𝑡) > 0 provided 𝑆𝑖(0) > 0. Thus 

𝑁𝑖(𝑡) > 0  provided that 𝑆𝑖(0) > 0. 

By summing all the equations we have 
𝑑𝑁

𝑑𝑡
=

𝑑(∑ 𝑁𝑖
2
𝑖=1 )

𝑑𝑡
= ∑ (𝜋𝑖 − 𝜇𝑁𝑖 − 𝜌𝐼𝑖) ≤ Π − 𝜇𝑁.2

𝑖=1  

If at a certain time 1
t ,  

1

Π
N t


 , then 0

dN

dt
  at 1

t , so  N t  is non-increasing at 1
t . Thus  N t  

is bounded above by 𝑀 (Onyejekwe et al., 2015). 

The right hand sides of (1) are continuously differentiable, hence basic theorems (Perko, 2000) 

can be used to show that there is a unique solution to the system with given non-negative initial 

conditions and that this solution exists for all 0t  . Therefore the model is considered to be 

mathematically and epidemiologically well-posed. 

3.3 Model analysis 

The model system (1) is analysed qualitatively to give better understanding of the impact of 

vaccination on the epidemiology of measles. From chapter two we have seen that the model (1) 

have various reproduction numbers as shown in (2), (3), (4) and (5). We now turn into discussing 

about various stability analysis of the model. We also provide a detailed discussion about various 

stability analysis of the patch models with and without individual movements between them. 

3. 3. 1 Local Stability of the Disease-Free Equilibrium 

We investigate the stability of the disease free equilibrium point  0 0 0 0

0 1 2 1 2
,  ,  ,  , 0, 0, 0, 0, 0, 0P S S V V  as 

derived in chapter one by employing the method described in (Elbasha et al., 2006; Liao et al., 

2013; Ngwenya, 2009; Tessa, 2006). Thus, we linearize the model system (1) by computing its 

Jacobian matrix 𝐽. The Jacobian matrix is computed at disease free equilibrium point by 

differentiating each equation in the system with respect to the state variables 

𝑆1, 𝑆2, 𝑉1, 𝑉2, 𝐸1, 𝐸2, 𝐼1, 𝐼2, 𝑅1 and 𝑅2. We get 
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

g b a

b h b

k b

b l
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J P

b d b

e b

b f

i b

b j








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 
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 

 
 
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 

 
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  
 

 
 

 
 
 
  

, 

where 
0

1 1

0 0

1 1

S
a

S V





, 

0

2 2

0 0

2 2

S
b

S V





, 1

c b    , 2
d b    , 1

e b      , 

2
f b      , 1

g b    , 2
h b    , 1

i b  , 2
j b  , 1

k b    , and 

2
l b    . 

An equilibrium point  0 0 0 0

0 1 2 1 2
,  ,  ,  , 0, 0, 0, 0, 0, 0P S S V V  is locally asymptotically stable if the Jacobian 

matrix has a negative trace and a positive determinant or if all of its eigenvalues have negative real 

parts [Liao et al., 2013; Fred et al., Mpeshe et al., 2009; Edward et al., 2014). Using the idea of 

(Elbasha et al., 2006; Liao et al., 2013) we write the jacobian matrix in the form 

 11 12

0

21 22

( )
J J

J P
J J


 
 
 

, where 

11

2

1

2

1

0 0 0

0 0 0

0 0

0 0

0 0 0 0

J

g b

b h

k b

b l

c








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



 
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 
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0 0 0

J

a

b

b a







 
 
 
 
 
 
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, 21

1
0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

J

b









 
 
 
 
 
 
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, and  
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22

2

1

2

1

0 0 0 0

0 0 0

0 0

0

0 0

J

d

e b

b f

i b

b j



 







 





 
 
 
 
 
 
  

. 

The disease-free equilibrium is locally asymptotically stable if and only if all the eigenvalues of 

the matrices 𝐽11 and 𝐽22 have negative eigenvalues. The eigenvalues of 𝐽11 are  

c , 2

1 2

1 1
( ) ( ) 4

2 2
k l k l b b     , 2

1 2

1 1
( ) ( ) 4

2 2
k l k l b b     , 2

1 2

1 1
( ) ( ) 4

2 2
g h g h b b     , 

and 2

1 2

1 1
( ) ( ) 4

2 2
g h g h b b     . 

It can also be shown that all eigenvalues of 𝐽22 are negative. Thus, it is clear that for 𝑅𝐶 < 1, the 

DFE is locally asymptotically stable, so that the infection does not persist in the metapopulation 

and under this condition the endemic equilibrium point does not exist. The DFE is unstable for 

𝑅𝐶 > 1, and then the endemic equilibrium point exists and the infection persists in the 

metapopulation. Therefore we established the following Lemma. 

Lemma 3. With nonnegative initial conditions the disease-free equilibrium of the system (1) is 

locally asymptotically stable if 𝑅𝐶 < 1 and unstable if 𝑅𝐶 > 1. 

3.3.2 Global Stability of Disease Free Equilibrium Point (DFE) 

In this section, we use the method developed in (Castillo-Chevez et al., 2002; Mukandavire et al., 

2009; Ochoche et al., 2014) to analyse the global stability of disease free equilibrium point. We 

state two conditions which guarantee the global stability of the disease free equilibrium. The model 

system (1) can be written in the form 

( , )

( , ),  ( , 0) 0

dU
F U I

dt

dI
G U I G U

dt



 







, 

where m
U   denotes (its components) the number of uninfected individuals and n

I   denotes 

(its components) the number of infected individuals including latent, infectious, etc.  
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We use  𝑃0 = (𝑈0, 0) as a disease free equilibrium of this system. According to Barbalat (1959) 

the conditions 𝐻1 and 𝐻2 below must be met to guarantee local asymptotic stability. 

𝐻1: For  ,0
dU

F U
dt

 , 0
U  is globally asymptotically stable (g.a.s). 

     𝐻2: ( , ) ( , )G U I AI U IG


  , ( , ) 0U IG


 for ( , )U I  , 

where 
0

( ,0)
I

A D G U  is an M-matrix (the off-diagonal elements of 𝐴 are non-negative) and 𝛺 is 

the region where the model makes biological sense. Considering our model system (1), we have  

1 1 1
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,  
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1 2 1 2

0
,  ,  ,  , 0, 0U S S V V , and Ω = ℝ+

10. 

Now,  
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, 

 

which clearly shows that  0 0 0 0

1 2 1 2

0
,  ,  ,  , 0, 0U S S V V  is globally asymptotically stable (g.a.s). So, the 

condition 𝐻1 is satisfied. 

For the second condition 𝐻2 we have 
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2 1

1 2

2

1

0

0

0

0

c b

b d
A

e b

b f









 
 


 
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 

 

,  

where 𝑐 = 𝜇 + 𝛿 + 𝑏1, 𝑑 = 𝜇 + 𝛿 + 𝑏2, 𝑒 = 𝜇 + 𝜌 + 𝜂 + 𝑏1 and 𝑓 = 𝜇 + 𝜌 + 𝜂 + 𝑏2. 

Since 0 < 𝑆1 < 𝑁1 and 0 < 𝑆2 < 𝑁2, it is clear that ( , ) 0U IG


 .  

Now consider the right hand side of 𝐻2. 

1

1 1

12 1 1

1 2 2 2

2 2

22 1

1 2

(1 )
0

0
(1 )( , )

0

00

0

S
I

Nc b E

b d E S
IAI U I

Ne b I

b f I

G

















  





 
    
    
    
    
    
    
 
 

, 

                    

1 1 1

1 2 2 1 1 1 1

1

2 2 2

1 1 2 2 2 2 2

2

1 1 2 2

2 2 1 1

S I
cE b E I I

N

S I
b E dE I I

N

E eI b I

E fI b I


 


 





    

   

 

 

 
 
 
 
 
 
 
 
 

, 

 

                     

1 1 1

2 2 1 1

1

2 2 2

1 1 2 2

2

1 2 2 1 1

2 1 1 2 2

( )

( )

( )

( )

S I
b E b E

N

S I
b E b E

N

E b I b I

E b I b I


 


 

   

   

   

   

    

    

 
 
 
 
 
 
 
 
 

, 

                     ( , )G U I . 

So the condition 𝐻2 is also satisfied. Thus 
0

0
( ,0)P U  is globally asymptotically stable (g.a.s). 

Therefore, we have the following important Lemma. 
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Lemma 4. With non-negative initial conditions, the DFE of the model system (1) is globally 

asymptotically stable if  𝑅𝐶 < 1 and unstable if 𝑅𝐶 > 1. 

3.3.3 Existence and Local Stability of Endemic Equilibrium (EE) Point, E  

In the presence of infection the model system (1)   has a non-trivial equilibrium point, known 

as endemic equilibrium point given by 𝐸∗ = (𝑆1
∗, 𝑆2

∗, 𝑉1
∗, 𝑉2

∗, 𝐸1
∗, 𝐸2

∗, 𝐼1
∗, 𝐼2

∗, 𝑅1
∗, 𝑅2

∗) . The endemic 

equilibrium is an equilibrium where at least one of the components 𝐸𝑖 or 𝐼𝑖 is nonzero (Chitnis 

et al., 2008; Ngwenya, 2009). We compute the endemic equilibrium point by setting the equations 

of the model system (1) to zero. Since the endemic equilibrium cannot be cleanly expressed in 

closed form, we find the conditions for its existence as done in (Massawe et al., 2015; Tumwiine 

et al., 2007). We can reduce the model by eliminating 𝑉1, 𝑉2, 𝑅1 and 𝑅2 to obtain the system  

 1
1 1 1 2 2 1 1

dS
S b S b S

dt
          

 2
2 2 2 1 1 2 2

dS
S b S b S

dt
          

 1
1 1 2 2 1 1

dE
S b E b E

dt
                              

 2
2 2 1 1 2 2

dE
S b E b E

dt
                                                            (2) 

 1
1 2 2 1 1

dI
E b I b I

dt
          

 2
2 1 1 2 2

dI
E b I b I

dt
          

For the existence of an endemic equilibrium the following condition must be satisfied 

𝐸1
∗ ≠ 0 or 𝐸2

∗ ≠ 0 or 𝐼1
∗ ≠ 0 or 𝐼2

∗ ≠ 0 i.e. 𝑆1
∗ > 0 or 𝑆2

∗ > 0 or 𝐸1
∗ > 0 or 𝐸2

∗ > 0 or 𝐼1
∗ > 0 or 𝐼2

∗ >

0. 

Adding equations in the system (2) above at an endemic equilibrium we have 

* * * * * *

11 2 22 2 1 1
( )S S E E I I        

* * * * * *

1 2 1 2 1 2
( ) ( ) ( ) 0S S I I I I      , 

which is equivalent to  

* * * * * * * *

1 2 1 2 1 2 1 2
( ) ( )S S E E I I S S      

* * *

1 1 2

*

2 1 2
( ) ( )I I I I     . 

Since 𝜋1 + 𝜋2 > 0 and 𝜇, 𝜃, 𝜂 > 0 we can observe that 

* * * * * *

1 2 1 2 1 2( ) 0, ( ) 0, ( ) 0S S I I I I       and 
* * * * * *

1 2 1 2 1 2( ) 0S S E E I I      , 
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which implies  

𝑆1
∗ > 0 or 𝑆2

∗ > 0 or 𝐸1
∗ > 0 or 𝐸2

∗ > 0 or 𝐼1
∗ > 0 or 𝐼2

∗ > 0.  

Therefore endemic equilibrium point E
 of the model exists. 

The reduced model system given in (2) can be studied as means of attacking the model system (1) 

Thus, we will use this reduced model system for checking global stability of endemic equilibrium 

point in section 3.3.5. Since the disease free equilibrium is locally asymptotically stable as we have 

proved in section 3.3.1, this will imply local stability of the endemic equilibrium point for the 

model system (1). In the next section we are going to investigate the existence and local stability 

of endemic equilibrium point for patch 1and patch 2 when there are no individual movements 

between them using bifurcation analysis theory. 

3.3.4 Stability Analysis Using Bifurcation Analysis 

Bifurcation analysis plays an important role in disease control and eradication. In this section we 

study the existence and stability of endemic equilibrium point of the two patches when there exists 

no individual movements between them and determine the existence of either forward 

(supercritical) or backward (subcritical) bifurcation. When a forward bifurcation occurs then we 

guarantee that reducing basic reproduction number to a value less than one is a sufficient condition 

for disease eradication. On the other hand when a backward bifurcation occurs, an endemic 

equilibrium may also occur for 𝑅0 < 1 . This means that 𝑅0 must be reduced further so as to avoid 

endemic states and ensures the eradication (Buonomo et al., 2011). We apply theorem 1 as done 

in (Bhunu et al., 2008; Castillo-Chavez et al., 2004; Mlay et al., 2014; Edward et al., 2014) which 

is based on the use of center manifold theory (Carr, 1981), to establish local stability of endemic 

equilibrium point corresponding to patch 1 and patch 2 respectively.  

Considering patch 1 and patch 2 in isolation, we have the following model system (for 𝑖 = 1,2) 

 i
i i i i

dS
S S

dt
        

 i
i i

dV
S V

dt
      

 i i
i

i

dE
S E

dt
                                                                  (3) 
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 i
i i

dI
E I

dt
        

i
i i i

dR
I V R

dt
     

It can be shown that for existence of endemic equilibrium in patch i, the system (3) must satisfy 

the equation 
2 2

0
i i

AI BI
 
   

where 𝐴 = 𝛽𝑖(𝜇 + 𝛿)(𝜇 + 𝜌 + 𝜂)  and 𝐵 = (𝜇 + 𝛿)(𝜇 + 𝜌 + 𝜂)(𝜇 + 𝜃)𝑁𝑖 − 𝛽𝑖𝛿𝜋𝑖. 

It follows that  

1 0( )( )(( )( )( ) )(1 )

( )( )

i i i i

i

b N R
B

              

      

         


   
.                 (4) 

 

From (4) it can be proved that a positive endemic equilibrium exists in patch 𝑖 if 𝑅0𝑖 > 1. 

The model system (3) has effective reproduction number 𝑅𝐶𝑖 and a basic reproduction number 𝑅0𝑖 

as defined from chapter two in (4) and (5) respectively.  

For studying the direction of bifurcation we transform the system (3) by setting 𝑆𝑖 = 𝑥1, 𝑉𝑖 = 𝑥2, 

𝐸𝑖 = 𝑥3 , 𝐼𝑖 = 𝑥4, and 𝑅𝑖 = 𝑥5. 

The model system (3) can be written in the form 
𝑑𝑋

𝑑𝑡
= 𝐹 as follows 

1 1 4
1 1 1

1 2 3 4 5

( )idx x x
f x

dt x x x x x


      

   
 

2
2 1 2( )

dx
f x x

dt
       

3 1 4
3 3

1 2 3 4 5

( )idx x x
f x

dt x x x x x


    

   
                                       (5) 

4
4 3 4( )

dx
f x x

dt
         

5
5 4 2 5

dx
f x x x

dt
       

We choose 𝛽𝑖 as a bifurcation parameter. Solving for 𝛽𝑖 when 𝑅𝐶𝑖 = 1 we get  

( )( )( )

( )
i

       
 

  

     
 


. 

Theorem 1. (Castillo-Chavez et al., 2004). 
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Consider the general system of ordinary differential equations with a parameter 𝛽∗ such that 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝛽∗), 𝑓: ℝ𝑛𝑥ℝ and 𝑓 ∈ ℂ2(ℝ𝑛𝑥ℝ ) 

Without loss of generality we assume that 𝑥 = 0 is an equilibrium point of the system. Thus 

𝑓(0, 𝛽∗) ≡ 0 for all 𝛽∗. 

1. 𝐴 = 𝐷𝑥𝑓(0,0) is Jacobian (linearization) matrix of the system around the equilibrium 𝑥 = 0 

with 𝛽∗ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have 

negative real parts. 

2. Matrix A has a (nonnegative) right eigenvector 𝑤 and a left eigenvector 𝑣 corresponding to the 

zero eigenvalue. 

3. Let 𝑓𝑘 denote the 𝑘𝑡ℎ component of  𝑓 and 

2

, , 1

(0,0)
n

k
i jk

k i j i j

f
a v w w

x x




 
 , 

2

, 1

(0,0)
n

k
ik

k i i

b
f

v w
x  






 
  . 

Then the local dynamics of the system around 𝑥 = 0 are totally determined by the sign of 𝑎 and 

𝑏. In particular, if 𝑎 > 0, 𝑏 > 0 then a backward bifurcation occurs at 𝑥 = 0. 

i. 𝑎 > 0, 𝑏 > 0. When 𝛽∗ < 0 with |𝛽∗| ≪ 1, 𝑥 = 0 is locally asymptotically stable and 

there exists a positive unstable equilibrium; when 0 < 𝛽∗ ≪ 1, 𝑥 = 0 is unstable and 

there exists a negative and locally asymptotically stable equilibrium. 

ii. 𝑎 < 0, 𝑏 < 0. When 𝛽∗ < 0 with |𝛽∗| ≪ 1, 𝑥 = 0 is unstable; when 0 < 𝛽∗ ≪ 1, 𝑥 =

0 is locally asymptotically stable and there exists a positive unstable equilibrium. 

iii. 𝑎 > 0, 𝑏 < 0. When 𝛽∗ < 0 with |𝛽∗| ≪ 1, 𝑥 = 0 is unstable and there exists a locally 

asymptotically negative stable equilibrium; when 0 < 𝛽∗ ≪ 1, 𝑥 = 0 is stable and a 

positive unstable equilibrium appears. 

iv. 𝑎 < 0, 𝑏 > 0. When 𝛽∗ changes from negative to positive, 𝑥 = 0 changes its stability 

from stable to unstable. Correspondently, a negative unstable equilibrium becomes 

positive and locally asymptotically stable. 

Remark. The requirement that w is non-negative is unnecessary (Castillo-Chavez et al., 2004). 

Clearly, at 𝛽∗ = 0 a transcritical bifurcation takes place: more precisely, when 𝑎 < 0, 𝑏 > 0 such 

a bifurcation is forward; when 𝑎 > 0, 𝑏 > 0 the bifurcation is backward. 
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Now applying theorem 1, the Jacobian matrix of the system (5) at disease free equilibrium 

evaluated at 𝛽𝑖 = 𝛽∗ is given by 

0

( )
( ) 0 0 0

( ) 0 0 0

( ) ( )
0 0 ( ) 0

0 0 ( ) 0

0 0

J

  
 

  

  

   
 

  

   

  



 

 
 

 

 

 
 

 

  



 
 
 
 
 
 
 
 
 
  

. 

 

The eigenvalues of 𝐽0(𝛽∗) are 0 ,  , ( )   ,     , and 2       . 

Since 0 is a simple eigenvalue of 𝐽0(𝛽∗) and all other eigenvalues have negative real parts, then 

assumption 1 of theorem 1 is verified. 

The right eigenvector of 𝐽0(𝛽∗) corresponding to zero eigenvalue is given by  

1 2 3 4 5
( , , , , )

T
w w w w w w  where 

2

1

( ) ( )

( )
w

    

  

  
 


, 

2

2

( ) ( )

( )( )
w

     

    

  
 

 
, 

3

( )( )
w

    



  
 , 4

w    , and 

2

5

( ) ( )
( )

( )( )
w

      
 

     

  
   

 
. 

The left eigenvector of 𝐽0(𝛽∗) satisfying 𝑤. 𝑣 = 0 is given by 1 2 3 4 5( , , , , )Tv v v v v v  where 

1 2 5 0v v v   , 3 2
( )( ) ( )

v


      


    
, and  4 2

( )( ) ( )
v

 

      




    
. 

Considering system (3) and only nonzero components of the left eigenvector 𝑣, we compute the 

values of 𝑎 and 𝑏 at disease free equilibrium as defined in theorem 1 as follows. 

The disease free equilibrium in patch 𝑖 is given by 

0 , ,0,0,0
( )( )

i i
iP

  

     

 
  

   
. 

We consider the functions 3f  and 4f as defined in (5). Associated nonzero partial derivatives at 

the disease fee equilibrium and 𝛽𝑖 = 𝛽∗ are given by 
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2

3

1 4

( )( )( )(1 )

i

f

x x

        

 

      


 
, 

2

3

2 4

( )( )( )( )

i

f

x x

        

 

     
 

 
, 

3 3

3 4 2 4

2 2
f f

x x x x

 


   
,

2 2

3 3

2

4 2 4

2
f f

x x x

 


  
,

2 2

3 3

4 5 2 4

f f

x x x x

 


   
, and 

2

3

4

f

x

 

   


 


   
. 

It follows that 

2 2 2

3 3 3

3 1 4 3 2 4 3 3 4

1 4 2 4 3 4

2 2
f f f

a v w w v w w v w w
x x x x x x

  
   

     

2 2

2 3 3

3 4 3 4 52

4 4 5

2
f f

v w v w w
x x x

 


  
, 

    
2 2 2

3 3 3

3 1 4 3 2 4 3 3 4

1 4 2 4 2 4

2 2 2
f f f

v w w v w w v w w
x x x x x x

  
   

     

2 2

2 3 3

3 4 3 4 5

2 4 2 4

2 2
f f

v w v w w
x x x x

 


   
, 

1 2
2( )( )( )

i

      



   
  .                                                                  (6) 

2

3

3 4

4

f
b v w

x 





 
, 

  
2

( )( )
0

( )(( )( ) ( ) )

    

         

 
 

      
,  where                               (7)

2 2 2 2 2 2

1
2 2               

4 3 3 3
2         , and  

2 2 3 2 2 2

2
               

2 2
       . 

The sign of a in (6) depends on the sign of 1 2
  . If 1 2

   then 𝑎 < 0 , and if 1 2
   then 

0a  . Thus we have the following theorem 

Theorem 2. 

(𝒊) If 1 2
   then patch 𝑖 exhibit forward bifurcation at 𝑅𝐶𝑖 = 1. When i

 


  changes from 

negative to positive, the disease free equilibrium changes its stability from stable to unstable. 

Correspondently, a negative unstable endemic equilibrium becomes positive and locally 

asymptotically stable when 𝑅𝐶𝑖 > 0. 

(𝒊𝒊) If 1 2
   then patch 𝑖 exhibits backward bifurcation at 𝑅𝐶𝑖 = 1. When 𝛽∗ < 0 with |𝛽∗| ≪ 1, 

the disease free equilibrium is locally asymptotically stable and there exists a positive unstable 

endemic equilibrium; when 0 < 𝛽∗ ≪ 1, the disease free equilibrium is unstable and there exists 

a negative and locally asymptotically stable endemic equilibrium. 
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The bifurcation diagrams for patch 1 and patch 2 are shown in figure 4a and b respectively. 

 

(a)                                                                        (b) 

Figure 4. a and  b shows the forward bifurcation diagrams for patch 1 and patch 2 respectively 

obtained from numerical simulations. DFE stands for disease free equilibrium and EE stands for 

endemic equilibrium. The two diagrams show that the disease free and endemic equilibria 

exchange stability when 𝑅0𝑖 = 1 for 𝑖 = 1,2. This means that the disease free equilibrium is locally 

asymptotically stable when 𝑅0𝑖 < 1 and unstable when 𝑅0𝑖 > 1. Furthermore, a unique endemic 

equilibrium exists for 𝑅0𝑖 > 1 and it is locally asymptotically stable. So, the total number of 

infectious individual in each patch goes to a unique endemic equilibrium. 

An implication of EE point being locally asymptotically stable is that the disease can still invade 

in the metapopulation and transmission dynamics can persist if control measures for the disease 

are not highly considered in each patch. Therefore, our study agrees that reducing the reproduction 

number 𝑅0𝑖 to value less than one is a sufficient condition to eradicate the disease. 

3.3.5 Global Stability of Endemic Equilibrium Point 

In this section we analyse the global stability of the endemic equilibrium point 𝐸∗ by constructing 

a suitable Lyapunov function. For simplicity, we consider the reduced model system (2) to prove 

for global stability. We employ the approach of (Korobeinikov et al., 2004) as it is used for many 

complicated epidemiological models. We consider the Lyapunov function of the form 

( ln( ))i i i iL k P P P  , where 
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 𝑘𝑖 > 0 (for 𝑖 = 1,2,3, . . . ,6. ) is a properly chosen positive constant in the given region. 𝑃𝑖 is a 

population of compartment 𝑖 and 𝑃𝑖
∗ is the equilibrium level. So we define the Lyapunov 

function as 

1 2 1 2 1 2 1 1 1 1
( , , , , , ) ( ln( ))L S S E E I I K S S S


     2 2 2 2 3 1 1 1

( ln( )) ( ln( ))K S S S K E E E
 

   

4 2 2 2
( ln( ))K E E E


 

5 1 1 1
( ln( ))K I I I




6 2 2 2
( ln( ))K I I I


  . 

The time derivative of L is 

1 1 2 2 1 1

1 2 3
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1 1 1
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dt S dt S dt E dt
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2 2 1 1 2 2

4 5 6

2 1 2
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At an endemic equilibrium point E
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Simplification yields 
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F is non-positive following the modified version of Barbalat’s Lemma (Barbalat et al., 1959) or 

by following the approach of (McCluskey, 2006; Mukandavire et al., 2009). Thus, 𝐹 ≤ 0 for 

𝑆1, 𝑆2, 𝐸1, 𝐸2, 𝐼1, 𝐼2 > 0 . Hence 0
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Therefore, the largest invariant set in Ω such that 0
dL

dt
  is the singleton  E



which is our endemic 

equilibrium point. By LaSalle’s invariant principle (LaSaile, 1976) we conclude that is globally 

asymptotically stable (g.a.s). Thus, we establish the following theory 

Theorem 3. When 1CR   the endemic equilibrium point E
 is globally asymptotically stable in 

Ω. 

3.4 Simulation and Discussion  

The main objective of this study was to study the impact of vaccination on the spread of measles 

in a metapopulation. In order to support the analytical results, graphical representations showing 

the variations in parameters with respect to different state variables have been presented in this 

section. This is done by using a set of parameter values whose sources are mainly from literature 

as well as estimation in order to have more realistic simulation results. We will vary key parameters 

to investigate the impact of vaccination on the transmission dynamics of measles. The parameter 

values are shown in table 2. 

 

(a)                                                                                          (b) 

Figure 5.  a and b shows variations of susceptible, vaccinated, exposed, infected and recovered 

individuals in patch1and patch 2 respectively when individual movements between them are allowed. 

The values of initial conditions are: 𝑆1 = 20 000, 𝑆2 = 14 800, 𝑉1 = 𝑉2 = 0, 𝐸1 = 40 000, 𝐸2 =

9000, 𝐼1 = 30 000, 𝐼2 = 8000, 𝑅1 = 𝑅2 = 0. We chose these values of initial conditions for the two 
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patches for simulation purposes, however other different values of initial conditions could also bring 

positive results. 

 

(a)                                                                                        (b) 

Figure 6. a and b shows variations of susceptible, vaccinated, exposed and recovered individuals 

in patch1and patch 2 respectively when individual movements between them are not allowed. Here 

we used the values of initial conditions as: 𝑆1 = 16 000, 𝑆2 = 12 500, 𝑉1 = 𝑉2 = 0, 𝐸1 =

35 000, 𝐸2 = 8000, 𝐼1 = 20 000, 𝐼2 = 6500, 𝑅1 = 𝑅2 = 0. We chose these values of initial 

conditions for the two patches for simulation purposes, however other different values of initial 

conditions could also bring positive results depicted by figure 6. 

In figures 5 and 6 above we can see that the susceptible population in both patches decrease rapidly 

to lower levels with time due to high number of individuals who become vaccinated or exposed 

due to high contact rates. Exposed population increases more rapidly in patch 1 than in patch 2 

due to high contact rates in patch 1. The exposed population later starts to decrease due to large 

number of individuals who become infected or vaccinated. In both patches, the infected population 

decreases with time due to high vaccination and treatment rates.  On the other hand, due to 

treatment and vaccination, recovered population increases in both patches as shown in the figures 

5 and 6 above. 
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(a)                                                                                   (b) 

Figure 7. a and b respectively show measles prevalence and incidence in a metapopulation when 

the individual movements between the patches are allowed. The values of initial conditions are: 

𝑆1 = 20 000, 𝑆2 = 14 800, 𝑉1 = 𝑉2 = 0, 𝐸1 = 40 000, 𝐸2 = 9000, 𝐼1 = 30 000, 𝐼2 = 8000, 𝑅1 =

𝑅2 = 0. We chose these values of initial conditions for the two patches for simulation purposes, 

however other different values of initial conditions could also bring positive results. 

 

  

(a)                                                                                                (b) 

Figure 8. a and b respectively show measles prevalence and incidence in a metapopulation when 

the individual movements between the patches are not allowed. Here we have chosen the values 

of initial conditions as: 𝑆1 = 16 000, 𝑆2 = 12 500, 𝑉1 = 𝑉2 = 0, 𝐸1 = 35 000, 𝐸2 = 8000, 𝐼1 =
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20 000, 𝐼2 = 6500, 𝑅1 = 𝑅2 = 0. We chose these values of initial conditions for the two patches for 

simulation purposes, however other different values of initial conditions could also bring positive 

results as shown the figure. 

It can be observed that as vaccination rates increase, the measles prevalence and incidence also 

decrease. Thus figures 7 and 8 depicts positive impact of vaccination on measles prevalence and 

incidence in a metapopulation. Therefore, our study suggests higher vaccination coverage in all 

patches in order to eradicate the disease in a metapopulation. 

3.5 Conclusion 

In this chapter, we presented a mathematical model for the control of measles in a metapopulation 

by considering two regions (patches). We used estimated data and data from literature in numerical 

simulation. We started by showing nonnegativity of solutions to the metapopulation model, 

thereby addressing the problem of its well posedness. We proved that the disease equilibrium 

points of the model to be locally and globally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 >

1. We performed bifurcation analysis of endemic equilibrium points of the two patches when there 

exist no movement of individuals between them and found that forward (supercritical) bifurcation 

occurs in both cases, which agrees with an intuition that reducing reproduction number to values 

less than one is a necessary and sufficient condition for disease eradication in the community 

(Buonomo et al., 2011; Van den Driessche et al., 2002). Simulation results of different 

epidemiological classes revealed that most of the individuals undergoing treatment or vaccination 

join the recovered class. Through simulations we also showed that vaccination has a positive 

impact on measles incidence and prevalence in a metapopulation. 

 

 

 

 

 

 

 

 

 



 
 

42 
 

CHAPTER FOUR 

GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATION 

4.1 General Discussion 

In this study, we presented and analysed a measles metapopulation model with vaccination. The 

main objective of the study was to investigate the impact of vaccination on the epidemiology of 

measles in a metapopulation. Both the basic and effective reproduction numbers were computed 

and used to assess the impact of vaccination by varying different epidemiological parameters. 

Qualitative analysis of the model was carried out and it was seen that the model had both the 

disease free equilibrium and endemic equilibrium point. Using the idea of  next generation method 

and theorem by (Van den Driessche et al., 2002), it was found out that when the effective 

reproduction number is less than one, that is, 𝑅𝐶 < 1, the disease free equilibrium point is locally 

asymptotically stable and unstable when the effective reproduction number is greater than one, 

that is, 𝑅𝐶 > 1. 

We determined the existence and stability of the endemic point using the Center Manifold 

Theorem (Carr J, 1981). We found out that in the absence of vaccination the effective reproduction 

number return to basic reproduction number (𝑅0). It was also observed that the models for patch 1 

and patch 2 with vaccination both exhibits a forward bifurcation. Numerical simulations of the 

reproduction numbers were done as shown in Figure 2. Simulations of the various reproduction 

numbers enables us to understand that, high vaccination coverage to susceptible individuals should 

be attained so as to combat measles in a metapopulation. Also, we conclude that measles infected 

individuals should be given treatment so as to save their lives and at the same time limiting chances 

of spread of the disease. 

We performed a sensitivity analysis on the basic reproduction number from which we have noted 

that the most sensitive parameters are the contact rate 𝛽1, and treated infectious individuals η. 

Numerical simulations of the model have shown that, the combination of vaccination and treatment 

is the most effective way to combat measles in a metapopulation. Furthermore, we conducted 

numerical simulations for measles incidence and prevalence as seen in figures 7 and 8. We showed 

that vaccination coverage has a positive impact on both measles incidence and prevalence in a 

metapopulation. 
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4.2 Conclusion  

We found that in order to control the disease prevalence and incidence it is vital to vaccinate 

susceptible individuals in both patches. Therefore it may be concluded that the most effective way 

to combat measles epidemiology is to vaccinate and treat individuals. Hence, education programs 

must reach all the community at all social levels, to increase the awareness about efficiency of 

vaccination and early treatment so as to control or minimize the disease in the community.  

We also found that individual movements from patch 2 to patch 1 tend to increase measles 

infection in a metapopulation since these movements increase the reproduction number. Therefore, 

rules or regulations must be set by given authorities in order to minimize this flow of movement 

and to fight against the disease. 

4.3 Recommendations 

Measles eradication remains a big challenge in most developing countries. Thus, from the results 

of this work, it is recommended that: 

1. Educational awareness campaigns should be conducted among the community to eliminate 

the illusion that vaccination has adverse side effects on their life. This will increase positive 

attitude towards vaccination and hence more newborns will be vaccinated against measles. 

2.  Quarantine of sick people should be a priority. For example sick children should not be 

allowed to attend school until they are recovered. Sick adults too should be quarantined 

and treated before they come in contact with other healthy individuals, this is because this 

disease transmits very fast on contact with an infected person. 

3. The government should invest more fund on vaccination of measles, this is due to the fact 

that  this research together with the previous ones  have shown that  the disease may be 

easily controlled when high coverage of vaccination is administered. 

4. It is also recommended that rules or regulations must be set by given authorities in order 

to minimize the flow of infected individuals to different regions so as to fight against the 

disease. 

5. Based on the model of this study, it is proposed that future work should consider the 

following: 

i. Carrying out cost-effectiveness analysis of the measles metapopulation model with 

vaccination. 
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ii. Age-structured, non-constant population model with vaccination is suggested to be 

formulated for further research. 

iii. In practice the contact rate for each patch may change over time, thus it is useful 

to consider the contact rate for each patch as a function of time in the future work. 

iv. We assumed one type of mobility for disease status in each patch. Thus, in future 

work it is recommended to consider different types of mobility depending on age 

or season. It is also recommended to consider where an individual resides as well 

as where an individual currently is. 
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APPENDICES 

 

APPENDIX 1:  Variation in reproduction number for patch 1. 

pi1=250;pi2=245;beta2=0.3;eta=0.024;mu=0.01;delta=0.44;rho=0.01;sigma=0.52;b1

=0.1;b2=0.4;theta=0.8; 

beta1=0:0.001:1; 

RC1=(delta*beta1*(mu+sigma))./((mu+sigma+theta)*(mu+delta)*(mu+rho+eta)); 

R01=(delta*beta1)./((mu+delta)*(mu+rho+eta)); 

plot(beta1, RC1,'y',beta1, R01,'k','linewidth',3) 

xlabel('Exposure rate') 

ylabel('Reproduction number') 

legend('R_{C1}', 'R_{01}') 

grid on 

 

APPENDIX 2: Variation in reproduction numbers for patch 2. 

pi1=250;pi2=245;beta1=0.6;eta=0.024;mu=0.01;delta=0.44;rho=0.01;sigma=0.52;b1

=0.1;b2=0.4;theta=0.8; 

beta2=0:0.001:1; 

RC2=(delta*beta2*(mu+sigma))/((mu+sigma+theta)*(mu+delta)*(mu+rho+eta)); 

R02=(delta*beta2)/((mu+delta)*(mu+rho+eta)); 

plot(beta2, RC2,'b',beta2, R02,'g','linewidth',3) 

xlabel('Exposure rate') 

ylabel('Reproduction number') 

legend('R_{C2}', 'R_{02}') 

grid on 

 

APPENDIX 3: Variation in reproduction numbers for the metapopulation system. 

pi1=250; pi2=245; beta1=0.6; beta2=0.3; eta=0.024; mu=0.01; rho=0.01; 

sigma=0.52; 

b1=0.1; b2=0.4; theta=0.8; 

delta=0.44; 

i=mu+theta+b1; 

j=mu+theta+b2; 

g=mu+sigma+b1; 

h=mu+sigma+b2; 

c=mu+delta+b1; 
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d=mu+delta+b2; 

e=mu+rho+eta+b1; 

f=mu+rho+eta+b2; 

S1=((pi2*b2)+(pi1*j))/((i*j)-(b1*b2)); 

S2=((pi1*b1)+(pi2*i))/((i*j)-(b1*b2)); 

V1=((theta*b2*S2)+(theta*h))/((g*h)-(b1*b2)); 

V2=((theta*b1*S1)+(theta*g))/((g*h)-(b1*b2)); 

a=(beta1*S1)/(S1+V1); 

b=(beta2*S2)/(S2+V2); 

delta=0:0.001:1; 

RC=((delta*a*((b1*b2)+(d*f))+delta*b*((b1*b2)+(c*e))+delta*(sqrt(((b*b1*b2)+(

a*d*f)).^2+((a*b1*b2)+(b*c*e)).^2+4*a*b*b1*b2*((c*d)+(e*f))+((a*b1*b2)-

(b*c*e))*((2*a*d*f)-(2*b*b1*b2))))))./(2*((b1*b2)-(c*d))*((b1*b2)-(e*f))); 

R0=((delta*beta1*((b1*b2)+(d*f))+delta*beta2*((b1*b2)+(c*e))+delta*sqrt(((bet

a2*b1*b2)+(beta1*d*f)).^2+((beta1*b1*b2)+(beta2*c*e)).^2+4*beta1*beta2*b1*b2*

((c*d)+(e*f))+((beta1*b1*b2)-(beta2*c*e))*((2*beta1*d*f)-

(2*beta2*b1*b2)))))./(2*((b1*b2)-(c*d))*((b1*b2)-(e*f))); 

plot(delta, RC,'m',delta, R0,'r','linewidth',3) 

xlabel('Exposure rate') 

ylabel('Reproduction number') 

legend('R_C', 'R_0') 

grid on 

 

APPENDIX 4: Forward bifurcation in patch 1 

%Figure 4. Forward bifurcation codes patch 1  

R01_value=0:0.0001:2; 

Root_array=zeros(length(R01_value),2); 

% parameter values used 

pi1=250;pi2=245;beta1=0.6;beta2=0.3;eta=0.024;mu=0.01;rho=0.01;sigma=0.52; 

b1=0.1;b2=0.4;theta=0.8;delta=0.44;N1=7000; 

for  i=1:length(R01_value);  

    R01=R01_value(i); 

    %Coefficients of quadratic equation  

 beta1=(mu+delta)*(mu+sigma+theta)*(mu+rho+eta)/delta*(mu+sigma);  

A=beta1*(mu+delta)*(mu+rho+eta); 

B=(mu+rho+eta)*(mu+delta)*((mu+rho+eta)*(mu+delta)*(mu+theta)*N1-

pi1*beta1*delta)*(1-R01)./((mu+rho+eta)*(mu+delta)-beta1*delta); 

C=0; 
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P=[A,B,C]; 

r =roots(P); 

len=length(r); 

for t=1:1:len 

if (imag(r(t))~=0) || (real(r(t))<0); 

Root_array(i,t)=0; 

else 

Root_array(i,t)=r(t); 

end 

end 

end 

f=1;  

f=f+1;  

R01_value_Cr=f;  

for j=R01_value_Cr:length(R01_value) 

Root_array(j,:)=sort(Root_array(j,:));  

end 

f1=R01_value_Cr; 

while (Root_array(f1,1)~=0) ,f1=f1+1;  

end 

R01_value_Cr2=f1; 

Zero_1st=R01_value(1,1:R01_value_Cr2-1); y_zero=zeros(1,length(Zero_1st)); 

Unstable=R01_value(1,R01_value_Cr:length(R01_value)); 

%figure(1) 

plot(Unstable,Root_array(R01_value_Cr:length(R01_value),2),'b','LineWidth',3) 

xlabel('Reproduction number, R_{01}','FontSize',12)  

ylabel('Infectives in patch 1','FontSize',12) 

hold off  

%figure (2) 

plot(R01_value,Root_array(:,1),'r--

',R01_value,Root_array(:,2),'b','LineWidth',3) 

xlabel('Reproduction number, R_{01}','FontSize',12) 

ylabel('Infectives in patch1','FontSize',12) 

%ylim([0 1.5]) 

  

APPENDIX 5: Forward bifurcation in patch 2 

%Figure 5. Forward bifurcation codes patch 2  

R02_value=0:0.0001:2; 
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Root_array=zeros(length(R02_value),2); 

% parameter values used 

pi1=250;pi2=245;beta1=0.6;beta2=0.3;eta=0.024;mu=0.01;rho=0.01;sigma=0.52;b1=

0.1;b2=0.4;theta=0.8;delta=0.44;N2=5000; 

for  i=1:length(R02_value);  

    R02=R02_value(i); 

    %Coefficients of quadratic equation  

 beta2=(mu+delta)*(mu+sigma+theta)*(mu+rho+eta)/delta*(mu+sigma);  

A=beta2*(mu+delta)*(mu+rho+eta); 

B=(mu+rho+eta)*(mu+delta)*((mu+rho+eta)*(mu+delta)*(mu+theta)*N2-

pi1*beta2*delta)*(1-R02)./((mu+rho+eta)*(mu+delta)-beta2*delta); 

C=0; 

P=[A,B,C]; 

r =roots(P); 

len=length(r); 

for t=1:1:len 

if (imag(r(t))~=0) || (real(r(t))<0); 

Root_array(i,t)=0; 

else 

Root_array(i,t)=r(t); 

end 

end 

end 

f=1;  

f=f+1;  

R02_value_Cr=f;  

for j=R02_value_Cr:length(R02_value) 

Root_array(j,:)=sort(Root_array(j,:));  

end 

f1=R02_value_Cr; 

while (Root_array(f1,1)~=0) ,f1=f1+1;  

end 

R02_value_Cr2=f1; 

Zero_1st=R02_value(1,1:R02_value_Cr2-1); y_zero=zeros(1,length(Zero_1st)); 

Unstable=R02_value(1,R02_value_Cr:length(R02_value)); 

%figure(1) 

plot(Unstable,Root_array(R02_value_Cr:length(R02_value),2),'b','LineWidth',3) 

xlabel('Reproduction number, R_{02}','FontSize',12)  
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ylabel('Infectives in patch 2','FontSize',12) 

hold off  

%figure (2) 

plot(R02_value,Root_array(:,1),'r--

',R02_value,Root_array(:,2),'b','LineWidth',3) 

xlabel('Reproduction number, R_{02}','FontSize',12) 

ylabel('Infectives in patch1','FontSize',12) 

%ylim([0 1.5]) 

  

APPENDIX 6: Variations of susceptible, vaccinated, exposed, infected and recovered individuals in 

patch1and patch 2 respectively when individual movements between them are allowed. 

function dy=META(~,y) 

dy= zeros(size(y)); 

pi1=250;pi2=245;beta1=0.6;beta2=0.3;eta=0.024;mu=0.01;rho=0.01;sigma=0.52; 

b1=0.1;b2=0.4;theta=0.8;delta=0.44 

S1=y(1); 

S2=y(2); 

V1=y(3); 

V2=y(4); 

E1=y(5); 

E2=y(6); 

I1=y(7); 

I2=y(8); 

R1=y(9); 

R2=y(10); 

N1=S1+V1+E1+I1+R1; 

N2=S2+V2+E2+I2+R2; 

dy(1)=pi1-((beta1*S1*I1)./N1)+b2*S2-(mu+theta+b1)*S1; 

dy(2)=pi2-((beta2*S2*I2)./N2)+b1*S1-(mu+theta+b2)*S2; 

dy(3)=theta*S1+b2*V2-(mu+sigma+b1)*V1; 

dy(4)=theta*S2+b1*V1-(mu+sigma+b2)*V2; 

dy(5)=((beta1*S1*I1)./N1)+b2*E2-(mu+delta+b1)*E1; 

dy(6)=((beta2*S2*I2)./N2)+b1*E1-(mu+delta+b2)*E2; 

dy(7)=delta*E1+b2*I2-(mu+rho+eta+b1)*I1; 

dy(8)=delta*E2+b1*I1-(mu+rho+eta+b2)*I2; 

dy(9)=eta*I1+sigma*V1+b2*R2-(mu+b1)*R1; 

dy(10)=eta*I2+sigma*V2+b1*R1-(mu+b2)*R2; 
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APPENDIX 7: Variations of susceptible, vaccinated, exposed, infected and recovered individuals in 

patch1and patch 2 respectively when individual movements between them are not allowed. 

function dy=META_iso(~,y) 

dy= zeros(size(y)); 

pi1=250;pi2=245;beta1=0.6;beta2=0.3;eta=0.024;mu=0.01;rho=0.01;sigma=0.52; 

b1=0.1;b2=0.4;theta=0.8;delta=0.44 

S1=y(1); 

S2=y(2); 

V1=y(3); 

V2=y(4); 

E1=y(5); 

E2=y(6); 

I1=y(7); 

I2=y(8); 

R1=y(9); 

R2=y(10); 

N1=S1+V1+E1+I1+R1; 

N2=S2+V2+E2+I2+R2; 

dy(1)=pi1-((beta1*S1*I1)./N1)-(mu+theta)*S1; 

dy(2)=pi2-((beta2*S2*I2)./N2)-(mu+theta)*S2; 

dy(3)=theta*S1-(mu+sigma)*V1; 

dy(4)=theta*S2-(mu+sigma)*V2; 

dy(5)=((beta1*S1*I1)./N1)-(mu+delta)*E1; 

dy(6)=((beta2*S2*I2)./N2)-(mu+delta)*E2; 

dy(7)=delta*E1-(mu+rho+eta)*I1; 

dy(8)=delta*E2-(mu+rho+eta)*I2; 

dy(9)=eta*I1+sigma*V1-mu*R1; 

dy(10)=eta*I2+sigma*V2-mu*R2; 

 

APPENDIX 9: Matlab code for plotting variations of susceptible, vaccinated, exposed, infected and 

recovered individuals in patch1and patch 2 respectively when individual movements between them are 

allowed. 

clear all 

close all 

clc 

tspan=[0 50]; 
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y0=[20000, 14800, 0, 0, 40000, 9000, 30000, 8000, 0, 0]; 

[t, y]=ode45(@META,tspan,y0,[]); 

figure (1) 

plot(t,y(:,1), 'g',t,y(:,3), 'y',t,y(:,5), 'b',t,y(:,7), 'm',t,y(:,9), 

'r','LineWidth',2); 

xlabel('Time (years)','FontSize',11) 

ylabel('Population in patch 1','FontSize',11) 

legend('S_1','V_1','E_1','I_1','R_1') 

grid on 

hold on 

figure (2) 

plot(t,y(:,2), 'g',t,y(:,4), 'y',t,y(:,6), 'b',t,y(:,8), 'm',t,y(:,10), 

'r','LineWidth',2); 

xlabel('Time (years)','FontSize',11) 

ylabel('Population in patch 2','FontSize',11) 

legend('S_2','V_2','E_2','I_2','R_2') 

grid on 

hold off 

 

APPENDIX 10: Matlab code for plotting variations of susceptible, vaccinated, exposed, infected 

and recovered individuals in patch1and patch 2 respectively when individual movements between them 

are not allowed. 

clear all 

close all 

clc 

tspan=[0 50]; 

y0=[16000, 12500, 0, 0, 35000, 8000, 20000, 6500, 0, 0]; 

[t, y]=ode45(@META_iso,tspan,y0,[]); 

figure (1) 

plot(t,y(:,1), 'g',t,y(:,3), 'y',t,y(:,5), 'b',t,y(:,7), 'm',t,y(:,9), 

'r','LineWidth',2); 

xlabel('Time (years)','FontSize',11) 

ylabel('Population in patch 1','FontSize',11) 

legend('S_1','V_1','E_1','I_1','R_1') 

grid on 

hold on 

figure (2) 
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plot(t,y(:,2), 'g',t,y(:,4), 'y',t,y(:,6), 'b',t,y(:,8), 'm',t,y(:,10), 

'r','LineWidth',2); 

xlabel('Time (years)','FontSize',11) 

ylabel('Population in patch 2','FontSize',11) 

legend('S_2','V_2','E_2','I_2','R_2') 

grid on 

hold off 

APPENDIX 11: Measles prevalence and incidence in metapopulation. 

function dy=PRE__INC(~,y) 

dy= zeros(size(y)); 

beta1=0.6;beta2=0.3;pi1=250;pi2=245;theta=0.9;mu=0.01;eta=0.024;rho=0.01;delt

a=0.44;sigma=0.52;b1=0.1;b2=0.4; 

S1=y(1); 

S2=y(2); 

V1=y(3); 

V2=y(4); 

E1=y(5); 

E2=y(6); 

I1=y(7); 

I2=y(8); 

R1=y(9); 

R2=y(10); 

N1=S1+V1+E1+I1+R1; 

N2=S2+V2+E2+I2+R2; 

dy(1)=pi1-((beta1*S1*I1)./N1)+b2*S2-(mu+theta+b1)*S1; 

dy(2)=pi2-((beta2*S2*I2)./N2)+b1*S1-(mu+theta+b2)*S2; 

dy(3)=theta*S1+b2*V2-(mu+sigma+b1)*V1; 

dy(4)=theta*S2+b1*V1-(mu+sigma+b2)*V2; 

dy(5)=((beta1*S1*I1)./N1)+b2*E2-(mu+delta+b1)*E1; 

dy(6)=((beta2*S2*I2)./N2)+b1*E1-(mu+delta+b2)*E2; 

dy(7)=delta*E1+b2*I2-(mu+rho+eta+b1)*I1; 

dy(8)=delta*E2+b1*I1-(mu+rho+eta+b2)*I2; 

dy(9)=eta*I1+sigma*V1+b2*R2-(mu+b1)*R1; 

dy(10)=eta*I2+sigma*V2+b1*R1-(mu+b2)*R2; 

 

APPENDIX 12: Matlab code for plotting measles prevalence and incidence in metapopulation 

when individual movements between the two pathes are allowed. 
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clear all 

tspan=[0 50]; 

y0=[20000, 14800, 0, 0, 40000, 9000, 30000, 8000, 0, 0]; 

[t,y]=ode45(@PRE__INC, tspan, y0); 

N=y(:,1)+y(:,2)+y(:,3)+y(:,4)+y(:,5)+y(:,6)+y(:,7)+y(:,8)+y(:,9)+y(:,10); 

T1=y(:,1)+y(:,3)+y(:,5)+y(:,7)+y(:,9); 

T2=y(:,2)+y(:,4)+y(:,6)+y(:,8)+y(:,10); 

Prev=(y(:,7)+y(:,8))./N; 

Inc=(0.6*(y(:,1).*y(:,7))./T1)+(0.3*(y(:,2).*y(:,8))./T2); 

figure(1) 

plot(t,Prev,'k','Linewidth',3) 

grid on 

xlabel('Time[years]','Fontsize',12) 

ylabel('Prevalence','Fontsize',12) 

legend('theta=0.2','theta=0.5','theta=0.8') 

hold on 

figure(2) 

plot(t,Inc,'y','Linewidth',3) 

grid on 

xlabel('Time[years]') 

ylabel('Incidence') 

legend('theta=0.53','theta=0.72','theta=0.9') 

hold off 

 

APPENDIX 13: Measles prevalence and incidence in metapopulation when there are no 

movement of individuals between the two patches. 

function dy=PRE__INC_iso(~,y) 

dy= zeros(size(y)); 

beta1=30;beta2=10;pi1=2950;pi2=2985;theta=0.53;mu=0.0909;eta=0.14;rho=0.02;de

lta=0.064;sigma=0.11; 

S1=y(1); 

S2=y(2); 

V1=y(3); 

V2=y(4); 

E1=y(5); 

E2=y(6); 

I1=y(7); 
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I2=y(8); 

R1=y(9); 

R2=y(10); 

N1=S1+V1+E1+I1+R1; 

N2=S2+V2+E2+I2+R2; 

dy(1)=pi1-((beta1*S1*I1)./N1)-(mu+theta)*S1; 

dy(2)=pi2-((beta2*S2*I2)./N2)-(mu+theta)*S2; 

dy(3)=theta*S1-(mu+sigma)*V1; 

dy(4)=theta*S2-(mu+sigma)*V2; 

dy(5)=((beta1*S1*I1)./N1)-(mu+delta)*E1; 

dy(6)=((beta2*S2*I2)./N2)-(mu+delta)*E2; 

dy(7)=delta*E1-(mu+rho+eta)*I1; 

dy(8)=delta*E2-(mu+rho+eta)*I2; 

dy(9)=eta*I1+sigma*V1-mu*R1; 

dy(10)=eta*I2+sigma*V2-mu*R2; 

 

APPENDIX 14: Matlab code for plotting measles prevalence and incidence in metapopulation 

when individual movements between the two patches are not allowed. 

clear all 

tspan=[0 50]; 

y0=[16000, 12500, 0, 0, 35000, 8000, 20000, 6500, 0, 0]; 

[t,y]=ode45(@PRE__INC_iso, tspan, y0); 

N=y(:,1)+y(:,2)+y(:,3)+y(:,4)+y(:,5)+y(:,6)+y(:,7)+y(:,8)+y(:,9)+y(:,10); 

T1=y(:,1)+y(:,3)+y(:,5)+y(:,7)+y(:,9); 

T2=y(:,2)+y(:,4)+y(:,6)+y(:,8)+y(:,10); 

Prev=(y(:,7)+y(:,8))./N; 

Inc=(0.6*(y(:,1).*y(:,7))./T1)+(0.3*(y(:,2).*y(:,8))./T2); 

figure(1) 

plot(t,Prev,'k','Linewidth',2) 

grid on 

xlabel('Time[years]','Fontsize',12) 

ylabel('Prevalence','Fontsize',12) 

legend('theta=0.53','theta=0.72','theta=0.9') 

hold on 

figure(2) 

plot(t,Inc,'y','Linewidth',2) 

grid on 
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xlabel('Time[years]') 

ylabel('Incidence') 

legend('theta=0.53','theta=0.72','theta=0.9') 

hold off 

 


