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Abstract  In this paper, we examine the importance of spreading awareness information about infant vaccination in a 
population. A mathematical model for the spread of infant vaccination awareness information is proposed and analyzed 
quantitatively using the stability theory of the differential equations. The basic reproduction number 𝑅0 is obtained and its 
sensitivity analysis is carried out. The awareness free equilibrium is also proved to be locally and globally stable. 
Consideration is taken when 𝑅0 is greater than unity, which indicates that infant vaccination awareness information will 
invade the population and cause immunization to succeed. It is also proved that the maximum awareness equilibrium is 
locally stable if 𝑅0 is greater than unity. Numerical results show that word-of-mouth has a more impact on infant 
vaccination as compared to mass media, but better results are obtained by a combination of both word-of-mouth and mass 
media. For a successful infant vaccination programme, there is a need to emphasize both forms of awarenes. 
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1. Introduction 
Vaccination is a powerful tool in the public-health control 

arsenal, and allows for the mass prevention of infection 
rather than treating the symptoms of infection [19]. Barriers 
to immunization are grouped as system of barriers (eg, those 
involving the organization of the health care system and 
economics), health care provider barriers (eg, inadequate 
clinician knowledge about vaccines and contraindications to 
their use), and parent or patient barriers (eg, fear of 
immunization related adverse events). These barriers affect 
immunization rates and increase the burden of preventable 
disease in our society [20]. 

There can be many reasons for fear of or opposition to 
vaccination. Some people have religious or philosophic 
objections.  

Some see mandatory vaccination as interference by the 
government into what they believe should be a personal 
choice. 

Others are concerned about the safety or efficacy of 
vaccines, or may believe that vaccine-preventable diseases 
do not pose a serious health risk [9].  

Sufficient references should be provided to sources 
containing more information about childhood vaccination,  
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especially about the effectiveness of vaccines and vaccine 
components and the risks, such as possible side effects and 
benefits of vaccination. This may satisfy parents’ 
information needs and enable them to make a sufficiently 
informed choice whether or not to vaccinate their child [8].  

The spread of vaccination awareness information in a 
population can potentially alter individuals’ decisions and 
hence alter the effectiveness of immunization program. Lack 
of correct awareness information on vaccinations, result into 
disease outbreak. The information from public campaigns 
and mass media reporting can change peoples’ behavior and 
perception on vaccination hence improve human 
immunizations. Mathematical models have been helpful 
decision-making tools for vaccination strategies against 
infectious diseases, in particular for those sheltered by the 
expanded program on vaccination [3]. 

Various studies have been done to study the importance of 
awareness in vaccinations [1, 6, 7, 13, 14, 15]. Most of the 
studies are based on individual awareness decisions on 
whether to accept vaccination or not. In this study, we 
intended to find out the importance of awareness information 
to parents and guardians for their infants using a 
mathematical model.  

2. Model Formulation 
In this section, we formulate a mathematical model for 

the spread of infant vaccination awareness information. We 
incorporate two stages; awareness stage and a 
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decision-making stage in the model. Basically, we modify 
the Bass model for diffusion of awareness information for a 
new product presented in [4] by introducing the concept of 
new vaccination. We extend the model by adding I class  
(a class of individuals who have awareness information on 
infant vaccination but did not adopt it) and two forms of 
awareness; mass media and word-of-mouth. The population 
is divided into three classes: N, the number of individuals 
who are not aware with infant vaccination; I, the number of 
individuals who have awareness information on infant 
vaccination but did not adopt it; and A, the number of 
individuals who have adopted the vaccination awareness. 

We assume a recruitment rate, 𝛽, for the number of 
individuals who are not aware with infant vaccination (N) 
which is through birth and immigration. A proportion p of 
unaware individuals in class N is assumed to become aware 
and adopt infant vaccination and progress to class A 
through mass media at a rate 𝛿  and the remaining 
proportion become aware but do not adopt and progresses 
to class I at the same rate. A proportion q in class N is 
assumed to progress to class A through the word-of-mouth 
at a rate 𝜃 and the remaining proportion progresses to class 
I at the same rate. Individuals in class I can progress to the 
adopters class, A at a rate 𝛼. Adopters can discontinue 
from the infant awareness vaccination class, A and move to 
class I at a rate 𝜌. Individuals in the unadopters class, I 
forget the information and return to the class N at a rate 𝛾. 
A schematic representation of the model for the spread of 
infant vaccination awareness information is shown in 

Figure 1. 

Table 1.  Parameters and variables used in the model formulation and their 
descriptions 

Parameter/Variable Description 

𝑀 Total number of people interacting with 
vaccination awareness information. 

𝑁 Number of individuals who are not aware with 
vaccination. 

𝐼 Number of individuals who have awareness 
information on vaccination but did not adopt it. 

A 
Number of individuals who have adopted the 
vaccination awareness. 

𝑝 Proportion of unaware individuals that become 
aware through mass media. 

𝑞 Proportion of unaware individuals that become 
aware through word-of-mouth. 

𝛽 Recruitment rate. 

𝛿 Vaccine awareness rate through media. 

𝜃 Vaccine awareness rate through word- of- 
mouth. 

𝛾 Rate at which individuals in awareness class 
forget vaccine awareness information. 

𝜌 Discontinuance rate of adopters of vaccine 
awareness information. 

𝜇 Natural mortality rate. 

𝛼 Progression rate from unadopters to adopters 
class. 

 

 

Figure 1.  Compartmental diagram for the infant vaccination awareness information in a population 

The model can be described by a system of equations given by  
𝑑𝑁
𝑑𝑡

= 𝛽 − 𝛿𝑁 − 𝜃𝑁 �𝐼+𝐴
𝑀
� + 𝛾𝐼 − 𝜇𝑁, 

𝑑𝐼
𝑑𝑡

= (1 − 𝑝)𝛿𝑁 + (1 − 𝑞)𝜃𝑁 �𝐼+𝐴
𝑀
� − (𝛼 + 𝛾 + 𝜇)𝐼 + 𝜌𝐴,                    (1) 

𝑑𝐴
𝑑𝑡

= 𝑝𝛿𝑁 + 𝑞𝜃𝑁 �𝐼+𝐴
𝑀
� − (𝜌 + 𝜇)𝐴 + 𝛼𝐼,  

where: 𝑀 = 𝑁 + 𝐼 + 𝐴,𝑁 > 0, 𝐼 > 0 ,𝐴 > 0. All variables and parameters in the model (1) are considered to be positive, 
and the model lies in the region Ω = {(𝑁, 𝐼,𝐴) ∈ 𝑅+3 :𝑀 ≤ 𝛽/𝜇}. 

2.1. Basic Properties 

2.1.1. Invariant Region 

Lemma 1. All feasible regions Ω defined by 
𝛺 = {(𝑁(𝑡), 𝐼(𝑡),𝐴(𝑡)) ∈  𝑅+3 : 𝑁(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) ≥ 0 }, with the initial conditions 𝑁(0) ≥ 0, 𝐼(0) ≥ 0,𝐴(0) ≥ 0 are 

positively invariant for system (1). 
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Proof. Adding the system of three equations of (1), we 
have 

𝑑𝑀
𝑑𝑡

= 𝛽 − 𝜇𝑀.                   (2) 

Solving equation (2) using 𝑒𝜇𝑡 as an integrating factor we 
obtain 𝑀(𝑡) = 𝛽

𝜇
+ 𝑐𝑒−𝜇𝑡,  where 𝑐  is a constant of 

integration. As 𝑡 → ∞, 𝑀 → 𝛽
𝜇
. 

It implies that the region 𝛺 = {(𝑁(𝑡), 𝐼(𝑡),𝐴(𝑡)) ∈
 𝑅+3 : 𝑁(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) ≥ 0 }, is a positively invariant set for 
(1). So we consider dynamics of system (1) on the set Ω in 
this paper. 

2.1.2. Positivity of Solutions 
For the system(1), to ensure that the solutions of the 

system with positive initial conditions remain positive for all 
𝑡 ≥ 0. It is necessary to prove that all the state variables are 
nonnegative, so we have the following lemma. 

Lemma 2. If 𝑁(0) > 0, 𝐼(0) > 0,𝑎𝑛𝑑 𝐴(0) > 0 , then 
the solutions 𝑁(𝑡), 𝐼(𝑡),𝑎𝑛𝑑 𝐴(𝑡) of system (1) are positive 
for all 𝑡 ≥ 0. 

Proof. Under the given initial conditions, it is easy to 
prove that the solutions of system (1) are positive; if not, we 
assume a contradiction that there exists a first time 𝑡1 such 
that 

𝑁(0) > 0,      𝑁(𝑡1) = 0,  𝑁′(𝑡1) ≤ 0, 
𝐼(𝑡) > 0,          𝐴(𝑡) > 0,    0 ≤ 𝑡 < 𝑡1. 

From the first equation of system (1), we have 𝑁′(𝑡1) =
𝛽 + 𝛾𝐼 > 0, which is a contradiction meaning that 𝑁(𝑡) >
0, 𝑡 ≥ 0. 

Similarly, it can be shown that the variables 𝐼 and 𝐴 
remain positive for all 𝑡 ≥ 0 . Thus, the solutions 
𝑁(𝑡), 𝐼(𝑡),𝑎𝑛𝑑 𝐴(𝑡) of the system (1) remain positive for all 
𝑡 ≥ 0. 

3. Model Analysis 
The model system (1) is analyzed qualitatively to get 

insights into its dynamical features which give better 
understanding of the impact of awareness on infant 
vaccination. 

3.1. Awareness Free Equilibrium Point, 𝑬𝟎 
Awareness free equilibrium point is the point at which 

there is no awareness about infant vaccination in the entire 
population, i.e when 𝐴 = 𝐼 = 0. 

Considering system (1), when there is no awareness, then 
𝛽 − 𝛿𝑁 − 𝜇𝑁 = 0,  𝑁 =  𝛽

𝛿+𝜇
. 

Then the awareness free equilibrium point 𝐸0, is given by 

𝐸0 = ( 𝛽
𝛿+𝜇

, 0, 0)                  (3) 

3.2. The Basic Reproduction Number,  𝑹𝟎 
Diekmann et al., [16], define the basic reproduction 

number denoted by 𝑅0, as the average number of secondary 

infections caused by an infectious individual during the 
entire period of infectiousness. In this study, a secondary 
infection will be treated as a secondary awareness acquired 
by an individual during the period of getting vaccination 
awareness information. The basic reproduction number will 
be an important quantity in this study as it sets the threshold 
in the study of awareness information on infant vaccination 
for predicting the increase or decrease of number of awared 
people. Thus, whether the number of awared people increase 
or decrease in a population depends on the value of the 
reproduction number. For this study, if 𝑅0 < 1, it means that 
every awared individual on infant vaccination will cause less 
than one secondary awared individual which cause the 
decrease of the number of awared people; but when 𝑅0 > 1, 
every awared individual will cause more than one secondary 
awared individuals and hence the awareness information on 
infant vaccination will invade the population.  

For this study, a large number of 𝑅0  may indicate the 
possibility of having more awared people about infant 
vaccination.  

We use the method presented in [17] to derive the 
expression for the basic reproduction number,  𝑅0.  

Let ℱ𝑖(𝑥) be the rate of appearance of new awareness 
information in compartment 𝑖. The information transmission 
model consists of the equations, 𝑥𝑖′ = 𝑓𝑖(𝑥) = ℱ(𝑥)𝑖 −
𝒱𝑖(𝑥), where 𝒱𝑖(𝑥) = 𝒱𝑖(𝑥)𝑖 − 𝒱𝑖+(𝑥). We then compute 
the matrices 𝐹  and 𝑉  which are 𝑚 × 𝑚  matrices, where 
𝑚 represent the awareness classes, defined by 𝐹 = 𝜕ℱ𝑖(𝑥0)

𝜕𝑥𝑗
, 

and 𝑉 = 𝜕𝒱𝑖(𝑥0)
𝜕𝑥𝑗

, with 1 ≤ 𝑖, 𝑗 ≤ 𝑚. 𝐹  is nonnegative and 

𝑉 is non-singular 𝑚 - matrix.  
We then compute 𝐹𝑉−1, defined as the next generation 

matrix. The basic reproduction number, 𝑅0 is then defined 
by 𝑅0 = 𝜌(𝐹𝑉−1) , where 𝜌(𝐵)  is the spectral radius of 
matrix B, (or the maximum modulus of the eigenvalues of 
B). 

From system (1) we define ℱ and 𝒱 as  

ℱ = �
(1 − 𝑝)𝛿𝑁 + (1 − 𝑞)𝜃𝑁 �𝐼+𝐴

𝑀
�

𝑝𝛿𝑁 +  𝑞𝜃𝑁 �𝐼+𝐴
𝑀
�

�, 

𝒱 = �−
(𝛼 + 𝛾 + 𝜇)𝐼 + 𝜌𝐴
−(𝜌 + 𝜇)𝐴 + 𝛼𝐼 �. 

The awareness compartments are I and A, giving 𝑚 = 2.  
Differentiating ℱ and 𝒱 with respect to 𝐼 and 𝐴 gives  

𝐹 = �(1 − 𝑞)𝜃 (1 − 𝑞)𝜃
 𝑞𝜃  𝑞𝜃 �, 

and 

𝑉 = �(𝜌 + 𝛾 + 𝜇) −𝜌
−𝛼 𝜌 + 𝜇�. 

The eigenvalue of equation 𝐹𝑉−1 can be computed by the 
characteristic equation: |𝐹𝑉−1 − 𝜆𝐼| = 0.  

This gives the basic reproduction number, 

𝑅0 =
𝑞𝛾𝜃 + 𝜃𝐿 + �𝜃2�𝐷2 + 4(−1 + 𝑞)𝑞(−𝛼𝜌 + 𝐿𝐻)�,

2(−𝛼𝜌 + 𝐿𝐻)  
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where 𝐷 = 𝑞𝛾 + 𝜇 + 𝜌, 𝐿 = 𝜇 + 𝜌,𝑎𝑛𝑑 
𝐻 = 𝛾 + 𝜇 + 𝜌. 

Note: 𝑅0  does not depends on awareness rate through 
media, 𝛿. 

3.3. Sensitivity Analysis of Model Parameters 

According to Chitnis at al., [2], sensitivity analysis is the 
method used to determine the robustness of model 
predictions to parameter values. We use sensitivity analysis 
to discover parameters that have a high impact on 𝑅0 . 
Sensitivity indices allow us to measure the relative change in 
a state variable when a parameter changes. The normalized 
forward sensitivity index of a variable to a parameter is the 
ratio of the relative change in the variable to the relative 
change in the parameter. When the variable is a 
differentiable function of the parameter, the sensitivity index 
may be alternatively defined using partial derivatives. 

The normalized forward sensitivity index Υ, of a variable, 
u, that depends differentiably on a parameter, p, is defined as: 
Υ𝑝𝑢 ≔

𝜕𝑢
𝜕𝑝

× 𝑝
𝑢
. As we have an expression for 𝑅0, we derive an 

analytical expressions for the sensitivity index to 𝑅0  for 
each of the six different parameters described in Table 1 that 
appears in 𝑅0 . For example; using the set of values of 
estimated parameters in Table 3, the sensitivity indices for 
𝑅0 with respect to 𝜃 and 𝜌 are given by Υ𝜃

𝑅0 ≔ 𝜕𝑅0
𝜕𝜃

× 𝜃
𝑅0

=
+1.0135 and 
Υ𝜌
𝑅0 ≔ 𝜕𝑅0

𝜕𝜌
× 𝜌

𝑅0
= -0.5902 respectively. Other indices 

Υ𝑞
𝑅0 , Υ𝛾

𝑅0 , Υ𝜇
𝑅0 , and Υ𝛼

𝑅0 are obtained following the same 
method and are shown in table 2.  

Table 2.  Sensitivity Indices of model parameters to 𝑅0 

Parameter Index 

𝛼 −1.1374 
𝜃 +1.0135 
𝑞 +0.9989 
𝛾 +0.6550 
𝜌 −0.5902 
𝜇 −0.0640 

Interpretations of sensitivity indices. 
Table 2 shows that the parameters 𝜃, 𝑞, and 𝛾 increase 

the value of 𝑅0 as they have positive indices, implying that 
they maximize the awareness on infant vaccination. The 
parameters 𝛼, 𝜇, and 𝜌 decrease the value of 𝑅0 implying 
that they minimize the awareness on vaccination as they 
have negative indices. But individually, the most sensitive 
parameter is the rate of un-adoptor to adoptors class (𝛼), and 
the least sensitive parameter is the motality rate (𝜇).  

3.4. Local Stability Analysis of Awareness Free 
Equilibrium point, 𝑬𝟎 

To determine the local stability of awareness free 

equilibrium, the variation Jacobian matrix at equilibrium 
point, 𝑱𝑬𝟎 of the model system (1) is obtained as  

𝑱𝑬𝟎 =

�
−𝛿 − 𝜇 −𝜃 + 𝛾 −𝜃

(1 − 𝑝)𝛿 (1 − 𝑞)𝜃 − (𝛼 + 𝛾 + 𝜇) (1 − 𝑞)𝜃 + 𝜌
𝑝𝛿 𝑞𝜃 + 𝛼 𝑞𝜃 − (𝜌 + 𝜇)

�   (4) 

The stability of the awareness free equilibrium point can 
be clarified by studying the behaviour of 𝑱𝑬𝟎 in which for 
local stability of awareness free equilibrium we seek for all 
its eigenvalues to have negative real parts. The characteristic 
function of the matrix (4) with 𝜆 being the eigenvalues of 
𝑱𝑬𝟎, is obtained and by using mathematica software, we have 
the following eigenvalues; 

𝜆1 = −𝜇, 

𝜆2 = −
1
2

(𝛼 + 𝛾 + 𝛿 + 2𝜇 + 𝜌 − 𝜃) − 𝑘. 

𝜆3  = −
1
2

(𝛼 + 𝛾 + 𝛿 + 2𝜇 + 𝜌 − 𝜃) − 𝑘, 

where 
𝑘 = �𝑤2 − 2𝛿𝑧 + 2𝜃ℎ + 2𝜌𝑔 − 4𝛾𝑗 + 𝛿2 + 𝜃2, and 
𝑤 = 𝛼 + 𝛾 , 𝑔 = 𝛼 − 𝛾 , 𝑧 = 𝛼 − 𝛾 + 𝜃 + 𝜌, 
ℎ = 𝛼 − 𝛾 + 𝜌, 𝑗 =  𝑝𝛿 − 𝑞𝜃 . 
Considering real parts; 

𝜆1 = −𝜇, 

𝜆2  = −
1
2

(𝛼 + 𝛾 + 𝛿 + 2𝜇 + 𝜌 − 𝜃), 

𝜆3 = −1
2

(𝛼 + 𝛾 + 𝛿 + 2𝜇 + 𝜌 − 𝜃). 
The awareness free equilibrium of system (1) is l.a.s given 

that +𝛾 + 𝛿 + 2𝜇 + 𝜌 > 𝜃. Thus for 𝑅0 < 1 the awareness 
free equilibrium point is locally asymptotically stable. 

3.5. Global Stability of Awareness Free Equilibrium 

In this section, we analyze the global stability of 
awareness free equilibrium. Here we use the method 
developed in [23]. We rewrite the model system (1) as 

𝑑𝑋
𝑑𝑡

= F(X, Z), 
𝑑𝑍
𝑑𝑡

= 𝐺(𝑋,𝑍),𝐺�(𝑋, 0) = 0 , 

where 𝑋 ∈  Rm denotes (its components) the number of 
unawared individuals and Z ∈ 𝑅𝑛 denote (its components) 
the number of individuals who have vaccine awareness 
information. The awareness free equilibrium is now denoted 
by E0 = (X0,0). The following conditions, (H1) and (H2) must 
be met to guarantee a local asymptotic stability: 

(H1) For 𝑑𝑋
𝑑𝑡

= 𝐹(𝑋, 0), then  𝑋0 is globally 
asymptotically stable (g.a.s), 

(H2) 𝐺(𝑋,𝑍) = 𝐾𝑍 − 𝐺�(𝑋,𝑍), where 𝐺�(𝑋,𝑍) ≥ 0    
for (𝑋,𝑍) ∈ Ω, 

where 𝐾 = 𝐷𝑧𝐺(𝑋0, 0) is an M –matrix (the off- diagonal 
elements of 𝐾 are non-negative) and Ω is the region where 
the model makes sence. Then the following lemma holds: 
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Lemma 1. 
The fixed point E0 = (X0, 0), is globally asymptotic stable (g.a.s) equilibrium of system (1) provided 𝑅0 < 1 is (l.a.s) and 

that the assumptions (H1) and (H2) are satisfied. 
Proof: 
Consider (H1).  
Considering the model system (1), we have  

F(X, Z) =

⎣
⎢
⎢
⎢
⎡ 𝛽 − 𝛿𝑁 − 𝜃𝑁 �𝐼+𝐴

𝑀
� + 𝛾𝐼 − 𝜇𝑁

(1 − 𝑝)𝛿𝑁 + (1 − 𝑞)𝜃𝑁 �𝐼+𝐴
𝑀
� − (𝛼 + 𝛾 + 𝜇)𝐼 + 𝜌𝐴

𝑝𝛿𝑁 + 𝑞𝜃𝑁 �𝐼+𝐴
𝑀
� − (𝜌 + 𝜇)𝐴 + 𝛼𝐼 ⎦

⎥
⎥
⎥
⎤
 , 

G(X, Z) = �
(1 − 𝑝)𝛿𝑁 + (1 − 𝑞)𝜃𝑁 �

𝐼 + 𝐴
𝑀

� − (𝛼 + 𝛾 + 𝜇)𝐼 + 𝜌𝐴

𝑝𝛿𝑁 + 𝑞𝜃𝑁 �
𝐼 + 𝐴
𝑀

� − (𝜌 + 𝜇)𝐴 + 𝛼𝐼
� 

Then 𝑋 = (𝑁),𝑍 = (𝐼,𝐴).  
Now, 

F(X, 0) = �
𝛽 − 𝛿𝑁 − 𝜇𝑁

0
0

�, 

It is clear that E0 = ( 𝛽
𝛿+𝜇

, 0,0) is a g.a.s of 𝑑𝑋
𝑑𝑡

= F(X, 0). Hence condition (H1) is satisfied. 
Now consider (H2). 

𝐺�(𝑋,𝑍) = �
(1 − 𝑞)𝜃(𝐼 + 𝐴) �1 − 𝑁

𝑀
� − (1 − 𝑝)𝛿𝑁

𝑞𝜃(𝐼 + 𝐴) �1 − 𝑁
𝑀
� − 𝑝𝛿𝑁

� . 

Since 𝑞 ≤ 1 ,𝑝 ≤ 1 𝑎𝑛𝑑 0 ≤ (𝐼 + 𝐴) ≤ 𝑁 ≤ 𝑀, it is clear that 𝐺�(𝑋,𝑍) ≥ 0. 
Then we have 

𝑋 = (𝑁),   𝑍 = (𝐼,𝐴), 

𝐾 = �
(1 − 𝑞)𝜃 − (𝛼 + 𝛾 + 𝜇) (1 − 𝑞)𝜃 + 𝜌

𝑞𝜃 + 𝛼 𝑞𝜃 − (𝜌 + 𝜇)�, 𝑍 = � 𝐼𝐴�, 

and 𝐺�(𝑋,𝑍) = �
(1 − 𝑞)𝜃(𝐼 + 𝐴) �1 −

𝑁

𝑀
� − (1 − 𝑝)𝛿𝑁

𝑞𝜃(𝐼 + 𝐴) �1 −
𝑁

𝑀
� − 𝑝𝛿𝑁

�. 

Then on substituting the above values we have 

𝐾𝑍 − 𝐺�(𝑋,𝑍) = �
(1 − 𝑝)𝛿𝑁 + (1 − 𝑞)𝜃𝑁 �𝐼+𝐴

𝑀
� − (𝛼 + 𝛾 + 𝜇)𝐼 + 𝜌𝐴

𝑝𝛿𝑁 + 𝑞𝜃𝑁 �𝐼+𝐴
𝑀
� − (𝜌 + 𝜇)𝐴 + 𝛼𝐼

� 

= 𝐺(𝑋,𝑍). 

Hence (H2) satisfied. 
Then 𝐸0 = ( 𝛽

𝛿+𝜇
, 0,0) is globally asymptotic stable to our model system (1). 

Existence of Maximum Awareeness Equilibrium (𝑴𝒂
∗). 

The maximum awareness equilibrium of the system (1) is given by 𝑀𝑎
∗ = (𝑁∗, 𝐼∗,𝐴∗) and it is obtained by setting the 

right hand side of equations equal to zero. In this paper, maximum awareness equilibrium works as for endemic equilibrium 
in disease model. 

𝛽 − 𝛿𝑁∗ − 𝜃𝑁∗ �𝐼
∗+𝐴∗

𝑀
� + 𝛾𝐼∗ − 𝜇𝑁∗ = 0, 

(1 − 𝑝)𝛿𝑁∗ + (1 − 𝑞)𝜃𝑁∗ �𝐼
∗+𝐴∗

𝑀
� − (𝛼 + 𝛾 + 𝜇)𝐼∗ + 𝜌𝐴∗ = 0, 

𝑝𝛿𝑁∗ + 𝑞𝜃𝑁∗ �𝐼
∗+𝐴∗

𝑀
� − (𝜌 + 𝜇)𝐴∗ + 𝛼𝐼∗ = 0.                                    (5) 

For the existence and uniquiness of maximum awareness equilibrium 𝑀𝑎
∗ = (𝑁∗, 𝐼∗,𝐴∗), the conditions 𝑁∗ > 0,  or 

𝐼∗ > 0, 𝑜𝑟 𝐴∗ > 0 , must be satisfied. It was not possible to get analytical solutions of system (5), so we resort to simulations 
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to obtain insight in the dynamics of the model.  

3.5.1. Local Stability of Maximum Awareeness Equilibrium (𝑴𝒂
∗) 

To analyse the stability of maximum awareness equilibrium, the additive compound matrix approach is used using the idea 
of [5, 25]. 

If 𝑅0 > 1, then the equation model (5) has a unique maximum awareness equilibrium given by 
𝑀𝑎

∗ = (𝑁∗, 𝐼∗,𝐴∗) in Ω, with 

𝑁∗ = 𝑀𝛽+𝑀𝐼∗𝛾
𝑀𝛿+𝜃(𝐼∗+𝐴∗)

, 

𝐼∗ =
𝑀(𝑤−𝑀𝑘𝛿𝛾)−𝑀𝑧𝜃(𝛽+𝛾𝐴∗)+,−[(𝑀𝑘𝛿𝛾+𝑀𝑧𝜃(𝛽+𝛾𝐴∗)−𝑀𝑤ℎ)−4�𝑀𝜃(𝑀𝑧𝛾−ℎ)�𝑀2𝑘𝛿𝛽+𝑀𝜃(𝑧𝛽𝐴−𝜌𝐴)��]

1
2

2𝑀𝜃(𝑧𝛾−ℎ)
, 

𝐴∗ =
−(𝑀𝜃�𝑝𝛿𝑁−(𝐺+𝛼)𝐼∗+𝑞𝜃𝑀(𝛽+𝐼∗𝛾)−𝐺𝑀𝑤)�+,−((𝑀𝜃(𝑝𝛿𝑁−𝐺𝐼∗−𝛼𝐼∗)+𝑞𝜃𝑀(𝛽+𝐼∗𝛾)−𝐺𝑀𝑤)2+4𝐺𝑀𝜃(𝑤+𝑁𝜃𝐼∗)𝑝𝛿𝑁𝑀+𝑀𝑞𝜃�𝑀𝛽+𝑀𝐼∗𝛾+𝛽𝐼∗+𝛾𝐼∗2�)

1
2−(𝑤+𝐼∗𝜃)𝛼𝐼∗𝑀

(𝐺𝑀𝜃)2
. 

where 𝑘 = 1 − 𝑝, 𝑧 = 1 − 𝑞,ℎ = 𝛼 + 𝛾 + 𝜇,  
 𝐺 = 𝜌 + 𝜇,𝑎𝑛𝑑 𝑤 = 𝑀𝛿 + 𝑀𝜇. 

Local stability of the maximum awareness equilibrium is determined by the variational matrix 𝐽(𝑀𝑎∗) of the nonlinear 
system  

⎣
⎢
⎢
⎢
⎡ −𝛿 − 𝜃(𝐼∗+𝐴∗)

𝑀∗ − 𝜇 𝜃𝑁∗

𝑀∗ + 𝛾 −𝜃𝑁∗

𝑀∗

(1 − 𝑝)(1 − 𝑞)𝛿𝜃 (𝐼∗+𝐴∗)
𝑀∗ (1 − 𝑞) 𝜃𝑁

∗

𝑀∗ − (𝛼 + 𝛾 + 𝜇) (1 − 𝑞) 𝜃𝑁
∗

𝑀∗ + 𝜌

𝑝𝛿 + 𝑞𝜃(𝐼∗+𝐴∗)
𝑀∗

𝑞𝜃𝑁∗

𝑀∗ + 𝛼 𝑞𝜃𝑁∗

𝑀∗ − (𝜌 + 𝜇) ⎦
⎥
⎥
⎥
⎤
            (6) 

Lemma 1: Let 𝐽(𝑀𝑎∗) be the variational matrix corresponding to 𝑀𝑎
∗. If tr (𝐽(𝑀𝑎

∗)), det (𝐽(𝑀𝑎∗)), and (𝐽[2]
(𝑀𝑎

∗)), are all 
negative, then all eigenvalues of 𝐽(𝑀𝑎∗) have negative real parts. 

Using the above lemma, we will study the stability of the maximum awareness equilibrium. 
Theorem 2: If 𝑅0 > 1, the maximum awareness equilibrium 𝑀𝑎

∗ of the model (6) is locally asymptotically stable in Ω. 
Proof: 
From jacobian matrix 𝐽(𝑀𝑎

∗) in (6), we have 

tr (𝐽(𝑀𝑎
∗)) = −(𝛿 + 𝜋 + 𝜃𝜇) − (𝜀 + 𝜑) − (𝜌 + 𝜇) < 0. 

Det (𝐽(𝑀𝑎∗)) = −(𝛼 + κ)(𝜏𝜃𝑁(1−𝑝)
𝑀∗ + �−𝛿 − 𝜋 − 𝜇)(𝜏 + 𝜌)� − (𝜋(1 − 𝑝)(1 − 𝑞)𝛿(𝛾 + 𝜑) − (𝜀 − 𝜏)(−𝛿 − 𝜋 + 𝜇)(κ −

μ−ρ+(pδ+πq)(−φα+qγ+μ+ρ−𝜑22𝑞−2−𝜌+𝛼𝜌)<0, 

where κ = 𝑞𝜃𝑁∗

𝑀∗ ,𝜋 = 𝜃(𝐼∗+𝐴∗)
𝑀∗ ,𝜑 = 𝜃𝑁∗

𝑀∗ , 

𝜀 = (𝛼 + 𝛾 + 𝜇), 𝜏 = 𝑁∗𝜃(1−𝑞)
𝑀∗ . 

Hence the trace and determinant of the Jacobian matrix 𝐽(𝑀𝑎
∗) are all negative. 

The second additive compound matrix is obtained from the following lemma. 
Lemma 2: Let P and Q be subset of {1,2,3}. The (P,Q) entry of 𝑁𝑖𝑗(𝐽(𝑀𝑎

∗))  is the coefficient of C 

in the expansion of the determinant of the sub matrix of 𝐽(𝑀𝑎
∗) +CI indexed by row in P and column in Q. 

Proof: 
The sub matrix of 𝐽(𝑀𝑎∗)+CI is given as  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−�𝛿 +

𝜃(𝐼∗ + 𝐴∗)
𝑀∗ + 𝜇� + 𝐶

𝜃𝑁∗

𝑀∗ + 𝛾
−𝜃𝑁∗

𝑀∗

(1 − 𝑝)(1 − 𝑞)𝛿𝜃
(𝐼∗ + 𝐴∗)

𝑀∗ −�(𝛼 + 𝛾 + 𝜇)
𝜃𝑁∗

𝑀∗ − (1 − 𝑞)� + 𝐶 (1 − 𝑞)
𝜃𝑁∗

𝑀∗ + 𝜌

𝑝𝛿 +
𝑞𝜃(𝐼∗ + 𝐴∗)

𝑀∗
𝑞𝜃𝑁∗

𝑀∗ + 𝛼 −�(𝜌 + 𝜇) −
𝑞𝜃𝑁∗

𝑀∗ � + 𝐶
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

The sub matrix of 𝐽(𝑀𝑎∗)+CI indexed by rows and columns is given by 
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�
− �𝛿 + 𝜃(𝐼∗+𝐴∗)

𝑀∗ + 𝜇� + 𝐶 𝜃𝑁∗

𝑀∗ + 𝛾

(1 − 𝑝)(1 − 𝑞)𝛿𝜃 (𝐼∗+𝐴∗)
𝑀∗ − �(𝛼 + 𝛾 + 𝜇) 𝜃𝑁

∗

𝑀∗ − (1 − 𝑞)� + 𝐶
�. 

The coefficient of C in the determinant of this matrix is −(𝛼 + 𝛾 + 2𝜇) + (1 − 𝑞)𝜃 (𝐼∗+𝐴∗)
𝑀∗ − 𝜃 (𝐼∗+𝐴∗)

𝑀∗ , and thus the (1,1) 
entry of 𝑁𝑖𝑗 is 
−(𝛼 + 𝛾 + 2𝜇) + (1 − 𝑞)𝑁𝜃 (𝐼∗+𝐴∗)

𝑀∗ − 𝜃 (𝐼∗+𝐴∗)
𝑀∗ . Other entries were obtained by the same method and the following 

𝐽[2]
(𝑀𝑎

∗) was obtained as 

det �𝐽[2]
(𝑀𝑎

∗)� =

⎣
⎢
⎢
⎢
⎡−(𝛼 + 𝛾 + 2𝜇) + (1 − 𝑞)𝑁∗𝜃 (𝐼∗+𝐴∗)

𝑀∗ − 𝜃 (𝐼∗+𝐴∗)
𝑀∗ (1 − 𝑞) 𝜃𝑁

∗

𝑀∗ + 𝜌 −𝜃𝑁∗

𝑀∗

𝑞𝜃𝑁∗

𝑀∗ + 𝛼 −𝛿 − 𝜌 − (𝐼∗+𝐴∗)𝜃
𝑀∗ + 𝑞𝜃𝑁∗

𝑀∗
𝜃𝑁∗

𝑀∗ + 𝛾

𝑝𝛿 + 𝑞𝜃(𝐼∗+𝐴∗)
𝑀∗ (1 − 𝑝)(1 − 𝑞)𝛿𝜃 (𝐼∗+𝐴∗)

𝑀∗ −(𝜌 + 2𝜇 + 𝛾 + 𝛼) + 𝜃𝑁∗

𝑀∗ ⎦
⎥
⎥
⎥
⎤
. 

det �𝐽[2]
(𝑀𝑎

∗)� = −(𝐼 + 𝐴)(1 − 𝑝)(1 − 𝑞)𝛿𝜃[𝜑(𝛼 + κ) +(α + φ)(−ω− π − τ)] + [−τ(α + κ) +(−ω− π − τ)(−δ − π + κ − ρ)] 

�–ω + φ − ρ� + (−pδ − πq) �φ(γ − κ − δ − π θ
𝑀
− φ − ρ)� < 0. 

Where 𝜔 = (𝛼 + 𝛾 + 2𝜇). 
Therefor det �𝐽[2]

(𝑀𝑎∗)� < 0. 

Thus, acording to lemma 1, the maximum awareness equilibrium 𝑀𝑎
∗

 of the model system (1) is locally asymptotically 
stable in Ω. 

Table 3.  Parameters estimates of the model 

Parameter Description Value Source 

𝑝 Proportion of unaware individuals that become aware through mass media. 0.7 Estimated 

q Proportion of unaware individuals that become aware through word-of-mouth. 0.6 Estimated 

ρ Discontinuance rate of adopters of vaccination awareness information 0.0001 Estimated 

𝛽 Recruitment rate 0.5 Estimated 

θ Vaccination awareness rate through word- of- mouth 0.4 Estimated 

γ Rate of forgetting vaccination awareness information 0.03 Estimated 

δ Vaccination awareness rate through media 0.2 Estimated 

µ Mortality rate 0.0001 Estimated 

α Progression rate from unadopters to adopters class 0.6 Estimated 

 
3.6. Simulation and Discussion  

The main objective of this study is to assess the impact of 
awareness information to infant vaccination. In order to 
support the analytical results, graphical representations 
showing the variations in parameters have been presented in 
this section. Since, most of the parameters were not readily 
available; it was found convenient to estimate them just for 
illustration purposes on how the model would behave in 
different real situation. 

4. Discussion 
In simulations the observation shows that when awareness 

information through word-of-mouth increases with time 
keeping awareness rate through media constant, unawared 
population and awared population without adopting infant 
vaccination decrease while increasing the number of awared 
population, figure 2 (𝑎), (𝑏) and (𝑐). The same observations 
ware obtained when we vary awareness rate through mass 
media and keep awareness rate through word-of-mouth 

constant figure 3 (a), (b) and (c). But when we increase both 
means of information with the same values, we have beter 
results. That is, unawared population and awared population 
without adoting infant vaccination decrease more, and 
getting more awared population, figure 4 (a), (b) and (c). 
Figure 5 shows the dynamic of the model system that when 
the time increases, the maximum values approach to their 
steady-state values, the awareness becomes maximum while 
minimizing unawared population. 

Thus, for the infant vaccination programme to succeed, 
there must be enough awareness information in both 
word-of-mouth and mass media before the programme starts. 

5. Conclusions 
In this paper, we formulated a mathematical model which 

shows the importance of spreading awareness information on 
infant vaccination to the population. From the model we 
derived the basic reproduction number, 𝑅0. For this study, 
we found out that if 𝑅0 < 1, every awared individual on 
vaccination will cause less than one secondary awared 
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individual and hence cause the number of people who are 
awared on infant vaccination to decrease, and when 𝑅0 > 1, 
every awared individual on vaccination will cause more than 
one secondary awared individual and hence the awareness 

information on vaccination will invade the population. In 
this study, we were interested with large number of 𝑅0, i.e 
𝑅0 > 1. 

   

(a)                                        (𝑏)                                       (𝑐) 

Figure 2.  Variation of awareness information through word-of-mouth with constant value of awareness information through media to (a) unawared 
population, (b)awared population without adopting, and (c)awared population 

  

(𝑎)                                           (𝑏)                                      (𝑐) 

Figure 3.  Variation of awareness information through media with constant value of awareness information through word-of-mouth to (a) unawared 
population, (b) awared population without adopting, and (c) awared population 

   

(𝑎)                                           (𝑏)                                          (𝑐) 

Figure 4.  Variation of both awareness information through media, and awareness information through word-of-mouth, to (a) unawared population, (b) 
awared population without adopting, and (c) awared population 
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Figure 5.  Dynamic of the model system 

We found that the maximum awareness equilibrium exists 
and it is locally and asymptotically stable.  

We performed sensitivity analysis on the basic 
reproduction number from which we noted that the 
parameter 𝜃 (awareness rate through word-of-mouth), is the 
most sensitive index on maximizing the infant vaccination 
awareness to the population due to its big positive value.  

From numerical simulations we observed that both 
awareness information through word-of-mouth and mass 
media are important in reducing unawared people and 
increase awared people for beter succesion of infant 
vaccination. 
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