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ABSTRACT 

Tomatoes are among the most commonly cultivated crops in the world. It is considered a high-

value crop and income resource for smallholder farmers in Africa. Nevertheless, its production 

currently endangered by Tuta absoluta pest. The pest has severely damaged tomato yields to 

the extent that growers are giving up tomato production due to the high costs and losses 

incurred. It causes a heavy loss in tomato produce ranging from 80 to 100% when not 

effectively managed. Recently, farmers have been using different methods in efforts to control 

the pest. These include using pheromone traps and natural enemies for population monitoring, 

planting resistant tomato varieties, and continuous spraying of chemical pesticides, which is 

now the main control method. These practices have been proven not to be effective in 

controlling the pest; they are time-consuming and relatively expensive. Inspired by the 

progression and positive outcomes of computer vision methods in diagnosing a wide variety of 

plant diseases and pests, this study proposes a segmentation-based quantification model for 

detecting and quantifying Tuta absoluta’s damage to tomato plants. We develop convolutional 

neural network models based on U-Net and Mask RCNN architectures for automatic semantic 

and instance segmentation respectively using data collected from the field. Experimental 

results show that Mask RCNN achieved a mAP of 85.67% and U-Net obtained 78.60% and 

82.86% of Jaccard index and Dice Coefficient respectively. Both models were precise in 

segmenting the shapes of Tuta absoluta-infected areas in tomato leaves and determine their 

extent of the damage. The model was then deployed on the mobile phone to enable farmers and 

extension officers in Tanzania to automatically detect affected areas on tomato plants and make 

informed decisions on how to control the pest so as to increase tomato production and save 

farmers from the losses they face.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

The current world population of 7.6 billion is expected to reach 8.6 billion in 2030, 9.8 billion 

in 2050 and 11.2 billion in 2100 (United Nations, 2017). The second Sustainable Development 

Goal (SDG) of the United Nations (UN) is to "End hunger, achieve food security and improved 

nutrition and promote sustainable agriculture" for the global population (United Nations, 

2018). The explosion of the projected world population raises new demands on the quality and 

quantity of agricultural products and efficient use of water and other limited resources (Tzounis 

et al., 2017). The agricultural sector should be more competitive and robust to ensure global 

food security and meet potential demand for high quantity and quality food (Patil et al., 2012). 

Agriculture is an important economic sector in Tanzania, contributing about 29.1% of the Gross 

Domestic Product (GDP) and employing 67% of the population. Agriculture is the main source 

of industrial raw materials, food, and foreign exchange earnings (Ministry of Agriculture 

[MoA], 2017). Farmers in Tanzania grow a variety of permanent and annual crops for food and 

economic purposes. Crops grown include cereals, roots, and tubers, fruits and vegetables. The 

tomato plant is grown in different parts of Tanzania with the highest production compared to 

other fruits and vegetables. In 2017, the total planted area for tomatoes in Tanzania was 54 520 

hectares of which 50 645 hectares (that is 92.9%) were in Tanzania Mainland and 3876 hectares 

(that is 7.1%) were in Zanzibar (MoA, 2017). About 247 135 tonnes of tomatoes were harvested 

on this planted area, which is equal to 64% of all fruits and vegetables in Tanzania.  

Due to their high nutritional value and health benefits, tomatoes are an essential component of 

most people’s diet (Burton-Freeman & Reimers, 2011), and is therefore one of the most widely 

grown crops in the world (Rupanagudi et al., 2015). Tomato is considered the main source of 

raw materials for the tomato processing industry and can increase foreign export of a country, 

thereby contributing to the GDP (Arah, 2015; Çetin & Vardar, 2008). Small scale farmers and 

rural families rely on tomatoes to earn income for their living expenses; therefore, the crop 

contributes significantly to poverty reduction (Arah, 2015; Mutayoba & Ngaruko, 2018). 

Currently, tomato production is threatened by the invasion of an exotic pest known as tomato 

leaf miner (Tuta absoluta) (Zekeya et al., 2016). In Tanzania, the pest is notoriously known as 



2 
 
 

“kantangaze”. The pest spreads rapidly and it is now a serious threat to tomato production in 

the world (Desneux et al., 2011). It causes heavy losses in tomatoes ranging from 80 to 100% 

when proper control technologies are not employed (Chidege et al., 2016).  Tuta absoluta 

originated in South America, then it crossed borders and spread to Europe, Middle East, Asia, 

and then to Africa, where it was firstly reported in 2008 in Algeria (Zekeya et al., 2017). The 

pest has moved swiftly in Africa from North to South, causing substantial and often complete 

loss of tomatoes both in greenhouses and open fields. Since the pest invaded African countries 

in 2008, it has spread into about 41 of the 54 countries in Africa, causing enormous economic 

losses to tomato farmers (Guimapi et al., 2016). In Tanzania, the first occurrence with its 

devastating effects of the pest on tomatoes was reported in August 2014 at Ngabobo village, 

Ngarenanyuki ward, Arumeru District in Arusha, and since then, it has spread to other regions 

(Chidege et al., 2016).  

The pest can physiologically adapt and survive in harsh environmental conditions such as hot 

temperatures as high as 49 ℃ in summer, temperatures below 5 ℃, and can also tolerate 

dryness (Cuthbertson et al., 2013; Tonnang et al., 2015; Van Damme et al., 2015). Since Tuta 

absoluta is multivoltine, it can yield up to 12 generations per year and each mature female can 

produce between 250 and 300 eggs in its lifetime (Doğanlar & Yİğİt, 2011). 

The pest transmission is through females of Tuta absoluta which deposit their eggs on stems, 

leaves, and petioles. The four development stages (egg, larva, pupa, and adult) of Tuta absoluta 

are all harmful and can infect different parts of the host plant (Guimapi et al., 2016). Larva, the 

most dangerous stage has a life span of nine (9) days before turning to pupa. It usually develops 

and feeds between the upper and lower epidermis in leaf mines but can also be in fruits and 

stems (Cuthbertson et al., 2013). The huge loss in tomato yields caused by Tuta absoluta, 

impels scientists to devise effective methods for managing, controlling, and overcoming the 

pest early. 

Despite the existence of various techniques to control the pest, there has not been an effective 

mechanism quantifying Tuta absoluta’s effects at early stages before it causes yield losses to 

farmers. Inspired by the advancement and promising results of Deep Learning techniques in 

image-based plant pest and disease recognition, this research proposes a deep Convolutional 

Neural Network (CNN) model for early quantification of Tuta absoluta’s damage to tomato 
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plants. This can enable farmers to make informed decisions in controlling the pest, improve 

tomato productivity, and rescue farmers from the losses they incur every year. 

1.2 Statement of the Problem 

Despite the efforts of the government to set aside a financial budget each year for the growth 

and development of the agricultural sector, farmers still face several challenges such as 

inadequate farming methodology, climate changes, and attacks on crops by pests and insects. 

The invasion of Tuta absoluta has extensively damaged tomato yield to the extent that growers 

are quitting tomato production due to the enormous costs and losses they face (Zekeya et al., 

2017).  The rot arising from secondary infection reduces tomato fruit quality, making it unfit 

for consumption (Food and Agriculture Organization [FAO], 2017). Figure 1 illustrates the 

damage caused by Tuta absoluta to tomatoes. Over the past few years, farmers have been using 

different methods in efforts to control the pest. These include the use of pheromone traps and 

natural enemies for monitoring the population, cultivation of resistant tomato varieties, and 

continual spraying of chemical pesticides, which is still the main control method (Guedes & 

Picanço, 2012). Excessive use of these chemicals develops resistance, has uneconomical and 

harmful effects on non-targeted organisms, and can also lead to irreparable damage to the 

environment (Materu et al., 2016).  

However, the extension officers who provide farmers with appropriate knowledge about plant 

diseases and pest management are limited in numbers in Tanzania to meet farmers' demands 

(Maginga et al., 2018). Although farmers and extension officers struggle with different 

methods to control the pest, there has not yet been an effective way for early identification and 

quantification of Tuta absoluta’s effects on tomato plants that would enhance farmers’ decision 

making. Therefore, this study proposes a computer vision approach for quantifying the extent 

of damage caused by Tuta absoluta in tomato plants at early stages. This will enable farmers 

and extension officers to make informed decisions on controlling the pest and eventually 

increasing productivity. 
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Figure 1: Tuta absoluta's damage on tomatoes 

1.3 Rationale of the Study 

The agricultural sector is the backbone of a country's economy providing basic food for 

individuals and raw materials for industry. Although various crops are grown in Tanzania, 

tomato (Solanum Lycopersicum) has the highest consumption, both in raw and processed 

forms. Tomato production is particularly socioeconomically significant because it provides 

jobs to women, who account for more than 60% of the labour force (Rwomushana et al., 2019). 

The damage in tomato production is also likely to negatively affect the livelihoods of small-

scale farmers who are the main producers and traders of tomatoes (FAO, 2017). The increase 

in tomato production loss suffered by farmers due to the invasion of Tuta absoluta, has 

compelled farmers to look for effective methods to control and overcome the pest early. 

This study proposes a Deep Learning model to quantify the effects of a Tuta absoluta in tomato 

plants. Determining the extent of the pest’s damage early, can enable farmers and extension 

officers to make informed decisions on how to control the pest so as to improve tomato 

productivity and rescue farmers from the loss they incur every year. 

1.4 Research Objectives 

1.4.1 General Objective 

The main objective of this research is to develop a deep learning quantification model for 

farmers to determine the extent of Tuta absoluta’s effects on tomato plants. 

1.4.2  Specific Objectives 

The specific objectives of this research are:  

(i) To identify the requirements for developing the proposed model. 
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(ii) To develop a Tuta absoluta damage image segmentation model.  

(iii) To determine the extent of tomato leaf damage at various Tuta absoluta levels.  

(iv) To validate the developed model.  

1.5  Research Questions 

This research intends to answer the following questions: 

(i) What are the requirements for developing a deep learning model for quantifying Tuta 

absoluta’s damage on tomato plants? 

(ii) How can a Tuta absoluta image segmentation model be developed? 

(iii) How can Tuta absoluta’s damage to the tomato plants be quantified? 

(iv) How well does the developed model perform? 

1.6 Significance of the Study 

The findings of this research and the development of a solution for early segmentation and 

quantification of Tuta absoluta’s damage to tomato plants can bring hope to the giving up 

tomato growers due to costs and losses the pest caused in tomato production. Since the solution 

is automated and does not require human intervention, it will reduce the workload of the limited 

extension officers in the country. Both farmers and extension officers will be able to understand 

the extent of damage in the farm due to the invasion of Tuta absoluta early and take appropriate 

measures to control the pest they spread further to a large scale. The intelligently informed 

decision made could improve tomato productivity and rescue farmers from the loss they incur 

every year. 

To the research community, this enhancement will also serve as a foundation for future research 

into the integration of the established framework with marketing information systems, which 

will provide farmers with up-to-date information about selling and buying crops and fertilizers, 

as well as link them with nearby agrovet shops. The study also made its annotated dataset freely 

available to other researchers through an open access repository to facilitate further research in 

diagnosing Tuta absoluta’s damage to tomato plants (Rubanga et al., 2020). 
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1.7 Delineation of the Study 

This work aimed at developing a tool for segmentation and quantification of only Tuta 

absoluta’s damage to tomato plants because it significantly affects tomato production 

compared to other pests and diseases. The dataset used for the development of the tool 

contained only colored images, that is, Red-Green-Blue (RGB) color model collected from the 

field. Although experimental results show that the developed tool can accurately determine 

Tuta absoluta’s severity status, further research can improve its performance and develop a 

decision support system that can detect different diseases in various plants and give suggestions 

on actions to be taken to control the disease or pest based on their severity – which is the long-

term motivation of this study. 

However, it is worth noting that there are some limitations to this study. The experiments in 

this work used insufficient annotated dataset size considering Tuta absoluta only not other 

pests and diseases as well as limited computing power, factors that may affect the performance 

of the model.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Tomato Cropping 

Tomato (Solanum Lycopersicum L.) is one of the most widely grown and consumed crops on 

a global scale. Each year, about 160 million tonnes of tomatoes are produced globally (Food 

and Agriculture Organization Statistics [FAOSTAT], 2019). However, approximately a quarter 

of those 160 million tonnes are produced for processing, making tomatoes the leading 

processed vegetable in the world (Tomato News, 2020). In 2016, the tomato was declared the 

sixth most valuable crop in the world, worth US$ 87.9 billion (Rwomushana et al., 2019).  

Figure 2 illustrates the production of tomatoes in the world from 1961 to 2019. Tomato is the 

main source of raw materials for the tomato processing industry and may also be consumed 

raw, roasted, stewed, or mixed with other foods or as a sauce (Çetin & Vardar, 2008; Díez & 

Nuez, 2006). Due to its high nutritional value and numerous health benefits, tomato constitutes 

a crucial component of human diet (Burton-Freeman & Reimers, 2011). Tomato production 

creates an income for most producers in developing countries. In spite of the crop’s numerous 

advantages, many challenges including pests and diseases make its production unprofitable to 

producers (Arah, 2015). The invasion of Tuta absoluta threatens tomato production resulting 

in significant yield losses and crop quality reduction. 

 

Figure 2: World production of tomatoes (FAO, 2019) 
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2.2 The Tomato Leaf Miner (Tuta absoluta) 

Tomato leaf miner, Tuta absoluta (Meyrick 1917) (Lepidoptera: Gelechiidae) is the most 

devastating tomato pest in the world (Doğanlar & Yİğİt, 2011). Since its first discovery, there 

have been sequential genus revisions from 1917 to the 1960s. Originally known as Phthorimaea 

absoluta (Meyrick, 1917) , it was later transferred to the genus Gnorimoschema (Clarke, 1965), 

which was subsequently revised and renamed Scrobipalpula (Povolný, 1967), 

Scrobipalpuloides (Povolný, 1985), and finally Tuta (Povolný, 1994). The pest causes severe 

damage to tomato plants and substantial yield loss to farmers posing a threat to tomato 

production both in greenhouses and open fields. Yield losses can reach as high as 80 - 100% if 

no control measures are taken (Desneux et al., 2010). Although its primary host is the tomato, 

the pest can also feed and develop on other various crops in the Solanaceous family such as 

pepper, common beans, eggplant, potato, tobacco, and solanaceous weed (FAO, 2017; 

Rwomushana et al., 2019).  

Tomato leaf miner originates from South America but has rapidly spread throughout the world 

as illustrated in Fig. 3. The first case of Tuta absoluta was recorded in Huancayo, Peru in 1917; 

then it spread to all South American countries between the mid-1960s and the 1990s (Soares 

& Campos, 2020). The pest was first detected outside of South America in eastern Spain in 

2006, and in a short period, it spread quickly not only across the Mediterranean basin but also 

across Europe, the Middle East, Asia, and then to Africa, where it was first recorded in Algeria 

in 2008 (Tonnang et al., 2015; Van Damme et al., 2015). No more accurate information is 

available on how the pest was introduced and why it spread so quickly to new areas. But 

somehow, it seems to be connected to the import of tomato fruits, its ability to fly, and wind 

currents, though the history of invasion in Afro Eurasia indicates that Tuta absoluta can spread 

and colonize new areas rapidly without any human intervention (Desneux et al., 2011). 

Tuta absoluta has four (4) development stages in its life cycle exhibited for about 26 – 28 days 

from the egg, larva, pupa to adult (Guedes & Picanço, 2012). Although larva is the most 

dangerous one, all four development stages of Tuta absoluta are harmful and can attack 

different parts of the host plant (Guimapi et al., 2016). Figure 4 shows the pest’s life cycle and 

its damage to tomatoes. Adult females usually lay eggs on the underneath of leaves and stems; 

then after hatching, the larvae penetrate between the upper and lower epidermis of the leaves, 

fruit or stems where they feed and develop, creating conspicuous mines and galleries 

(Cuthbertson et al., 2013; Desneux et al., 2010). The larvae are internal feeders, being located 
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in the leaf mesophyll, in the apical stem, and in the fruit making it extremely hard to control, 

and the insecticide resistance further complicates the pest management (Doğanlar & Yİğİt, 

2011; Guedes & Picanço, 2012). 

 

Figure 3: Worldwide distribution of Tuta absoluta (Soares & Campos, 2020) 

 

 

Figure 4: Tuta absoluta’s life cycle and damage images (a) Four stages of Tuta absoluta’s 
life cycle (b) Tomato leaf with Tuta absoluta mines (c) Severe damage on tomato 
field (d) Damaged tomato fruits in the field (e) Damaged tomato fruit on the 
market 
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2.3 Computer Vision Approach 

The main purpose of computer vision is to comprehend and interpret visual scenes. This 

involves several tasks like identifying objects in a digital image, localizing the objects, 

determining the objects’ attributes, characterizing the relationships between objects and 

providing a semantic description of the visual scene. Recent advances in computer vision 

through the application of deep learning techniques have shown promising results in digital 

image processing. 

Deep learning using Convolutional Neural Networks (CNNs) has a unique capability of 

automatically learning and extracting features based on the given dataset in their raw form 

without explicitly being told what features and how to extract them (Lecun et al., 2015; 

Voulodimos et al., 2018). The CNNs are made up of neurons that self-optimise through 

learning. The CNNs architecture is comprised of three types of layers stacked together. These 

are convolutional layers, pooling layers, and fully connected layers (O’Shea & Nash, 2015). 

An input image held in form of pixel values is passed through these layers to produce the final 

output of the class score between 0 and 1. Convolutional layers apply filters (kernels) to an 

input image by calculating the scalar product between their weights and the region connected 

to the input to create a feature map also known as activation map. Then Rectified Linear Unit 

(ReLU) activation function which is linear in the positive dimension but zero in the negative 

dimension is applied to the output of the activation produced by the previous layer. It is the 

source of non-linearity in CNNs. Pooling layers take feature maps as input and gradually reduce 

their dimensionality preserving important information. As a result, the number of parameters 

and the computational complexity of the model are also reduced. Fully connected layers 

contain neurons that are directly connected to the neurons in the two adjacent layers to classify 

an image. The fully connected layers attempt to generate a class score from the activations to 

be used for classification. Figure 5 demonstrates a common form of CNN architecture in which 

convolutional layers are continuously stacked between ReLus before passing through the 

pooling layer, and then going between one or many fully connected ReLus. 

Nevertheless, in many real-world scenarios, it is very expensive or nearly impossible to collect 

enough training data and rebuild the CNN models from scratch. Due to the high computational 

resources and the large amount of labelled data required to build a model from scratch, transfer 

learning has become very popular and useful in deep learning. Most real-world problems lack 

enough labelled data points to train such complex models, so transfer learning trains deep 
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neural networks with comparatively small amount data (Pan & Yang, 2010). In transfer 

learning, a machine exploits the knowledge gained from a previous task to improve 

generalization about another. 

 

Figure 5: Convolutional Neural Network architecture (O’Shea & Nash, 2015) 

2.4 Plant Diseases Diagnostics using Deep Learning 

Advances in Computer Vision and Machine Learning techniques including Deep Learning, 

have presented promising and impressive results in identifying, classifying, quantifying, and 

predicting a diverse range of plant diseases and pests. Among Deep Learning methods, 

Convolutional Neural Networks (CNNs) have demonstrated exceptional performance in image 

recognition tasks (Singh et al., 2018).  

For instance, Brahimi et al. (2017) presented a deep learning approach for identifying plant 

diseases using images of the leaves. Deep learning is capable of directly exploiting raw data 

without the use of handcrafted features. A dataset of 14 828 images was used to train deep 

CNN models based on AlexNet and GoogleNet to automatically determine nine (9) diseases 

and their symptoms that affect tomatoes. The model’s performance was proved to be 99.185% 

accurate compared to shallow models like Support Vector Machine (SVM) and Random Forest. 

Amara et al. (2017) used LeNet, a CNN architecture to automatically identify black Sigatoka 

and banana speckle, fungal diseases that threaten banana production. The model learns the 

visual features from banana leaf images and identifies the leaves affected by the two diseases 

and the healthy ones. In their experiment, a dataset of 3700 images was annotated into three 

different classes, namely banana Sigatoka, banana speckle, and healthy. The model performed 

well with an accuracy of 92.88%. 
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Also, Ferentinos (2018) used several pre-trained deep models such as AlexNet, 

AlexNetOWTBn, VGG, Overfeat, and GoogLeNet to identify 58 diseases from different 

plants. PlantVillage, an open access repository containing a dataset of 87 848 leaf images from 

various plants (Hughes & Salathe, 2015), was used in this study. The VGG model exhibited an 

excellent performance of 99.53% compared to other deep models used in this study. 

The study by Zhang et al. (2018) proposed pre-trained CNN architectures to identify 8 tomato 

diseases using 5550 images from an open access repository. All the models could classify the 

diseases into correct classes with the accuracy of 95.83%, 95.66%, and 96.51% for AlexNet, 

GoogLeNet, and ResNet50, respectively.  

Moreover, Fuentes et al. (2017) introduced the application of deep meta-architectures and 

feature extractors for real-time detection of different diseases and recognition of pests in tomato 

plants. Deep meta-architectures such as Single ShotMultibox Detector (SSD), Region-based 

Fully Convolutional Networks (R-FCN), and Faster Region-based Convolutional Neural 

Network (Faster R-CNN) combined with feature extractors like ResNet and VGG-16 were used 

to identify 9 different pests and diseases successfully and their location in a tomato plant. The 

model was trained with a dataset of 5000 images that includes nine diseases and pests, namely 

Cranker, Leaf mold, Plague, Gray mold, Miner, Powdery mildew, Low temperatures, 

Nutritional excess and Whitefly. The model showed outstanding performance with an average 

accuracy of 83% in recognizing the tomato diseases and pests and dealing with complex tasks 

including infection level, sides of the leaves and different background conditions. 

Similarly, a dataset containing 4483 leaves images of different plants was used by Sladojevic 

et al. (2016) to recognize and distinguish 13 plant diseases from the healthy ones.  CaffeNet, a 

deep CNN architecture, was trained and tested to determine and differentiate the dataset leaves 

images categorized into three classes; 13 infected images, healthy leaf images, and a 

background image class to allow good separation of plant leaves and the surroundings. The 

diseases recognized were, Taphrina deformans, powdery mildew, Erwinia amylovora, 

porosity, wilt, gray leaf spot, Gymnosporangium sabinae, rust, mites, downy mildew and 

Venturia in pear, cherry, peach, apple, and grapevine plants. In this study, the precision 

between 91% and 98% was achieved for separate class tests, and the overall accuracy of the 

developed model was 96.3%. 
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Mkonyi et al. (2020) proposed a VGGNet model to identify Tuta absoluta pest in tomato plants. 

In their study, three CNN architectures, namely ResNet50, VGG16, and VGG19, were used in 

training classifiers on a dataset of 2145 healthy and infested tomato leaf images. The VGG16 

achieved a high accuracy of 91.9% on differentiating the two classes. In this study, there is still 

a need to detect the exact location of Tuta absoluta’s damage and to determine the extent of 

the damage. 

Although several studies addresses the problem of plant leaf disease identification, few have 

focused on developing systems that can estimate stress severity. Liang et al. (2019) proposed 

a multitasking system called PD2SE-Net consisting of ResNet50 architecture that can diagnose 

diseases, recognize plant species, and estimate disease severity. A dataset from the PlantVillage 

repository was used to perform the experiments. The overall accuracy for disease severity 

estimation and plant disease classification was 91% and 98%, respectively. 

In a recent study, Esgario et al. (2020) developed a multi-task system based on CNNs for 

classifying and estimating the severity of coffee leaf biotic stresses from 1747 images of 

arabica coffee leaves. Among the CNN architectures (MobileNetV2, AlexNet, ResNet50, 

GoogLeNet, and VGG16) used, ResNet50 had the best biotic stress classification accuracy of 

95.24% and the best severity estimation accuracy of 86.51%. 

Furthermore, Wang et al. (2017) proposed a deep learning model for automatic estimation of 

black rot disease severity in apple plants. A small dataset of 552 apple leaf images was used 

for training the VGGNet model to quantify the severity of the disease in four stages. The model 

performed better with an accuracy of 90.4% compared to other models employed in their study.  

Additionally, Lin et al. (2019) proposed a segmentation model based on U-Net architecture to 

segment powdery mildew in cucumber plants. A dataset of 50 cucumber leaf images captured 

in a cucumber fruit leaf phenotype automated analysis platform was used in their experiment. 

The model performance was 96.08% outperforming conventional Machine Learning methods 

such as K-means and Random Forest. 

Wang et al. (2019) presented a tomato disease detection model based on Faster R-CNN and 

Mask RCNN. The model detects and segments the locations and shapes of the infected area on 

tomato fruits. In their experiment, a dataset of 286 tomato fruit images obtained from the 
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internet was used, and the models achieved mean Average Precision (mAP) of 88.53% and 

99.64% for Faster R-CNN and Mask RCNN, respectively. 

Also, Pérez-Borrero et al. (2020) proposed a CNN model based on Mask RCNN architecture 

for instance segmentation of strawberries. They modified the Mask RCNN network by 

removing the object classifier and the bounding box regressor, replacing the non-maximum 

suppression algorithm with a new region grouping and filtering algorithm without increasing 

the complexity order. In their experiment, a dataset of 3100 strawberry images along with their 

annotations was used. They also proposed the Instance Intersection Over Union (I2oU) as a 

new performance metric for evaluating instance segmentation. Their model achieved a mean 

Average Precision (mAP) of 43.85% compared to 45.36% of the original Mask RCNN and the 

mean I2oU of 87.27% compared to 87.70% of the original Mask RCNN. 

Tang et al. (2020) developed a dilated encoder network (DE-Net) model based on U-Net 

architecture for automatic butterfly ecological image segmentation. To capture deeper semantic 

features, they modified the U-Net architecture by replacing the last two pooling layers, the last 

three convolution layers, and all fully connected layers with the hybrid cascade dilated 

convolution (HCDC). A public dataset of 832 butterfly ecological images was used and the 

DE-Net model achieved an accuracy of 98.67%. 

The study by Liu et al. (2020) proposed a method to segment overlapped poplar seedling leaves 

that are under heavy metal stress by combining Mask RCNN with Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) clustering algorithm. Mask RCNN was used 

to segment leaves and then DBSCAN clustered single leaves from the detected overlapping 

leaves. A dataset of 2000 RGB-D images with their corresponding annotations was used to 

complete the task. In their experiment, the model obtained a pixel-wise Intersection over Union 

(p-IoU) and mean accuracy of 0.874 and 0.888, respectively. 

2.5 Research Gap 

Generally, these studies have achieved excellent results in image-based plant diagnosis using 

CNNs. However, very few works in the literature have focused on quantifying the disease’s 

severity and to the best of the author’s knowledge, there are no studies that address the 

quantification of Tuta absoluta’s effects on tomato plants. Also, some studies used a small 

dataset size and images from online repositories which do not reflect real field situations. 
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Therefore, this study proposes a deep learning-based approach for quantifying the effects of a 

tomato leaf miner (Tuta absoluta) at the early stages of the tomato plant’s growth by using 

images collected from the field. This study will assist Tanzanian farmers and extension officers 

in making well-informed decisions that could increase tomato production and rescue farmers 

from the loss they suffer every year. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area 

This study was conducted in Tanzania, targeting various tomato growers both in greenhouses 

and open fields around the country. The two regions (Arusha and Morogoro) are some of the 

major areas prone to Tuta absoluta infestation in Tanzania. The image dataset collected from 

the research area was used to train, test, and adjust the model accordingly so that it performs 

well with new data from all parts of the country. The study area is shown in Fig. 6. 

 

Figure 6: Research study area 
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3.2 Field Setup 

Two (2) in-house experiments were set up in Arusha and Morogoro regions where tomato 

plants were grown. Net houses (Fig. 7) were constructed, one in each region considering 

different factors summarized in Table 1. This in-house experiment prevented any pests from 

coming into the net house and Tuta absoluta from getting out of the experimental area to 

maintain a controlled environment for the study. 

 

Figure 7: Experimental setup in a field 

3.2.1 Planting and Pest Introduction 

Healthy tomato seedlings (free from other diseases and pests) were planted in each net house 

in the two regions as shown in Fig. 8. On the second day following the transplant, Tuta absoluta 

was introduced to some tomato plants by placing 2 to 8 larvae on top of the leaves of randomly 

selected plants. The pest immediately started to mine the leaves. Plants to infect were randomly 

selected so that to have a dataset of both infested and healthy tomato plants. This process was 

done under the supervision of an agricultural expert as shown in Fig. 9. 
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Figure 8: Transplanting the tomato seedlings in (a) Arusha and (b) Morogoro fields  

 

Figure 9: A researcher and an agricultural expert performing infestation in the field (a) 
The process carried out in Arusha field (b) Process in Morogoro field 
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3.3 The Dataset 

A dataset of 5235 tomato images was collected directly from the constructed experimental net 

houses. This includes 2319 images collected in Arusha and 2916 images that were collected in 

Morogoro. Table 1 shows factors taken into account to obtain a diverse dataset of the real field 

situations, such as regions in the country that are highly infested with Tuta absoluta, crop cycle 

season, commonly grown tomato varieties, and commonly practised farming systems. Images 

of tomato leaves at early growth stages were collected using a Canon EOS Kiss X7 camera 

with a resolution of 5184 x 3456 pixels for high-resolution images and a Samsung SM-G570F 

camera with a resolution of 320 x 240 for low-resolution images. Images of different 

resolutions were collected so as to train the model with images of different qualities. Since the 

model will be employed in the field and assuming that smallholder farmers in Tanzania use 

cheap phones with low resolution, the model was trained using both high and low-resolution 

images. The images were taken daily for two consecutive weeks after infestation focusing on 

capturing the top approximately 30 centimetres from the plant (Fig. 10) since the plant crown 

is always affected by the pest in the early growth stages of the plant.  

The plants with less than 3 Tuta absoluta were considered to have low pest damage (Low Tuta), 

those with more than 3 Tuta absoluta were considered to have severe pest damage and healthy 

ones (No Tuta) as shown in Fig. 11.  
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Figure 10: Data collection using (a) high and (b) low-resolution cameras in Arusha and 
Morogoro fields 

Table 1: Data collection setup and factors considered for each experiment 

Duration Season Region Variety 
Farming 
system 

Number of 
Images 

Oct - Dec 
2019 

dry/wet north 3 drip 2319 

Jan - Apr 
2020 

wet east 2 drip, furrow, 
bund 

2916 

 

 

Figure 11: Some images from the field depicting the Tuta absoluta’s damage status 
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3.4 Research Framework 

The research framework in Fig. 12 shows the logical flow of the study and gives a clear 

understanding of how the research was undertaken from data collection to model development 

and validation until the delivery of an optimized model. Two (2) deep meta-architectures, 

namely U-Net and Mask RCNN, were used to develop semantic and instance segmentation 

models, respectively. The segmentation model can determine the exact spot in the plant where 

the Tuta absoluta affected. Then a custom function built on top of the instance segmentation 

model was used to determine the extent of Tuta absoluta damage to the tomato plant. The 

model’s performance is then evaluated using different evaluation metrics and the model’s 

parameters are tuned to get an optimized model. The model is deployed on a mobile phone to 

enable and facilitate farmers to automatically detect affected areas on tomato plants. 

 

 

 

Figure 12: Research conceptual framework 

3.5 Image Preprocessing 

Image preprocessing is an important stage for enabling a deep learning architecture to learn 

and extract features from an image during model training. It is a manipulation of raw image 

data before feeding it to a deep model for better performance. In this work, the image 

preprocessing process involved labelling and cropping, image annotation, image resizing, and 

augmentation. The preprocessed images were then used as input data to the model. 
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3.5.1 Labelling and Cropping 

The images were manually labelled to distinguish between healthy and infected plants by Tuta 

absoluta. This helps to make a clear distinction between the classes. The label included the 

block in the net house where the plant is located, the date the image was captured, the plant 

number, and the infestation status of the plant (healthy or non-healthy). In this study, 2319 

images (1107 healthy and 1212 infested with Tuta absoluta) collected in Arusha and 2916 

images (1870 healthy and 1046 infested with Tuta absoluta) collected in Morogoro were 

labelled, making a total of 5235 tomato images in the dataset as shown in Table 2. Then the 

images were manually cropped to removed unwanted objects on the background. Figure 13 

shows some images from the dataset after the labelling and cropping process. It also shows the 

development of Tuta mines on different days.  

Table 2: Dataset distribution 

Region Healthy Non-Healthy Total Dataset 
Arusha 1107 1212 2319 
Morogoro 1870 1046 2916 
Total 2977 2258 5235 
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Figure 13: Labelled and cropped images from the dataset showing the development of 
Tuta mines on different days 

3.5.2 Image Annotation 

It is necessary to annotate the images indicating the area of interest in order to train a 

segmentation model. A total of 1212 and 1240 images with infested tomato plants were selected 

from the entire dataset collected from the field to be used in developing semantic and instance 

segmentation models, respectively. For each image, a ground truth labelled image was 

manually generated containing the individual segmentation of all the Tuta absoluta’s mines 

present in the image. Labelme (Russell et al., 2008) and VGG Image Annotator (Dutta & 

Zisserman, 2019) open-source tools were used to annotate images for semantic and instance 

segmentation tasks respectively as revealed in Fig. 14. The specific operation was to define the 

continuous contour of all Tuta absoluta’s mines by marking the area and shape of the infested 

spot with irregular polygons and then labelling the spot with “tuta” as shown in Fig. 15. Each 

image contained at least one tuta mask indicating the presence of the Tuta absoluta’s mine in 

the image. The annotations obtained were saved in the VOC (Everingham et al., 2010) format 

and COCO (Lin et al., 2014) format with their corresponding images to be used in the semantic 

and instance segmentation tasks, respectively. The image annotation process with its outputs 

is illustrated in Fig. 16. 
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Figure 14: Examples of the two data annotation methods (a) Labelme annotation tool (b) 
VGG Image Annotator (VIA) tool 

 

 

Figure 15: Image annotation process 
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Figure 16: Illustration of the image annotation process (a) Original image (b) Polygonal 
annotation of the Tuta mines contour (c) Visualization of labels (d) Extraction 
of the mask (e) Original image with the overlapping mask 

3.5.3 Resizing the Images 

Image resizing is an important preprocessing step in computer vision. Principally, the CNN 

models train faster on smaller images. A large input image requires the neural network to learn 

from many image pixels adding up the training time and other computational costs. Therefore, 

many CNN architectures require that the input images are of the same size. Images in the 

dataset were varying in size so we used a standard resize function in Keras to resize all images 

to the dimensions of 512 x 512 pixels. When the dimension of an image is smaller than 512, 

the image is upscaled by adding zero paddings as necessary to obtain a square image.  

3.5.4 Augmentation 

Deep neural networks need a large amount of training data to achieve good performance and 

avoid overfitting. Overfitting refers to the phenomenon when a network perfectly models the 

training data but fails to generalize on unseen data (Lawrence & Giles, 2000). Unfortunately, 

we were not able to collect enough data to sufficiently train a CNN model. Data augmentation 
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is a solution to the problem of limited data. Image data augmentation encompasses a suite of 

techniques that can be used for artificially expanding the size and enhancing the quality of the 

training set by creating modified versions of the original images in the dataset (Shorten & 

Khoshgoftaar, 2019). The techniques include random rotation, shifts, shear, zooming, and flips. 

In this study, we performed image augmentation for some experiments. Specifically, the 

following set of augmentation techniques was applied to the training set only with data values 

in a range of (0, 1):  

(i) Horizontal flip: All images in the training set were horizontally flipped with a 

probability of 0.5. 

(ii) Vertical flip: All images in the training set were vertically flipped with a probability 

of 0.2. 

(iii) Crop: A random crop was applied on images with the interval of (0, 0.1). That is, 

each image is cropped by 0 – 10% of its height/width. 

(iv) Gaussian Blur: A gaussian blur with a probability of 0.5 was applied to images with 

a random sigma of between 0 and 0.5. 

(v) Contrast Normalization: Contrast normalization was applied to strengthen or 

weaken the contrast in each image in the interval (0.75, 1.5). 

(vi) Gaussian Noise: Gaussian noise with a probability of 0.5 was added to images. For 

50% of all images, the noise is sampled once per pixel. And for the remaining 50% 

of all images, the noise is sampled per pixel and channel. This changes the colour of 

the pixels.  

(vii) Brightness modification: A change of brightness was applied with a probability of 

0.2 and a random value in the interval (0.8, 1.2) is chosen. This made some images 

brighter and some darker. 

(viii) Transformation: A series of random affine transformations were applied to each 

image. This implies scaling or zooming images to 90 – 110% of their height/width 

(each axis independently). Translate/move them by -20 to +20 relative to their 

height/width per axis. Rotate images by -5 to +5 degrees and slightly shear them by -

2 to +2 degrees.  

The images generated from the aforementioned data augmentation techniques are presented in 

Fig. 17 and Fig. 18.  



27 
 
 

 

Figure 17: Original image (top) and the results of the data augmentation techniques 

 

Figure 18: Mask augmentations 
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3.6 Transfer Learning 

Transfer learning involves reusing pre-trained models for a specific task and fine-tuning them 

to a new related task, usually with a limited amount of data (Weiss et al., 2016). The 

transferring of information from a related domain improves a new model. This work employs 

transfer learning based on the CNN models, Mask RCNN and U-Net that have been trained 

and shown best performance on COCO (Lin et al., 2014) and International Symposium on 

Biomedical Imaging (ISBI) (Ronneberger et al., 2015) datasets for instance and semantic 

segmentation tasks respectively. 

3.6.1 U-Net for Semantic Segmentation 

Semantic segmentation classifies each pixel in an image from a predefined set of classes. The 

image is divided into different segments, each representing a distinct entity. In semantic 

segmentation, different instances of the same object are not distinguished they are given the 

same label. Ronneberger et al. (2015) introduced a U-shaped CNN architecture that is designed 

to be trained end-to-end with very few images and yet produce more precise segmentations. 

This makes it very suitable for the agricultural field since in the real world, there is not enough 

labelled data to train complex CNN architectures (Lin et al., 2019). The model has performed 

exceedingly well first in the biomedical image segmentation and later in many other fields 

outperforming the earlier segmentation methods (Ciresan et al., 2012). The U-Net architecture 

consists of three sections namely, a contraction section (also known as encoder), a bottleneck 

section, and an expansion section (also known as decoder) hence the name encoder-decoder 

structure. The encoder which is basically a stack of convolutional and max-pooling layers 

downsamples the input image and captures its context. It outputs a tensor that contains 

information about the object, its shape and size. The decoder which contains upsampling layers, 

takes this information and uses transposed convolutions to produce segmentation maps. This 

upsampling process makes the network’s output the same size as the input image achieving 

pixel-level segmentation. The bottleneck section mediates between the encoder and decoder 

sections. It uses skip connections to concatenate the intermediate outputs of the encoder with 

the inputs to the intermediate layers of the decoder at appropriate positions. This concatenation 

process enables the precise localization of the target objects. The U-Net architecture is 

described in Fig. 19. 
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Figure 19: U-Net architecture 
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3.6.2 Mask RCNN for Instance Segmentation 

Instance segmentation distinguishes each object instance of each pixel for every known object 

within an image. It integrates an object detection task that aims to detect the object class as 

well as predict the bounding box in an image, with a semantic segmentation task that classifies 

each pixel into pre-defined categories. Therefore, instance segmentation enables us to detect 

objects in an image while precisely segmenting a mask for each object instance. 

A Mask Region-based Convolutional Neural Network is a deep neural network for instance 

segmentation that takes an input image and outputs a bounding box, label, and the 

corresponding mask (He et al., 2018). Basically, it is an extension of the Faster RCNN model 

which has two outputs for each candidate object, namely, a class label and a bounding-box 

offset (Ren et al., 2017). Mask RCNN adds a third branch that outputs the object mask 

decoupling class prediction and mask generation. This makes it an effective algorithm for more 

challenging instance segmentation tasks. Instance segmentation is a challenging task because 

it necessitates accurate detection of all objects in an image while precisely segmenting each 

instance. The architecture of the proposed Mask RCNN model is illustrated in Fig. 20. 

 

Figure 20: Proposed Mask RCNN model architecture 
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(i) Backbone  

The CNN backbone architecture is used to extract features from an entire image. Mask RCNN 

uses ResNet50 and ResNet101 for feature extraction. The extracted features act as an input for 

the next layer. The backbone feature maps at different layers are shown in Fig. 21. 

 

Figure 21: Backbone feature maps at (a) input layer, (b) res2c_out activation layer, (c) 
res3c_out activation layer, and (d) res4c_out activation layer 
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(ii) Region Proposal Network (RPN) 

The Region Proposal Network is applied to the feature maps obtained in the previous step and 

outputs a set of object/region proposals, i.e., Regions of Interest (RoIs), each with its objectness 

score. To generate region proposals, RPN uses a sliding window over the convolutional feature 

maps producing anchor boxes of different shapes and sizes. Then for each anchor box, the RPN 

predicts the probability that an anchor is an object (i.e., objectness score) and the bounding box 

regressor for adjusting the anchors to best fit the object. Figure 22 illustrates how the RPN 

works. Using the Non-Maximum Suppression (NMS) technique, the RPN refine anchors with 

a high objectness score and suppress or reject all other boxes. The RPN regions of interest and 

anchors are shown in Fig. 23. The output of this step is the feature maps or regions that the 

model predicts to contain some objects. 

 

Figure 22: Illustration of how RPN works (Pawang, 2020) 



33 
 
 

 

Figure 23: The RPN anchors (a) Regions of Interest (RoIs) (b) Negative anchors (c) 
Positive anchors (d) Top anchors before refinement (e) Top anchors with 
refinement (f) Refined anchors after non-max suppression 

(iii) Regions of Interest (RoI) Align 

Both RoIs and their corresponding feature maps from the previous step are passed through the 

RoI Align layer which converts them to a fixed shape and size. The RoIAlign uses binary 

interpolation to generate a small feature map of fixed size (e.g., 7 x 7) from each RoI. The RoI 

Align layer properly aligns the extracted features with the input and accurately maps RoIs from 

the original image onto the feature map without rounding up to integers.  

(iv) Fully Connected Layers 

On top of the fully connected network, a softmax layer is used to predict classes in the image. 

The softmax layer applies a softmax function to the input to assign decimal probabilities to each 

class which must add up to 1. A linear regression layer is also used alongside the softmax layer 

to output bounding box coordinates for predicted classes.  
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(v) Fully Convolutional Network 

The output of the ROI Align layer also goes separately to the convolutional layer to predict the 

mask. This ConvNet takes an RoI as input and outputs the m*m mask representation. The mask 

shape normally is 28 x 28. 

3.7 Implementation 

The experiments were carried out on a computer, pre-installed with Windows 10 equipped with 

one Intel® Core™ i7-8550U 3.6 GHz CPU, Intel® Iris® Plus Graphics, 512 GB SSD storage, 

and 16 GB memory. Google Collaboratory with Tesla P100-PCIE GPU and 27 GB memory 

was utilized. To implement this work, python (Travis, 2007) programming language with Keras 

(Chollet, 2017) library and TensorFlow (Abadi, 2016) as backend were used. 

3.8 Training Phase  

3.8.1 U-Net: Hyperparameters Tuning and Network Training 

A U-Net architecture was used in this implementation to develop a Tuta absoluta semantic 

segmentation model. In this custom U-Net, 32 convolutional filters were set in the initial 

convolutional block which will be doubled after every block while setting 4 layers in the 

encoder path. Since the problem in this study was binary segmentation, sigmoid was set as the 

activation function in the output layer. All images in the dataset were rescaled to a range of (0 

– 1) and then resized to a dimension of 512 x 512 pixels. Given the insufficient size of our 

dataset to effectively train a CNN architecture, random data augmentation was performed to 

expand the training dataset size. The augmentation techniques included horizontal and vertical 

flipping, the zoom range of 0.2, shear in a range of 40, width and height shift in a range of 0.05, 

and rotation in a range of 5.0 degrees.  The images with their corresponding annotations were 

transformed in the same way. Figure 24 shows the generated images with their corresponding 

annotations after augmentation. 

The network was trained using 200 epochs with a learning rate of 0.01 and Adam (Kingma & 

Ba, 2014) as the optimization function. The IoU threshold for minimum detection probability 

is kept at 0.5. 
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Figure 24: Augmented images with their corresponding annotations 

3.8.2 Mask RCNN: Hyperparameters Tuning and Network Training 

This implementation is based on an open-source Mask R-CNN by Matterport with 

Massachusetts Institute of Technology (MIT) license (Abdulla, 2017), built on ResNet101 and 

Feature Pyramid Network (FPN) as a backbone. Two CNN architectures, namely ResNet50 

and ResNet101, were used separately as backbone architectures of proposed Mask RCNN 

model. Images are resized in square mode to a minimum dimension of 800 pixels and a 

maximum dimension of 1024 pixels. Since the inference is ran on one image at a time, the 

batch size was set to 1 where each batch has 1 image per GPU. A learning rate of 0.001, weight 

decay of 0.0001 and learning momentum of 0.9 have been used in this implementation. The 

minimum detection probability is kept at 0.7 so that RoIs with scores larger than this threshold 

are kept and below that are skipped. The training was developed during 200 epochs, and a 

model was evaluated on the validation set at the end of each epoch. Configurations used to 

train the Mask RCNN model are summarized in Table 3. 

  



36 
 
 

Table 3: Configurations used for training Mask RCNN model 

Hyperparameter(s) Value(s) 
Backbone ResNet50 or ResNet101 
Backbone Strides [4, 8, 16, 32,64] 
Batch Size 1 
Detection Maximum Instances 100 
Detection Minimum Confidence 0.7 
Detection NMS Threshold 0.3 
GPU Count 1 
Images per GPU 1 
Image Maximum Dimension 1024 
Image Minimum Dimension 800 
Image Resize Mode Square 
Image Shape [1024 1024 3] 
Learning Momentum 0.9 
Learning Rate 0.001 
Mask Shape (28, 28) 
Number of Classes 2 
RPN Anchor Scales (8, 16, 64, 128, 256) 
RPN Anchor Stride 1 
RPN NMS Threshold 0.9 
Weight Decay 0.0001 
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3.9 Evaluation 

Model evaluation is a measure of how the trained model generalizes on new previously unseen 

data. It aims at estimating the generalization accuracy on new data. The performance of a deep 

learning model can be evaluated using different evaluation metrics. The choice of evaluation 

metrics depends on a given deep learning task (such as classification, localization, among 

others). In this work, the performance of instance and semantic segmentation models was 

evaluated using Intersection over Union, Dice Coefficient, precision, recall, and mean Average 

Precision (mAP) as defined below. 

3.9.1 Intersection over union (IoU) 

Intersection over Union also known as Jaccard Index, is a metric that evaluates how similar the 

predicted bounding box or mask is to the ground truth bounding box or mask. It is basically the 

ratio of the area where the two boxes or masks overlap (intersection between predicted box or 

mask and actual box or mask) to the total area of the two boxes or masks (their union). A 

prediction is considered to be True Positive (TP) if the IoU is greater than a defined threshold 

and False Positive (FP) if the IoU is less than a given threshold. The equation below illustrates 

the calculation of IoU. 

𝐼𝑜𝑈 =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
(3.1)  

This metric ranges from 0 – 1 with 0 indicating that there is no overlap between the masks or 

bounding boxes and 1 signifying that there is a perfect overlap between the bounding boxes or 

masks as illustrated in Fig. 25. The IoU = 1, if the prediction is perfectly correct. The lower the 

prediction result, the lower the IoU value. 
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Figure 25: Illustration of bounding boxes or masks overlaps and their corresponding IoU 
values 

3.9.2 Dice Coefficient (F1 Score) 

Dice Coefficient also known as F1 Score, refers to the measure of overlap between ground 

truth and predicted masks. It is quite similar to Jaccard’s index but doubles the count of the 

intersections (TPs). It is 2 times the area of overlap divided by the total number of pixels in 

both images. Like IoU, Dice Coefficient ranges from 0 to 1 with 1 indicating a perfect overlap 

while 0 indicates no overlap between the predicted and ground truth masks. 

Dice coefficient is defined as: 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛 +  𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
=  

2 ×  
(3.2) 

3.9.3 Precision 

Precision is the measure of the percentage of correct positive predictions among all predictions 

made. That is, of all positive predictions, how many predictions are True Positives? To get the 

precision value, the ratio of True Positives to the total number of positive predictions is 

calculated. Precision is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.3) 
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Where 

𝑇𝑃 (True Positive) is the number of positive samples correctly predicted as positive i.e., the 

number of correctly detected tuta mines. 

𝐹𝑃 (False Positive) is the number of negative samples that are wrongly predicted as positive 

i.e., the number of falsely detected tuta mines. 

3.9.4 Recall 

Recall is measuring the percentage of correct positive predictions among all actual positive 

cases. That is to say, of all actual positives, how many are True positive predictions? To get 

the recall value, the ratio of the True Positives to the total number of all samples that should 

have been identified as positive is calculated.  

Recall is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.4) 

Where 

𝑇𝑃 (True Positive) is the number of positive samples correctly predicted as positive i.e., the 

number of correctly detected tuta mines. 

𝐹𝑁 (False Negative) is the number of negative samples that are correctly predicted as negative. 

i.e., the number of missed/undetected tuta mines. 

3.9.5 Mean Average Precision (mAP) 

Mean Average Precision is used as the primary evaluation metric to measure the quality of the 

segmentations obtained by the model. It provides the average precision of object locations in 

all predictions matching to ground-truth objects giving each object equal importance. 

Mean Average Precision (mAP) is defined as: 

𝑚𝐴𝑃 =  
1

𝑁
∑𝐴𝑃 (3.5) 
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Where 

𝑚𝐴𝑃 is the mean Average Precision of all classes. 

𝐴𝑃 is the Average Precision. 

∑𝐴𝑃 is the sum of the Average Precision values. 

𝑁 is the number of all classes.  

The Average Precision (AP) is defined by the area under the Precision-Recall (PR) curve, the 

x-axis being recall and the y-axis being precision. To plot the graph, multiple precision-recall 

value pairs are obtained by setting an IoU threshold value. Any detection with an IoU value 

below the set threshold is treated as a FP and TP otherwise. Calculating the precision and recall 

at each detection sorted by the threshold and after going through all precision-recall value pairs, 

the precision-recall graph is obtained.  

3.9.6 Loss Function 

The loss function is used to optimize the parameter values in a CNN model. It maps a set of 

network parameter values to a scalar value that shows how well those parameters perform the 

role that the network is designed to do. The value calculated by the loss function is simply 

referred to as "loss". That is to say, the loss function is a method of evaluating how well the 

algorithm models/fits the dataset. If a model's performance is good, the loss function will output 

a lower number and vice versa. Loss enables one to understand how much the predicted value 

differs from the actual value. 

(i) U-Net Loss Function 

The U-Net uses a pixel-wise cross-entropy loss that examines each pixel individually compared 

to the ground truth pixel then averaged over all pixels. Each pixel of the network's output is 

compared with the corresponding pixel in the ground truth segmentation image.  In their 

original paper, (Ronneberger et al., 2015) states that “The energy function is computed by a 

pixel-wise soft-max over the final feature map combined with the cross-entropy loss function”.  

That is, pixel-wise softmax is applied to the output image followed by the standard cross-

entropy loss function. This loss weighting scheme helps the U-Net model segment tuta mines 

in tomato leaf images in a discontinuous fashion such that individual tuta mines can be easily 

identified within the binary segmentation map.  
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The loss is defined as: 

𝐿 = ∑− (𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) +  (1 −  𝑦𝑖)𝑙𝑜𝑔(1 −  𝑝𝑖))

𝑚

𝑖=1

(3.6) 

Where 

 𝐿 is the total loss in U-Net. 

𝑚 is the number of pixels in an image. 

i is the index of a pixel. 

𝑦𝑖 is the binary indicator i.e., the ground truth or real value of the i-th pixel whose value is 0 or 

1. 

𝑙𝑜𝑔 is the natural log. 

𝑝𝑖 is the predicted probability/value of the i-th pixel. Its value ranges from 0 to 1. 

(ii) Mask RCNN Loss Function 

The loss function is defined as a complex multi-task loss function which is calculated as the 

weighted sum of various losses at each stage of Mask RCNN model training.  This comprises 

of three (3) losses, namely loss due to classification, regression, and mask prediction. The 

regression and mask loss are only applied to positive examples.  

The total loss is defined as:  

 

𝐿𝑇      =  ∑𝐿𝑐𝑙𝑠
𝑖

( 𝑝𝑖,𝑔𝑖) +  ∑𝑔𝑖𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖

+  ∑𝑔𝑖𝐿𝑚𝑎𝑠𝑘(𝑚𝑖,𝑚𝑖
∗)

𝑖

(3.7) 

Where 

𝐿𝑇 = 𝐿({𝑝𝑖}, {𝑡𝑖}, {𝑚𝑖}) is the total loss in Mask R-CNN. 

i is the index of an anchor. 

𝑝𝑖 is the predicted probability of an anchor i being an object. 

𝑔𝑖 is the ground-truth probability of anchor i. Ground-truth label 𝑔𝑖  is 1 if the anchor is positive 

and is 0 otherwise. 
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 𝑡𝑖 = (𝑡𝑖
𝑥, 𝑡𝑖

𝑦
, 𝑡𝑖

ℎ , 𝑡𝑖
𝑤) is a vector with the horizontal and vertical coordinates of the centre point 

as well as the height and width coordinates of the predicted bounding box.  

𝑡𝑖
∗ is a vector representing four (4) parameterized coordinates (x, y, h, w) of the ground-truth 

bounding box associated with a positive anchor i. 

𝐿𝑐𝑙𝑠 is the classification loss. 

𝐿𝑟𝑒𝑔 is the regression loss. The term 𝑔𝑖𝐿𝑟𝑒𝑔 means that regression loss is only activated for 

positive anchors (𝑔𝑖 = 1) and is disabled otherwise (𝑔𝑖 = 0). 

𝐿𝑚𝑎𝑠𝑘 is the mask loss. The term 𝑔𝑖𝐿𝑚𝑎𝑠𝑘 means that mask loss is only activated for positive 

anchors (𝑔𝑖 = 1) and is disabled otherwise (𝑔𝑖 = 0). 

3.10 Model Deployment 

This refers to the integration of a machine learning model into an existing production 

environment such as web applications, mobile applications or IoT systems to make practical 

decisions based on data. The proposed model was deployed into a mobile phone to enable and 

facilitate farmers and extension officers to automatically detect affected areas on tomato plants 

using their smartphones.  

Since CNN models are complex and heavy, requiring a lot of memory and storage size to run, 

the proposed model was converted into a lighter format using the TensorFlow Lite framework. 

TensorFlow Lite (TFLite) is a set of tools designed to execute TensorFlow models efficiently 

on mobile, IoT and other embedded devices with limited computing and memory resources.  

Converting models reduce their file size, increase execution speed, and introduce optimizations 

that do not affect accuracy. Appendix 3 describes the TFLite converter used in this work. 

3.10.1 Requirement Analysis 

This phase focuses on determining the conditions and services the mobile application should 

meet and provide respectively. It encompasses the set of tasks that lead to an understanding of 

what the mobile app impact will be, what the end-user wants and how they will interact with 

the application software. The main requirement of this research was tomato leaf images 

collected using high and low-resolution cameras to develop a CNN model for detecting areas 

affected by Tuta absoluta pest. Data collected from the aforementioned methodologies and 

field experience were used to obtain functional and non-functional requirements.  
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(i) Functional Requirements 

Functional requirements define the services that a software must offer. They describe the 

specific behaviors between inputs and outputs. The functionalities of the developed mobile 

application include the following: 

(a) Capturing images. 

(b) Uploading images from the gallery. 

(c) Providing general information about tomatoes and Tuta absoluta pest. 

(d) Embedding CNN model for running inference on captured or uploaded images to 

segment tuta mines on tomato plants. 

(e) Displaying segmentation results. 

 

(ii) Non-functional requirements 

Non-functional requirements specify criteria that can be used to evaluate the operation of a 

system. They describe the system’s operational capabilities as well as constraints that enhance 

its functionality. Non-functional requirements of the developed mobile application include the 

following: 

(a) Availability: The developed mobile application operates offline thus can be 

available all the time once downloaded from Google Playstore. 

(b) Reliability: The application is reliable since it fulfills its assigned tasks, which 

include accurately segmenting tuta mine on tomato leaf images. 

(c) Usability: The developed mobile application is simple and easy to use without 

guidance.  

(d) Performance: The developed mobile application has good performance since it 

takes only 5 seconds to run inference on a captured tomato leaf image. 

(e) Compatibility: The application is compatible with all mobile devices installed with 

the Android operating system. 
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3.10.2 Assumptions and Dependencies 

The development of a Tuta absoluta segmentation mobile application was based on the 

following assumptions for software and hardware features: 

(i) The mobile application will be available and operate offline. 

(ii) The project will follow agile methodology The users of the software will be 

smallholder farmers and extension officers. 

(iii) Most of the smallholder farmers who will be the primary users of the developed 

mobile application are poor and use cheap smartphones installed with the Android 

operating system.  

(iv) The users have a good knowledge of smartphones and can well interact with 

installed application software. 

(v) The project will follow agile methodology throughout execution. 

3.10.3 Use Case Modelling 

A use case model describes how various types of users interact with the system, their 

expectations and the system’s necessary actions to achieve these goals. It depicts the use cases, 

actors and the relationships between them. The use case diagram of the Tuta absoluta 

segmentation mobile application is shown in Fig. 26. Each of the use case shown is described 

in Table 4. There two types of actors in this system that can perform the following tasks: 

(i) Capture/take tomato leaf images. 

(ii) Uploading tomato leaf images from the gallery. 

(iii) View the uploaded/captured image. 

(iv) Display general information about tomatoes. 

(v) Display general information about Tuta absoluta pest. 

(vi) Displaying segmentation results. 
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View Tuta absoluta info
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<<include>>
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Figure 26: The use case diagram for Tuta absoluta segmentation application 
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Table 4: Description of the Use Cases 

Use Case Description Actor (s) 
View tomato info The user(s) can display 

general information about 
tomatoes such as the 
scientific name, production 
statistics, and planting 
information. 

Farmer or Extension officer 

View Tuta absoluta info The user(s) can display 
general information about 
Tuta absoluta such as their 
common and scientific 
names, physiology, and life 
cycle. 

Farmer or Extension officer 

Capture/take photo The user(s) can access their 
mobile phone’s camera to 
take a photo of a tomato 
plant. Then the system will 
automatically run inference 
on the photo using the CNN 
model in the background to 
segment tuta mines. 

Farmer or Extension officer 

Upload an image The user(s) can upload a 
tomato plant image from 
their mobile phone’s gallery. 
Then the system will 
automatically run inference 
on the uploaded photo using 
the CNN model in the 
background to segment tuta 
mines. 

Farmer or Extension officer 

View image The user(s) can view the 
captured or uploaded image 
in the mobile application. 

Farmer or Extension officer 

Display segmentation results The user(s) can display the 
original image, segmentation 
results, and overlay in the 
mobile application. 

Farmer or Extension officer 



47 
 
 

3.10.4 Activity Diagram 

The activity diagram depicts the dynamic aspect of the application software. It graphically 

represents a series of actions or flow of control in a system with support for iteration and 

concurrency. Figure 27 describes the activity diagram for Tuta absoluta segmentation mobile 

application. 

Capture image

Disease 
Diagnosis

New 
image

View tomato info

View tuta info

Segment tuta

Upload image

Knowledge
need

Existing
image

View segmentation 
results

Tomato

Tuta 
Absoluta

Run inference 
using CNN model

• Original image
• Predicted masks
• Mask overlay
• Execution time
• Labels found

 

Figure 27: The activity diagram for Tuta absoluta segmentation application 

3.10.5 Sequence Diagram 

The sequence diagram describes how objects interact with each other for a particular scenario 

of the system. It details the way operations in the application software are performed. Figure 28 

shows the sequence diagram for Tuta absoluta segmentation mobile application. 
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Figure 28: The sequence diagram for Tuta absoluta segmentation application 

3.10.6 Software Development Methodology 

For mobile application development, the agile approach was used. This is a software 

development methodology that allows developers to build a prototype, show its functionality 

to users, and make changes based on their input. It encourages continuous development and 

testing iteration throughout the software development lifecycle. This approach was important 

in delivering reliable, user-friendly and efficient software in a short time. Figure 29 

demonstrates the agile software development life cycle. 
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Figure 29: Agile methodology (Abellán, 2020) 

3.10.7 Technologies Used 

In the development of this mobile application, the python programming language was used to 

convert the CNN models to a mobile-compatible format. Then Extensible Markup Language 

(XML) and Kotlin programming language were used to define the interface and functionalities 

of the application, respectively. The following platforms were used in the implementation of 

the application software: 

(i) Android Studio Integrated Development Environment (IDE). 

(ii) Anaconda Platform 

(iii) Samsung SM-A025F for testing the mobile application. 
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3.11 Quantification 

On top of the proposed instance segmentation model, Mask RCNN, a custom function was 

developed for counting the detected tuta mines using Open-Source Computer Vision 

(OpenCV) library in Python programming language. OpenCV is an open-source and cross-

platform library built to provide a common infrastructure for computer vision applications 

focusing on image and video processing and analysis (Bradski & Kaehler, 2009). In this 

implementation, the OpenCV library is used to find the detected tuta mines using contours with 

the find_contours() method, draw bounding boxes around and count them. Then putText(), an 

OpenCV method is used to add text at the top left corner of the image, showing the number of 

detected tuta mines in one tomato leaf image at a time. Appendix 5 describes the code for the 

implementation of OpenCV object counting based on the proposed Mask RCNN model.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 The Dataset 

For this work, 1212 and 1240 image sets with only infested plants from the total collection of 

images that make up the dataset were selected. The criterion for selecting the images was that 

each image must contain at least one tuta mask indicating the presence of Tuta absoluta’s mine 

in the image. The distribution of the annotated dataset was split into training and test sets in a 

ratio of 80:20 respectively as shown in Table 5. The training set was used to train the model 

while the test set was used to evaluate the model’s performance. 

Table 5: Train/test set splits 

Model Data Ratio Training set Test set Total 
U-Net (VOC format) 80:20 969 243 1212 
Mask RCNN (COCO 
format) 

80:20 992 248 1240 

4.2 Loss Results 

4.2.1 Mask RCNN Loss Results 

Mask RCNN with ResNet50 and ResNet101 as backbone architectures was trained separately 

on the annotated dataset described in Table 5 keeping a record of the training and validation 

loss for 200 epochs. Figure 30 demonstrates the loss diagrams of the proposed Mask RCNN 

model during the training process using the loss function described in Equation (3.7). The 

training and validation losses were estimated after each training epoch. As the training process 

progresses, the value of training loss rapidly decreases, followed by validation loss. As revealed 

in the figure, the validation loss starts to display an upward trend after several epochs while the 

training loss continues to decrease slightly making a gap between the two losses. This suggests 

that the model is overfitting. The last epoch that did not overfit is selected.  
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Figure 30: Training and validation loss for Mask RCNN (a) Loss graph for Mask RCNN-
ResNet50 (b) Loss graph for Mask RCNN-ResNet101 

Then the network was retrained with augmentation techniques described in Section 3.5.4 

keeping a record of the total loss. As shown in Fig. 31, the loss function monotonically 

decreases during the training phase. The losses stabilize at the end of the training, indicating 

that the proposed model learns and segments the tuta mines well without overfitting.  

 

 

Figure 31: Training and validation loss for Mask RCNN with augmentations. (a) Loss 
graph for Mask RCNN-Resnet50 with augmentations. (b) Loss graph for 
Mask RCNN-Resnet101 with augmentations 
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4.2.2 U-Net Loss Results 

On the other hand, U-Net demonstrated better performance with a low loss value compared to 

that of Mask RCNN. As shown in Fig. 32, the training loss starts at around 0.2761 and 

validation loss starts at 0.0604 then keeps decreasing steadily as the number of iterations 

increases. Approaching the 125th epoch, the validation loss slightly starts to increase while 

training loss continues to decrease, creating a small gap between the two losses. The small gap 

between training and validation loss implies that the model fits well on the features of the 

dataset at the early and later stages of the training process and can segment the tuta mines well 

without overfitting. It also indicates that the performance of the proposed model can be 

improved to a better value upon adding more data. 

 

Figure 32: Training and validation loss for U-Net 
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4.3 Evaluation Metrics Results 

4.3.1 Jaccard Index/IoU  

The U-Net model was trained on our dataset for 200 epochs keeping a record of the training 

and validation IoU values thresholded at 0.5. As shown in Fig. 33, the training IoU starts at a 

minimum point of 0.3356 and the validation IoU starts at 0.5028 then keeps on increasing as 

the number of epochs increases. When approaching the end of the training process at the 200th 

epoch, the IoU is 0.7860 and the validation IoU is 0.7490. This implies that the model could 

learn well the features in the dataset and semantically segment the tuta mines well from other 

parts of the images. 

 

Figure 33: Intersection over Union (IoU) curve for U-Net model 

4.3.2 Dice Coefficient  

While training the U-Net model on the dataset described in Table 5, values of the dice 

coefficient at each iteration for 200 epochs were recorded. Figure 34 shows the dice coefficient 

curve as the training process progresses. As shown, the Dice Coefficient starts at a minimum 

point of 0.2092 and the validation dice coefficient starts at 0.4900 then increases as the training 

process progresses. In the end, U-Net achieves a high detection rate with a dice coefficient as 
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high as 0.8286 and a validation dice coefficient of 0.8116, implying that the model fits well on 

the data and can precisely segment tuta mines on tomato leaves.  

The evaluation metrics results for the semantic segmentation model, U-Net are summarized in 

Table 6. Some examples of segmentation executed by the proposed U-Net model are shown in 

Fig. 35. As can be seen, the model generates precise segmentations of tuta mines in tomato 

plants.  

 

Figure 34: Dice Coefficient curve of the U-Net model 

Table 6: The evaluation metrics results for semantic segmentation model 

Method 
Jaccard 

Index/IoU (%) 
Dice Coefficient 

(%) 
Validation IoU 

(%) 
Validation Dice 
Coefficient (%) 

U-Net 78.60 82.86 74.90 81.16 
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Figure 35: Examples of segmentations achieved by the proposed U-Net model 

4.3.3 The mAP 

The area under the Precision-Recall (PR) curve, which defines the Average Precision (AP), can 

summarize the performance of a segmentation model, the x-axis being recall and the y-axis 

being precision. A threshold of IoU was set at 0.5 below which any segmentation with a score 

less than this is considered a FP. As shown in Fig. 36, the PR curve was monotonically 

decreasing, which is suitable for better performance. The precision of a detector with good 

performance remains high as recall increases, implying that it can detect a large proportion of 

TP before it starts detecting FP. 
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Figure 36: The P-R Curve 

Table 7 presents the mAP values used to evaluate the performance of the proposed methods in 

detecting and segmenting tuta mines on tomato images with minimum detection confidence of 

0.7. The mAP value of Mask RCNN-ResNet50 with augmentations is as high as 85.67%, 

achieving the highest detection rates on tuta mines in tomato plants compared to other methods. 

As seen in the table, the performance of Mask RCNN-ResNet50 and Mask RCNN-ResNet101 

is relatively low, with mAPs of 81.01% and 81.09%, respectively. This is likely because of the 

complexities of backbone architectures to train on an inadequate amount of data. Examples of 

segmentations produced by the proposed Mask RCNN model are shown in Fig. 37. As can be 

seen, the model could detect even the smallest tuta mines on tomato leaves.  
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Table 7: The mAP (primary metric) values of the tomato images obtained by different 
detection architectures 

Method(s) mAP (%) 
Mask RCNN-ResNet50 81.01 
Mask RCNN-ResNet50 with augmentations 85.67 
Mask RCNN-ResNet101 81.09 
Mask RCNN-ResNet101 with augmentations 83.60 

 

Figure 37: Examples of segmentations carried out by the proposed Mask RCNN model 

4.4 Training Time 

The efficiency of the model is another important performance criterion apart from the detection 

rates. Table 8 reveals the training time in minutes for each method employed in this study for 

all tomato leaf images. It can be seen that the training time of U-Net is 483.50 minutes which 

is 169.91, 187.07, 359.45, and 369.9 minutes shorter than that of Mask RCNN-ResNet50, Mask 

RCNN-ResNet50 with augmentations, Mask RCNN-ResNet101, and Mask RCNN-ResNet101 

with augmentations, respectively. This is because the ResNet101 has a more complex structure 

compared to ResNet50 and U-Net hence longer training time. Additionally, Mask RCNN with 
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ResNet101 as a backbone, Mask RCNN with ResNet50 as a backbone, and U-Net models had 

63 621 918, 44 603 678 and 7 763 041 trainable parameters, respectively. Therefore, U-Net 

was more efficient in this category compared to other training methods.  

Table 8: Training time 

Method(s) Training time (minutes) 
Mask RCNN-ResNet50 653.41 
Mask RCNN-ResNet50 with augmentations 670.57 
Mask RCNN-ResNet101 842.95 
Mask RCNN-ResNet101 with augmentations 853.40 
U-Net 483.50 

4.5 Developed Mobile Application 

The U-Net model was selected for mobile application deployment since it has a less complex 

structure, requiring less computational costs than other training methods in this study. The U-

Net model was converted to TFLite format then embedded to a mobile application in Android 

Studio as described in Section 3.10.  

A simple and user-friendly mobile application was developed to allow smooth interaction 

between the farmers/extension officers and the application. After installing the application in 

their Android smartphones, the farmer/extension officer simply clicks on the application icon 

which welcomes them with a colorful splash screen with a progress bar displayed only for two 

seconds before landing to the scrollable home page. As shown in Fig. 38, the home screen 

includes two clickable cards with quick facts about the tomato plant and Tuta absoluta as well 

as a clickable floating button for tuta segmentation. The user can click on the tomato plant card 

to view general information about tomatoes such as their scientific name, production statistics, 

and cropping information such as water, soil, and fertilizer they need to grow as shown in Fig. 

39 (a). Also, the user can view general information about the tomato leaf miner such as their 

common and scientific names, physiology, and life cycle by clicking on the Tuta absoluta card 

from the home page as shown in Fig. 39 (b). This will help the farmer learn and understand the 

pest well to easily take measures to control it.  

Additionally, a clickable floating button for tuta segmentation was included on every page in 

the mobile application so that the farmer can easily navigate to the disease diagnosis page to 

detect and segment tuta mines in tomato leaf images. The disease diagnosis page consists of a 
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frame layout that accesses and displays the device camera, a floating camera button for 

capturing tomato leaf images, a floating upload button for uploading images stored in the 

phone’s gallery, and a horizontally scrollable section that displays the original tomato leaf 

image captured or uploaded to the application, predicted masks and the masks overlayed with 

the original image. It also consists of a bottom sheet layout that displays the input image size, 

information about the labels found during detection with their colors or no labels found, model 

execution time in milliseconds and the button to rerun the model. In summary, the farmer or 

extension officer can use the mobile application to segment tuta mines in tomato leaf images 

as follows: 

(i) The user clicks the “Segment Tuta” button from any other page that will take him/her 

to the “Disease Diagnosis” page. 

(ii) On the “Disease Diagnosis” page, the user can click the camera or upload buttons to 

capture or upload a tomato leaf image respectively. 

(iii) The mobile application will process the image using a CNN segmentation model 

running in the background and then give feedback which is displayed in the 

application.  

(iv) Suppose the image does not have tuta mines. In that case, the application will display 

a text “No labels found”, otherwise the application will display three images namely, 

original image, predicted masks and overlay as well as the labels found with their 

colors and the model execution time as shown in Fig. 40. 

The Tuta absoluta segmentation mobile application was designed to be available and operate 

offline once installed. This will help the poor farmers avoid the costs of buying internet bundles 

to access the mobile application and detect tuta mines in their farms.  
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Figure 38: Tuta absoluta segmentation mobile application (a) Splash screen (b) 
Landing/home page 
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Figure 39: Tuta absoluta segmentation mobile application (a) The description page for 
tomato cropping (b) Description page for Tuta absoluta 
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Figure 40: Tuta absoluta segmentation mobile application (a) A healthy plant with no tuta 
mines (b) Original image and mask prediction (c) Segmentation results 
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4.6 Quantification Results 

Figure 41 shows the quantification results obtained using the OpenCV library built on top of 

the proposed Mask RCNN model. As can be observed, the model was able to accurately find 

the detected regions with tuta mines, count them and display the number of tuta mines present 

in a tomato leaf image. This can help farmers understand the extent of the damage caused by 

Tuta absoluta to tomato plants and take appropriate measures to control the pest before it causes 

further damage to tomatoes in the farm.  

 

Figure 41: Examples of quantification results carried out by the OpenCV function built 
on top of the proposed Mask RCNN model 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

While several studies have been conducted in the agricultural sector to diagnose various 

diseases and pests in plants, relatively few studies in the literature have focused on predicting 

disease severity. And to the best of the authors' knowledge, none discuss the segmentation and 

quantification of Tuta absoluta's damage on tomato plants. However, to control these diseases 

and pests on plants without causing uneconomical damage to the environment, it needs accurate 

segmentations to determine the extent of damage caused. The development of a sophisticated 

technical solution for the early detection of Tuta absoluta-caused tomato plant damage is in 

high demand due to the need to rescue farmers' tomato productivity losses.  

This study aimed to tackle the problem of precisely segmenting Tuta absoluta’s damage on 

tomato plants and determining the extent of damage at their early growth stage. To address this 

problem, this novel work proposed deep CNN models based on U-Net and Mask RCNN 

architectures which are used for automatic semantic and instance segmentation, respectively. 

For accomplishing this work, an annotated dataset with 2452 images collected from the field 

was used to train the models separately. The experimental results show that the Mask RCNN-

ResNet101 model performs best achieving a mAP of 85.67%, while the U-Net model obtained 

78.60% and 82.86% of Jaccard index and Dice Coefficient, respectively. Also, Mask RCNN-

ResNet50 has a shorter training time than Mask RCNN-ResNet101 due to its less complex 

structure. Both suggested models were very accurate in segmenting the shapes of Tuta 

absoluta-infected areas in tomato leaves and determine their extent of the damage. The instance 

segmentation model, Mask RCNN, was then used to automatically determine the number of 

tuta mines present in tomato leaf images. This demonstrates that deep learning is the new 

promising technology for fully automatic and early determination of Tuta absoluta severity 

status. 

5.2 Recommendations 

This work has laid the foundation that could be used to provide both theoretical and practical 

analysis for future works in segmentation-based quantification of Tuta absoluta’s damage to 

tomato plants. It demonstrated how the integration of modern technology in agriculture, 
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particularly diseases and pests diagnosis, could help control and possibly overcome diseases 

and pests in plants and improve their productivity. This study recommends that the robustness 

of the proposed model be further stabilized by expanding the diversity of tomato images adding 

other pests and diseases that affect the plant. Even though the validation results of the proposed 

models indicate good segmentation accuracy, more annotated data is needed to further validate 

and improve the performance. 

In the future, a CNN decision support system will be developed and deployed in a mobile or 

computer to enable farmers and extension officers to make intelligently informed decisions on 

how to control the pest so that to increase productivity. The system will be able to suggest 

actions to be taken such as the application of Integrated Pest Management (IPM) techniques to 

control the pest based on their severity. 
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APPENDICES 

Appendix 1: Mask RCNN Model Source Code 

Import important libraries 
import os 

import sys 

import random 

import math 

import re 

import time 

import datetime 

import numpy as np 

import cv2 

import matplotlib 

import matplotlib.pyplot as plt 

import json 

import skimage.draw 

# for visualization 

import matplotlib 

import matplotlib.pyplot as plt 

import matplotlib.patches as patches 

import matplotlib.lines as lines 

from matplotlib.patches import Polygon 

 

%matplotlib inline  

 

Setup configurations 
class TutaConfig(Config): 

    # Give the configuration a recognizable name 

    NAME = "tuta" 

 

    GPU_COUNT = 1 

    IMAGES_PER_GPU = 1 

 

    # Number of classes (including background) 

    NUM_CLASSES = 1 + 1  # Background + tuta 

 

    #resize the images to a  

    IMAGE_MIN_DIM = 512 

    IMAGE_MAX_DIM = 512 

 

    # Number of training steps per epoch 

    STEPS_PER_EPOCH = 1000 

 

    VALIDATION_STEPS = 50  

 

    # Backbone network architecture 

    # Supported values are: resnet50, resnet101. 
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    BACKBONE = 'resnet50' 

 

    # The strides of each layer of the FPN Pyramid.  

    BACKBONE_STRIDES = [4, 8, 16, 32, 64]  

 

    # Anchor stride 

    RPN_ANCHOR_STRIDE = 1 

 

    # Non-max suppression threshold to filter RPN proposals. 

    RPN_NMS_THRESHOLD = 0.9  

 

  # Length of square anchor side in pixels 

    RPN_ANCHOR_SCALES = (8, 16, 64, 128, 256) 

     

    # Minimum probability value to accept a detected instance 

    DETECTION_MIN_CONFIDENCE = 0.9   

    WEIGHT_DECAY = 0.0001 

config = TutaConfig() 

config.display() 

Custom function to load the dataset 

class TutaDataset(utils.Dataset): 

 

    def load_dataset(self, dataset_dir, subset): 

         

        # Add classes. We have only one class to add. 

        self.add_class("tuta", 1, "tuta") 

 

        # Train or validation dataset? 

        assert subset in ["train", "test"] 

        dataset_dir = os.path.join(dataset_dir, subset) 

 

        annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json"))) 

        annotations = list(annotations.values())   

 

        # The VIA tool saves images in the JSON even if they don't have any 

        # annotations. Skip unannotated images. 

        annotations = [a for a in annotations if a['regions']] 

 

        # Add images 

        for a in annotations: 

            # Get the x, y coordinaets of points of the polygons that make up 

            if type(a['regions']) is dict: 

                polygons = [r['shape_attributes'] for r in a['regions'].values()] 

            else: 

                polygons = [r['shape_attributes'] for r in a['regions']]  

 

            # load_mask() needs the image size to convert polygons to masks. 

            image_path = os.path.join(dataset_dir, a['filename']) 
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            image = skimage.io.imread(image_path) 

            height, width = image.shape[:2] 

 

            self.add_image( 

                "tuta", 

                image_id=a['filename'],   

                path=image_path, 

                width=width, height=height, 

                polygons=polygons) 

 

    def load_mask(self, image_id): 

        image_info = self.image_info[image_id] 

        if image_info["source"] != "tuta": 

            return super(self.__class__, self).load_mask(image_id) 

 

        # Convert polygons to a bitmap mask of shape 

        # [height, width, instance_count] 

        info = self.image_info[image_id] 

        mask = np.zeros([info["height"], info["width"], len(info["polygons"])], 

                        dtype=np.uint8) 

        for i, p in enumerate(info["polygons"]): 

            # Get indexes of pixels inside the polygon and set them to 1 

            rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x']) 

            mask[rr, cc, i] = 1 

 

        # Return mask, and array of class IDs of each instance.  

        return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32) 

 

    def image_reference(self, image_id): 

        """Return the path of the image.""" 

        info = self.image_info[image_id] 

        if info["source"] == "tuta": 

            return info["path"] 

        else: 

            super(self.__class__, self).image_reference(image_id) 
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Load the training and validation dataset 

# Training dataset. 

with tf.device(device_name): 

  dataset_train = TutaDataset() 

  dataset_train.load_dataset('Experiments/TutaDatasetVIA/', "train") 

  dataset_train.prepare() 

  print("Images with annotations: {}\nClasses: {}".format(len(dataset_train.image_ids), datase

t_train.class_names)) 

# Validation dataset 

dataset_val = TutaDataset() 

dataset_val.load_dataset('Experiments/TutaDatasetVIA/', 'test') 

dataset_val.prepare() 

print("Images with annotations: {}\nClasses: {}".format(len(dataset_val.image_ids), dataset_va

l.class_names)) 

 

Build the Model  
# Create model in training mode 

with tf.device(device_name): 

  model = modellib.MaskRCNN(mode="training",   

                            config=config, 

                            model_dir=MODEL_DIR) 

  model.keras_model.summary() 

 

Train the Model 
# Train the head branches 

# Passing layers="heads" freezes all layers except the head 

# layers.  

print("Training network heads") 

start_train = time.time() 

model.train(dataset_train, dataset_val,  

            learning_rate=config.LEARNING_RATE,  

            epochs=20,  

            layers='heads' 

                       ) 

history = model.keras_model.history.history 

end_train = time.time() 

minutes = round((end_train - start_train) / 60, 2) 

print(f'Training took {minutes} minutes') 

 

Use our developed model for detection 
class InferenceConfig(TutaConfig): 

    GPU_COUNT = 1 

    IMAGES_PER_GPU = 1 

 

inference_config = InferenceConfig() 

 

# Recreate the model in inference mode 
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with tf.device(device_name): 

  model = modellib.MaskRCNN(mode="inference",  

                          config=inference_config, 

                          model_dir=MODEL_DIR) 

model_path = model.find_last() 

 

Using our developed model for detection 
# Load trained weights 

print("Loading weights from ", model_path) 

model.load_weights(model_path, by_name=True) 
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Appendix 2: U-Net Model Source Code 

Import libraries 

import numpy as np 

import matplotlib.pyplot as plt 

%matplotlib inline 

import glob 

import os 

import sys 

import time 

import math 

import datetime 

from PIL import Image 

 

Load images with their masks 

masks = glob.glob("Annotations/*.png") 

og_images = glob.glob("Images/*.JPG") 

 

Resizing the images and their corresponding masks 

with tf.device(device_name): 

  imgs_list = [] 

  masks_list = [] 

  for image, mask in zip(orgs, masks): 

      imgs_list.append(np.array(Image.open(image).resize((512,512)))) 

      masks_list.append(np.array(Image.open(mask).resize((512,512)))) 

  imgs_np = np.asarray(imgs_list) 

  masks_np = np.asarray(masks_list) 

 

Compile the model 

from keras.optimizers import Adam, SGD 

from keras_unet.metrics import iou, jaccard_coef, dice_coef 

from keras_unet.losses import jaccard_distance 

with tf.device(device_name): 

  model.compile( 

      optimizer=Adam(),  

      #optimizer=SGD(lr=0.01, momentum=0.99), 

      loss='binary_crossentropy', 

      #loss=jaccard_distance, 

      metrics=[iou, iou_thresholded, dice_coef] 

  ) 

 

Train the model 

start_train = time.time() 
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history = model.fit_generator( 

    train_gen, 

    steps_per_epoch=1000, 

    epochs=200, 

    validation_data=(x_val, y_val), 

    callbacks=[callback_checkpoint] 

) 

end_train = time.time() 

minutes = round((end_train - start_train) / 60, 2) 

print(f'Training took {minutes} minutes') 
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Appendix 3: Tensorflow Lite Converter Source Code 

Import TensorFlow 
import tensorflow as tf 

 

Defining the custom metrics since they are not save with the model during development 
#iou 

def iou(y_true, y_pred, smooth=1.): 

    y_true_f = K.flatten(y_true) 

    y_pred_f = K.flatten(y_pred) 

    intersection = K.sum(y_true_f * y_pred_f) 

    return (intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + smooth) 

 

#iou thresholded 

def iou_thresholded(y_true, y_pred, threshold=0.5, smooth=1.): 

    y_pred = threshold_binarize(y_pred, threshold) 

    y_true_f = K.flatten(y_true) 

    y_pred_f = K.flatten(y_pred) 

    intersection = K.sum(y_true_f * y_pred_f) 

    return (intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + smooth) 

 

#dice coefficient 

def dice_coef(y_true, y_pred, smooth=1.): 

    y_true_f = K.flatten(y_true) 

    y_pred_f = K.flatten(y_pred) 

    intersection = K.sum(y_true_f * y_pred_f) 

    return (2. * intersection + smooth) / ( 

                K.sum(y_true_f) + K.sum(y_pred_f) + smooth) 

 

Convert the Keras model to a TensorFlow Lite model and write the .tflite file 
# Convert the model. 

converter = tf.compat.v1.lite.TFLiteConverter.from_keras_model_file('segm_model_v3.h5', 

custom_objects={'iou':iou, 'iou_thresholded':iou_thresholded, 'dice_coef':dice_coef}) 

tflite_model = converter.convert() 

 

# Save the model. 

with open('unet_model.tflite', 'wb') as f: 

  f.write(tflite_model) 

 

Check the output data type and shape. 
import tensorflow as tf 

import numpy as np 

 

interpreter = tf.lite.Interpreter(model_path="unet_model.tflite") 

interpreter.allocate_tensors() 

 

print(interpreter.get_input_details()[0]['shape'])   

print(interpreter.get_input_details()[0]['dtype'])  
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print(interpreter.get_output_details()[0]['shape'])   

print(interpreter.get_output_details()[0]['dtype'])  

 

Adding metadata to tflite model 
!pip install tflite-support 

 

Model information: Metadata starts by creating a new model info: 

from tflite_support import flatbuffers 

from tflite_support import metadata as _metadata 

from tflite_support import metadata_schema_py_generated as _metadata_fb 

 

""" ... """ 

"""Creates the metadata for an image classifier.""" 

 

# Creates model info. 

model_meta = _metadata_fb.ModelMetadataT() 

model_meta.name = "UNet Image Segmentation" 

model_meta.description = ("Detect and locate affected areas in " 

                          "tomato leaf image caused by " 

                          "the tomato leaf miner tuta absoluta") 

model_meta.version = "v1" 

model_meta.author = "Loyan" 

model_meta.license = ("Apache License. Version 2.0 " 

                      "http://www.apache.org/licenses/LICENSE-2.0.") 

 

Input / output information: This section shows you how to describe your model's input and 

output signature. This metadata may be used by automatic code generators to create pre- and 

post- processing code. To create input or output information about a tensor: 

# Creates input info. 

input_meta = _metadata_fb.TensorMetadataT() 

 

# Creates output info. 

output_meta = _metadata_fb.TensorMetadataT() 

Image input 

input_meta.name = "image" 

input_meta.description = ( 

    "Input image to be segmented. The expected image is {0} x {1}, with " 

    "three channels (red, blue, and green) per pixel. Each value in the " 

    "tensor is a single byte between 0 and 255.".format(512, 512)) 

input_meta.content = _metadata_fb.ContentT() 

input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT() 

input_meta.content.contentProperties.colorSpace = ( 

    _metadata_fb.ColorSpaceType.RGB) 

input_meta.content.contentPropertiesType = ( 
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    _metadata_fb.ContentProperties.ImageProperties) 

input_normalization = _metadata_fb.ProcessUnitT() 

input_normalization.optionsType = ( 

    _metadata_fb.ProcessUnitOptions.NormalizationOptions) 

input_normalization.options = _metadata_fb.NormalizationOptionsT() 

input_normalization.options.mean = [127.5] 

input_normalization.options.std = [127.5] 

input_meta.processUnits = [input_normalization] 

input_stats = _metadata_fb.StatsT() 

input_stats.max = [255] 

input_stats.min = [0] 

input_meta.stats = input_stats 

 

Model Path 
model_file = "unet_model.tflite" 

 

Label output: Label can be mapped to an output tensor via an associated file using 

TENSOR_AXIS_LABELS. 

import os 

# Creates output info. 

output_meta = _metadata_fb.TensorMetadataT() 

output_meta.name = "probability" 

output_meta.description = "Probabilities of the 1001 labels respectively." 

output_meta.content = _metadata_fb.ContentT() 

output_meta.content.content_properties = _metadata_fb.FeaturePropertiesT() 

output_meta.content.contentPropertiesType = ( 

    _metadata_fb.ContentProperties.FeatureProperties) 

output_stats = _metadata_fb.StatsT() 

output_stats.max = [1.0] 

output_stats.min = [0.0] 

output_meta.stats = output_stats 

label_file = _metadata_fb.AssociatedFileT() 

label_file.name = os.path.basename("labels.txt") 

label_file.description = "Labels for objects that the model can recognize." 

label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS 

output_meta.associatedFiles = [label_file] 

 

Create the metadata Flatbuffers: The following code combines the model information with the 

input and output information 

# Creates subgraph info. 

subgraph = _metadata_fb.SubGraphMetadataT() 

subgraph.inputTensorMetadata = [input_meta] 

subgraph.outputTensorMetadata = [output_meta] 

model_meta.subgraphMetadata = [subgraph] 
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b = flatbuffers.Builder(0) 

b.Finish( 

    model_meta.Pack(b), 

    _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) 

metadata_buf = b.Output() 

 

Pack metadata and associated files into the model: Once the metadata Flatbuffers is created, 

the metadata and the label file are written into the TFLite file via the populate method 

populator = _metadata.MetadataPopulator.with_model_file(model_file) 

populator.load_metadata_buffer(metadata_buf) 

populator.load_associated_files(["labels.txt"]) 

populator.populate() 

 

Visualize the metadata 
displayer = _metadata.MetadataDisplayer.with_model_file(model_file) 

export_json_file = os.path.join(FLAGS.export_directory, 

                    os.path.splitext(model_basename)[0] + ".json") 

json_file = displayer.get_metadata_json() 

# Optional: write out the metadata as a json file 

with open(export_json_file, "w") as f: 

  f.write(json_file) 
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Appendix 4: Model Deployment Android Studio Source Code 

ImageSegmentationModelExecutor.kt 
 

package org.tensorflow.lite.examples.tutaSegmentation.tflite 

 

import android.content.Context 

import android.graphics.Bitmap 

import android.graphics.Color 

import android.os.SystemClock 

import androidx.core.graphics.ColorUtils 

import android.util.Log 

import java.io.FileInputStream 

import java.io.IOException 

import java.nio.ByteBuffer 

import java.nio.ByteOrder 

import java.nio.MappedByteBuffer 

import java.nio.channels.FileChannel 

import kotlin.random.Random 

import org.tensorflow.lite.Interpreter 

import org.tensorflow.lite.examples.TutaSegmentation.utils.ImageUtils 

import org.tensorflow.lite.gpu.GpuDelegate 

 

/** 

 * Class responsible to run the Image Segmentation model. 

 */ 

class ImageSegmentationModelExecutor( 

  context: Context, 

  private var useGPU: Boolean = false 

) { 

  private var gpuDelegate: GpuDelegate? = null 

 

  private val segmentationMasks: ByteBuffer 

  private val interpreter: Interpreter 

 

  private var fullTimeExecutionTime = 0L 

  private var preprocessTime = 0L 

  private var imageSegmentationTime = 0L 

  private var maskFlatteningTime = 0L 

 

  private var numberThreads = 4 

 

  init { 

 

    interpreter = getInterpreter(context, imageSegmentationModel, useGPU) 

    segmentationMasks = ByteBuffer.allocateDirect(1 * imageSize * imageSize * NUM_CLASSES * 4) 

    segmentationMasks.order(ByteOrder.nativeOrder()) 

  } 

 

  fun execute(data: Bitmap): ModelExecutionResult { 

    try { 

      fullTimeExecutionTime = SystemClock.uptimeMillis() 

 

      preprocessTime = SystemClock.uptimeMillis() 

      val scaledBitmap = 

        ImageUtils.scaleBitmapAndKeepRatio( 

          data, 

          imageSize, imageSize 

        ) 

 

      val contentArray = 

        ImageUtils.bitmapToByteBuffer( 

          scaledBitmap, 

          imageSize, 

          imageSize, 

          IMAGE_MEAN, 

          IMAGE_STD 

        ) 

      preprocessTime = SystemClock.uptimeMillis() ­ preprocessTime 

 

      imageSegmentationTime = SystemClock.uptimeMillis() 

      interpreter.run(contentArray, segmentationMasks) 

      imageSegmentationTime = SystemClock.uptimeMillis() ­ imageSegmentationTime 
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      Log.d(TAG, "Time to run the model $imageSegmentationTime") 

 

      maskFlatteningTime = SystemClock.uptimeMillis() 

      val (maskImageApplied, maskOnly, itemsFound) = 

        convertBytebufferMaskToBitmap( 

          segmentationMasks, imageSize, imageSize, scaledBitmap, 

          segmentColors 

        ) 

      maskFlatteningTime = SystemClock.uptimeMillis() ­ maskFlatteningTime 

      Log.d(TAG, "Time to flatten the mask result $maskFlatteningTime") 

 

      fullTimeExecutionTime = SystemClock.uptimeMillis() ­ fullTimeExecutionTime 

      Log.d(TAG, "Total time execution $fullTimeExecutionTime") 

 

      return ModelExecutionResult( 

        maskImageApplied, 

        scaledBitmap, 

        maskOnly, 

        formatExecutionLog(), 

        itemsFound 

      ) 

    } catch (e: Exception) { 

      val exceptionLog = "something went wrong: ${e.message}" 

      Log.d(TAG, exceptionLog) 

 

      val emptyBitmap = 

        ImageUtils.createEmptyBitmap( 

          imageSize, 

          imageSize 

        ) 

      return ModelExecutionResult( 

        emptyBitmap, 

        emptyBitmap, 

        emptyBitmap, 

        exceptionLog, 

        HashMap<String, Int>() 

      ) 

    } 

  } 

 

  @Throws(IOException::class) 

  private fun loadModelFile(context: Context, modelFile: String): MappedByteBuffer { 

    val fileDescriptor = context.assets.openFd(modelFile) 

    val inputStream = FileInputStream(fileDescriptor.fileDescriptor) 

    val fileChannel = inputStream.channel 

    val startOffset = fileDescriptor.startOffset 

    val declaredLength = fileDescriptor.declaredLength 

    val retFile = fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength) 

    fileDescriptor.close() 

    return retFile 

  } 

 

  @Throws(IOException::class) 

  private fun getInterpreter( 

    context: Context, 

    modelName: String, 

    useGpu: Boolean = false 

  ): Interpreter { 

    val tfliteOptions = Interpreter.Options() 

    tfliteOptions.setNumThreads(numberThreads) 

 

    gpuDelegate = null 

    if (useGpu) { 

      gpuDelegate = GpuDelegate() 

      tfliteOptions.addDelegate(gpuDelegate) 

    } 

 

    return Interpreter(loadModelFile(context, modelName), tfliteOptions) 

  } 

 

  private fun formatExecutionLog(): String { 

    val sb = StringBuilder() 

    sb.append("Input Image Size: $imageSize x $imageSize\n") 

    sb.append("Model execution time: $imageSegmentationTime ms\n") 

    sb.append("Mask flatten time: $maskFlatteningTime ms\n") 
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    sb.append("Full execution time: $fullTimeExecutionTime ms\n") 

    return sb.toString() 

  } 

 

  fun close() { 

    interpreter.close() 

    if (gpuDelegate != null) { 

      gpuDelegate!!.close() 

    } 

  } 

 

  private fun convertBytebufferMaskToBitmap( 

    inputBuffer: ByteBuffer, 

    imageWidth: Int, 

    imageHeight: Int, 

    backgroundImage: Bitmap, 

    colors: IntArray 

  ): Triple<Bitmap, Bitmap, Map<String, Int>> { 

    val conf = Bitmap.Config.ARGB_8888 

    val maskBitmap = Bitmap.createBitmap(imageWidth, imageHeight, conf) 

    val resultBitmap = Bitmap.createBitmap(imageWidth, imageHeight, conf) 

    val scaledBackgroundImage = 

      ImageUtils.scaleBitmapAndKeepRatio( 

        backgroundImage, 

        imageWidth, 

        imageHeight 

      ) 

    val mSegmentBits = Array(imageWidth) { IntArray(imageHeight) } 

    val itemsFound = HashMap<String, Int>() 

    inputBuffer.rewind() 

 

    for (y in 0 until imageHeight) { 

      for (x in 0 until imageWidth) { 

        var maxVal = 0f 

        mSegmentBits[x][y] = 0 

 

        for (c in 0 until NUM_CLASSES) { 

          val value = inputBuffer 

            .getFloat((y * imageWidth * NUM_CLASSES + x * NUM_CLASSES + c) * 4) 

          if (c == 0 || value > maxVal) { 

            maxVal = value 

            mSegmentBits[x][y] = c 

          } 

        } 

        val label = labelsArrays[mSegmentBits[x][y]] 

        val color = colors[mSegmentBits[x][y]] 

        itemsFound.put(label, color) 

        val newPixelColor = ColorUtils.compositeColors( 

          colors[mSegmentBits[x][y]], 

          scaledBackgroundImage.getPixel(x, y) 

        ) 

        resultBitmap.setPixel(x, y, newPixelColor) 

        maskBitmap.setPixel(x, y, colors[mSegmentBits[x][y]]) 

      } 

    } 

 

    return Triple(resultBitmap, maskBitmap, itemsFound) 

  } 

 

  companion object { 

 

    public const val TAG = "SegmentationInterpreter" 

    private const val imageSegmentationModel = "unet_model.tflite" 

   // private const val imageSize = 257 

    private const val imageSize = 512 

   // const val NUM_CLASSES = 21 

    const val NUM_CLASSES = 2 

    private const val IMAGE_MEAN = 127.5f 

    private const val IMAGE_STD = 127.5f 

 

    val segmentColors = IntArray(NUM_CLASSES) 

    val labelsArrays = arrayOf( 

            "_background_", "tuta" 

    ) 
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    init { 

 

      val random = Random(System.currentTimeMillis()) 

      segmentColors[0] = Color.TRANSPARENT 

      for (i in 1 until NUM_CLASSES) { 

        segmentColors[i] = Color.argb( 

          (128), 

          getRandomRGBInt( 

            random 

          ), 

          getRandomRGBInt( 

            random 

          ), 

          getRandomRGBInt( 

            random 

          ) 

        ) 

      } 

    } 

 

    private fun getRandomRGBInt(random: Random) = (255 * random.nextFloat()).toInt() 

  } 

} 
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Appendix 5: Mask RCNN Object Counting Source Code. 

Import libraries 
import random 

import itertools 

import colorsys #defines conversion of color values 

import numpy as np 

from skimage.measure import find_contours 

import matplotlib.pyplot as plt 

import matplotlib.patches as patches 

import matplotlib.lines as lines 

from matplotlib.patches import Polygon 

import IPython.display 

import cv2 

 

from mrcnn import utils 

 

Define classes 
class_names = ['BG', 'tuta'] 

 

Visualization functions 

#Display the given set of images 
def display_images(images, titles=None, cols=4, cmap=None, norm=None, 

                   interpolation=None): 

    titles = titles if titles is not None else [""] * len(images) 

    rows = len(images) // cols + 1 

    plt.figure(figsize=(14, 14 * rows // cols)) 

    i = 1 

    for image, title in zip(images, titles): 

        plt.subplot(rows, cols, i) 

        plt.title(title, fontsize=9) 

        plt.axis('off') 

        plt.imshow(image.astype(np.uint8), cmap=cmap, 

                   norm=norm, interpolation=interpolation) 

        i += 1 

    plt.show() 

 

#Get the detected objects, draw contours and add text  
def get_masked_fixed_color(image, boxes, masks, class_ids, class_names, 

                      colors=None, scores=None, title="", 

                      figsize=(16, 16), ax=None, show=True): 

    objects = dict() 

     

    # Number of instances 

    N = boxes.shape[0] 

    if not N: 

        print("\n*** No instances to display *** \n") 

    else: 
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        assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] 

 

    # Generate random colors 

    if colors == None: 

       # classN = len(class_names) 

       classN = ['blue', 'purple', 'red', 'green', 'orange', 'salmon', 'pink', 'gold', 

                       'orchid', 'slateblue', 'limegreen', 'seagreen', 'darkgreen', 'olive', 

                       'teal', 'aquamarine', 'steelblue', 'powderblue', 'dodgerblue', 'navy', 

                       'magenta', 'sienna', 'maroon'] 

       colors = random_colors(classN) 

      # colors="Red" 

     

    masked_image = np.array(image) 

 

    for i in range(N): 

        color = colors[class_ids[i]] 

 

        # Bounding box 

        if not np.any(boxes[i]): 

            # Skip this instance. Has no bbox. Likely lost in image cropping. 

            continue 

        y1, x1, y2, x2 = boxes[i] 

        cv2.rectangle(masked_image, (x1, y1), (x2, y2), (255,255,0), thickness = 1) 

 

        # Label 

        class_id = class_ids[i] 

        score = scores[i] if scores is not None else None 

        label = class_names[class_id] 

        if(label in objects): 

            objects[label] += 1 

        else: 

            objects[label] = 1 

        x = random.randint(x1, (x1 + x2) // 2) 

        caption = "{} {:.3f}".format(label, score) if score else label 

        cv2.putText(masked_image, caption, (x1 + 5, y1 + 16), cv2.FONT_HERSHEY_SIMPLEX, 0.4, 

(255,0,0)) 

 

        # Mask 

        mask = masks[:, :, i] 

        if show:  

            masked_image = apply_mask(masked_image, mask, color) 

 

            # Mask Polygon 

            # Pad to ensure proper polygons for masks that touch image edges. 

            padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) 

            padded_mask[1:-1, 1:-1] = mask 

            contours = find_contours(padded_mask, 0.5) 

            for verts in contours: 

                # Subtract the padding and flip (y, x) to (x, y) 

                verts = np.fliplr(verts) - 1 

                verts = verts.reshape((-1, 1, 2)).astype(np.int32) 
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                # Draw an edge on object contour 

                cv2.polylines(masked_image, verts, True, color) 

 

    print(str(objects)) 

    cv2.putText(masked_image, str(objects), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.4, 

(255,0,0)) 

 

    return masked_image 

 

#Object counting using OpenCV 
import cv2 

import time 

 

colors = random_colors(len(class_names)) 

 

#image1 = cv2.imread('input_images_and_videos/input.png')  

image1 = cv2.imread('/content/drive/My 

Drive/Experiments/TutaDatasetVIA/test/BLK_1_0924_PL002_NH.JPG')  

 

image1 = cv2.resize(image1, None, fx=0.5, fy=0.5)         

 

image_batch = [image1] 

         

# Run detection 

t = time.time() 

results = model.detect(image_batch, verbose=0) 

t = t - time.time() 

print (t) 

 

masked_image_batch = [] 

# Visualize results 

r = results[0] 

t = time.time() 

 

for i in range(len(results)): 

    r = results[i] 

    im = image_batch[i] 

    masked_image = get_masked_fixed_color(im, r['rois'], r['masks'], r['class_ids'], 

class_names, colors, r['scores'], show=True) 

    masked_image = cv2.resize(masked_image, None, fx=3, fy=3) 

    masked_image_batch.append(masked_image) 

 

t = t - time.time() 

print (t) 

 

result = cv2.imwrite("/content/drive/My 

Drive/Experiments/TutaDatasetVIA/object_counting_results_resnet101aug/BLK_1_0924_PL002_NH.png"

, masked_image_batch[0]) 
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