
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Masters Theses and Dissertations [CoCSE]

2021-09

A quantification model against tuta

absoluta effects on tomato plants: a

computer vision approach

Loyani, Loyani

NM-AIST

https://doi.org/10.58694/20.500.12479/1602

Provided with love from The Nelson Mandela African Institution of Science and Technology

A QUANTIFICATION MODEL AGAINST TUTA ABSOLUTA EFFECTS

ON TOMATO PLANTS: A COMPUTER VISION APPROACH

Loyani Kisula Loyani

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Master’s in Information and Communication Science and Engineering of the Nelson

Mandela African Institution of Science and Technology

Arusha, Tanzania

September, 2021

i

ABSTRACT

Tomatoes are among the most commonly cultivated crops in the world. It is considered a high-

value crop and income resource for smallholder farmers in Africa. Nevertheless, its production

currently endangered by Tuta absoluta pest. The pest has severely damaged tomato yields to

the extent that growers are giving up tomato production due to the high costs and losses

incurred. It causes a heavy loss in tomato produce ranging from 80 to 100% when not

effectively managed. Recently, farmers have been using different methods in efforts to control

the pest. These include using pheromone traps and natural enemies for population monitoring,

planting resistant tomato varieties, and continuous spraying of chemical pesticides, which is

now the main control method. These practices have been proven not to be effective in

controlling the pest; they are time-consuming and relatively expensive. Inspired by the

progression and positive outcomes of computer vision methods in diagnosing a wide variety of

plant diseases and pests, this study proposes a segmentation-based quantification model for

detecting and quantifying Tuta absoluta’s damage to tomato plants. We develop convolutional

neural network models based on U-Net and Mask RCNN architectures for automatic semantic

and instance segmentation respectively using data collected from the field. Experimental

results show that Mask RCNN achieved a mAP of 85.67% and U-Net obtained 78.60% and

82.86% of Jaccard index and Dice Coefficient respectively. Both models were precise in

segmenting the shapes of Tuta absoluta-infected areas in tomato leaves and determine their

extent of the damage. The model was then deployed on the mobile phone to enable farmers and

extension officers in Tanzania to automatically detect affected areas on tomato plants and make

informed decisions on how to control the pest so as to increase tomato production and save

farmers from the losses they face.

ii

DECLARATION

I, Loyani Kisula Loyani, do hereby declare to the Senate of The Nelson Mandela African

Institution of Science and Technology that this dissertation is my original work and that it has

neither been submitted nor concurrently submitted for a degree or similar award in any other

institution.

Loyani Kisula Loyani

Candidate Name Signature Date

The above declaration is confirmed by:

Dr. Dina Machuve

Supervisor Name Signature Date

Prof. Karen Bradshaw

Supervisor Name Signature Date

13/10/2021

12/10/2021

iii

COPYRIGHT

This dissertation is copyright material protected under the Berne Convention, the Copyright

Act of 1999 and other international and national enactments, in that behalf, on intellectual

property. It must not be reproduced by any means, in full or in part, except for short extracts in

fair dealing; for researcher private study, critical scholarly review or discourse with an

acknowledgment, without the written permission of the office of Deputy Vice Chancellor for

Academics, Research and Innovations, on behalf of both the author and the Nelson Mandela

African Institution of Science and Technology.

iv

CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance by The

Nelson Mandela African Institution of Science and Technology, a dissertation entitled, A

Quantification Model Against Tuta Absoluta Effects on Tomato Plants: A Computer Vision

Approach submitted in partial fulfilment of the requirements for award of the degree of

Master’s in Information and Communication Science and Engineering of the Nelson Mandela

African Institution of Science and Technology.

Dr. Dina Machuve

Supervisor Name Signature Date

Prof. Karen Bradshaw

Supervisor Name Signature Date

13/10/2021

v

ACKNOWLEDGEMENT

First and foremost, I thank the Almighty God for the blessings He bestowed upon me

throughout my study at the Nelson Mandela African Institution of Science and Technology

(NM-AIST). I thank Him for blessing me with courage, strength, endurance, tenacity, and good

health to successfully complete this Master’s program.

Throughout the writing of this dissertation, I have received a great deal of support and

assistance.

I would like to express my deepest gratitude to my supervisor Dr. Dina Machuve for being a

mentor and tirelessly providing guidance towards the completion of this work; also, to my

supervisor Prof. Karen Bradshaw from Rhodes University in South Africa for her guidance and

for providing insightful feedbacks especially during dissertation writing. Thank you for being

such great supervisors and mentors.

The completion of this work would not have been possible without the financial support from

the African Development Bank (AfDB) that funded this research through project ID No. P-Z1-

IA0-016 under grant No. 2100155032816.

Many thanks to the NM-AIST for making a conducive environment that led to the completion

of this work. The NM-AIST provided me with computer lab space and other tools that I needed

to complete my study and achieve my research goals successfully.

In addition, I would like to thank my parents for their wise counsel and sympathetic ear. You

are always there for me. Finally, I am very grateful to my lecturers, colleagues, friends, and

classmates with whom we shared several challenges and achievements. Of great importance,

those who kept me in their prayers.

May God bless you all.

vi

DEDICATION

I dedicate this work to my father, Mr. Kisula Ezekiel Loyani and my lovely mother, Mrs.

Elizabeth Loyani. Their love and support are beyond comparison.

vii

TABLE OF CONTENTS

ABSTRACT .. i

DECLARATION ... ii

COPYRIGHT .. iii

CERTIFICATION .. iv

ACKNOWLEDGEMENT ... v

DEDICATION .. vi

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF APPENDICES .. xv

LIST OF ABBREVIATIONS AND SYMBOLS ... xvi

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 Background of the Problem... 1

1.2 Statement of the Problem .. 3

1.3 Rationale of the Study ... 4

1.4 Research Objectives .. 4

1.4.1 General Objective ... 4

1.4.2 Specific Objectives ... 4

1.5 Research Questions ... 5

1.6 Significance of the Study .. 5

1.7 Delineation of the Study .. 6

viii

CHAPTER TWO ... 7

LITERATURE REVIEW .. 7

2.1 Tomato Cropping .. 7

2.2 The Tomato Leaf Miner (Tuta absoluta) .. 8

2.3 Computer Vision Approach .. 10

2.4 Plant Diseases Diagnostics using Deep Learning ... 11

2.5 Research Gap... 14

CHAPTER THREE ... 16

MATERIALS AND METHODS ... 16

3.1 Study Area ... 16

3.2 Field Setup... 17

3.2.1 Planting and Pest Introduction .. 17

3.3 The Dataset .. 19

3.4 Research Framework ... 21

3.5 Image Preprocessing ... 21

3.5.1 Labelling and Cropping .. 22

3.5.2 Image Annotation.. 23

3.5.3 Resizing the Images .. 25

3.5.4 Augmentation .. 25

3.6 Transfer Learning .. 28

3.7 Implementation.. 34

3.8 Training Phase ... 34

ix

3.8.1 U-Net: Hyperparameters Tuning and Network Training 34

3.8.2 Mask RCNN: Hyperparameters Tuning and Network Training 35

3.9 Evaluation.. 37

3.9.1 Intersection over union (IoU).. 37

3.9.2 Dice Coefficient (F1 Score) .. 38

3.9.3 Precision .. 38

3.9.4 Recall .. 39

3.9.5 Mean Average Precision (mAP) ... 39

3.9.6 Loss Function .. 40

3.10 Model Deployment .. 42

3.10.1 Requirement Analysis ... 42

3.10.2 Assumptions and Dependencies ... 44

3.10.3 Use Case Modelling .. 44

3.10.4 Activity Diagram .. 47

3.10.5 Sequence Diagram .. 47

3.10.6 Software Development Methodology ... 48

3.10.7 Technologies Used .. 49

3.11 Quantification .. 50

CHAPTER FOUR .. 51

RESULTS AND DISCUSSION .. 51

4.1 The Dataset .. 51

4.2 Loss Results... 51

4.2.1 Mask RCNN Loss Results .. 51

4.2.2 U-Net Loss Results ... 53

x

4.3 Evaluation Metrics Results ... 54

4.3.1 Jaccard Index/IoU ... 54

4.3.2 Dice Coefficient .. 54

4.3.3 The mAP ... 56

4.4 Training Time .. 58

4.5 Developed Mobile Application ... 59

4.6 Quantification Results ... 64

CHAPTER FIVE ... 65

CONCLUSION AND RECOMMENDATIONS .. 65

5.1 Conclusion ... 65

5.2 Recommendations ... 65

REFERENCES .. 67

APPENDICES ... 76

RESEARCH OUTPUTS .. 94

xi

LIST OF TABLES

Table 1: Data collection setup and factors considered for each experiment. 20

Table 2: Dataset distribution. .. 22

Table 3: Configurations used for training Mask RCNN model. 36

Table 4: Description of the Use Cases. ... 46

Table 5: Train/test set splits. ... 51

Table 6: The evaluation metrics results for semantic segmentation model. 55

Table 7: The mAP (primary metric) values of the tomato images obtained by different

detection architectures. ... 58

Table 8: Training time. .. 59

xii

LIST OF FIGURES

Figure 1: Tuta absoluta's damage on tomatoes ... 4

Figure 2: World production of tomatoes (FAO, 2019)... 7

Figure 3: Worldwide distribution of Tuta absoluta (Soares & Campos, 2020).................... 9

Figure 4: Tuta absoluta’s life cycle and damage images (a) Four stages of Tuta absoluta’s

life cycle (b) Tomato leaf with Tuta absoluta mines (c) Severe damage on tomato

field (d) Damaged tomato fruits in the field (e) Damaged tomato fruit on the

market ... 9

Figure 5: Convolutional Neural Network architecture (O’Shea & Nash, 2015) 11

Figure 6: Research study area... 16

Figure 7: Experimental setup in a field .. 17

Figure 8: Transplanting the tomato seedlings in (a) Arusha and (b) Morogoro fields 18

Figure 9: A researcher and an agricultural expert performing infestation in the field (a) The

process carried out in Arusha field (b) Process in Morogoro field 18

Figure 10: Data collection using (a) high and (b) low-resolution cameras in Arusha and

Morogoro fields .. 20

Figure 11: Some images from the field depicting the Tuta absoluta’s damage status 20

Figure 12: Research conceptual framework ... 21

Figure 13: Labelled and cropped images from the dataset showing the development of Tuta

mines on different days ... 23

Figure 14: Examples of the two data annotation methods (a) Labelme annotation tool (b)

VGG Image Annotator (VIA) tool .. 24

Figure 15: Image annotation process .. 24

xiii

Figure 16: Illustration of the image annotation process (a) Original image (b) Polygonal

annotation of the Tuta mines contour (c) Visualization of labels (d) Extraction of

the mask (e) Original image with the overlapping mask 25

Figure 17: Original image (top) and the results of the data augmentation techniques 27

Figure 18: Mask augmentations ... 27

Figure 19: U-Net architecture ... 29

Figure 20: Proposed Mask RCNN model architecture ... 30

Figure 21: Backbone feature maps at (a) input layer, (b) res2c_out activation layer, (c)

res3c_out activation layer, and (d) res4c_out activation layer 31

Figure 22: Illustration of how RPN works (Pawang, 2020) ... 32

Figure 23: The RPN anchors (a) Regions of Interest (RoIs) (b) Negative anchors (c) Positive

anchors (d) Top anchors before refinement (e) Top anchors with refinement (f)

Refined anchors after non-max suppression ... 33

Figure 24: Augmented images with their corresponding annotations 35

Figure 25: Illustration of bounding boxes or masks overlaps and their corresponding IoU

values .. 38

Figure 26: The use case diagram for Tuta absoluta segmentation application 45

Figure 27: The activity diagram for Tuta absoluta segmentation application 47

Figure 28: The sequence diagram for Tuta absoluta segmentation application 48

Figure 29: Agile methodology (Abellán, 2020) ... 49

Figure 30: Training and validation loss for Mask RCNN (a) Loss graph for Mask RCNN-

ResNet50 (b) Loss graph for Mask RCNN-ResNet101 52

Figure 31: Training and validation loss for Mask RCNN with augmentations. (a) Loss graph

for Mask RCNN-Resnet50 with augmentations. (b) Loss graph for Mask RCNN-

Resnet101 with augmentations ... 52

xiv

Figure 32: Training and validation loss for U-Net ... 53

Figure 33: Intersection over Union (IoU) curve for U-Net model 54

Figure 34: Dice Coefficient curve of the U-Net model .. 55

Figure 35: Examples of segmentations achieved by the proposed U-Net model 56

Figure 36: The P-R Curve .. 57

Figure 37: Examples of segmentations carried out by the proposed Mask RCNN model ... 58

Figure 38: Tuta absoluta segmentation mobile application (a) Splash screen (b)

Landing/home page ... 61

Figure 39: Tuta absoluta segmentation mobile application (a) The description page for

tomato cropping (b) Description page for Tuta absoluta 62

Figure 40: Tuta absoluta segmentation mobile application (a) A healthy plant with no tuta

mines (b) Original image and mask prediction (c) Segmentation results 63

Figure 41: Examples of quantification results carried out by the OpenCV function built on

top of the proposed Mask RCNN model... 64

xv

LIST OF APPENDICES

Appendix 1: Mask RCNN Model Source Code.. 76

Appendix 2: U-Net Model Source Code ... 81

Appendix 3: Tensorflow Lite Converter Source Code ... 83

Appendix 4: Model Deployment Android Studio Source Code ... 87

Appendix 5: Mask RCNN Object Counting Source Code. .. 91

xvi

LIST OF ABBREVIATIONS AND SYMBOLS

CNN Convolutional Neural Network

COCO Common Objects in Context

CV Computer Vision

DCNN Deep Convolutional Neural Network

DE-Net Dilated Encoder Network

DL Deep Learning

FAO Food and Agriculture Organization

Faster RCNN Faster Region-based Convolutional Neural Network

FN False Negative

FP False Positive

FPN Feature Pyramid Network

GB Giga Bytes

GDP Gross Domestic Product

HCDC Hybrid Cascade Dilated Convolution

IDE Integrated Development Environment

IoU Intersection over Union

IPM Integrated Pest Management

ISBI International Symposium on Biomedical Imaging

Mask RCNN Mask Region-based Convolutional Neural Network

ML Machine Learning

MoA Ministry of Agriculture

OpenCV Open-Source Computer Vision

PR Precision-Recall

ReLU Rectified Linear Unit

xvii

ResNet

RGB

Residual Networks

Red, Green, and Blue

R-FCN Region-based Fully Convolutional Networks

RoI Regions of Interest

RPN Regional Proposal Network

SDGs Sustainable Development Goals

SSD Single ShotMultibox Detector

SSD Solid State Drive

SVM Support Vector Machine

TFLite TensorFlow Lite

TP True Positive

UN United Nations

VGG Visual Geometry Group

VOC Visual Object Classes

XML Extensible Markup Language

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

The current world population of 7.6 billion is expected to reach 8.6 billion in 2030, 9.8 billion

in 2050 and 11.2 billion in 2100 (United Nations, 2017). The second Sustainable Development

Goal (SDG) of the United Nations (UN) is to "End hunger, achieve food security and improved

nutrition and promote sustainable agriculture" for the global population (United Nations,

2018). The explosion of the projected world population raises new demands on the quality and

quantity of agricultural products and efficient use of water and other limited resources (Tzounis

et al., 2017). The agricultural sector should be more competitive and robust to ensure global

food security and meet potential demand for high quantity and quality food (Patil et al., 2012).

Agriculture is an important economic sector in Tanzania, contributing about 29.1% of the Gross

Domestic Product (GDP) and employing 67% of the population. Agriculture is the main source

of industrial raw materials, food, and foreign exchange earnings (Ministry of Agriculture

[MoA], 2017). Farmers in Tanzania grow a variety of permanent and annual crops for food and

economic purposes. Crops grown include cereals, roots, and tubers, fruits and vegetables. The

tomato plant is grown in different parts of Tanzania with the highest production compared to

other fruits and vegetables. In 2017, the total planted area for tomatoes in Tanzania was 54 520

hectares of which 50 645 hectares (that is 92.9%) were in Tanzania Mainland and 3876 hectares

(that is 7.1%) were in Zanzibar (MoA, 2017). About 247 135 tonnes of tomatoes were harvested

on this planted area, which is equal to 64% of all fruits and vegetables in Tanzania.

Due to their high nutritional value and health benefits, tomatoes are an essential component of

most people’s diet (Burton-Freeman & Reimers, 2011), and is therefore one of the most widely

grown crops in the world (Rupanagudi et al., 2015). Tomato is considered the main source of

raw materials for the tomato processing industry and can increase foreign export of a country,

thereby contributing to the GDP (Arah, 2015; Çetin & Vardar, 2008). Small scale farmers and

rural families rely on tomatoes to earn income for their living expenses; therefore, the crop

contributes significantly to poverty reduction (Arah, 2015; Mutayoba & Ngaruko, 2018).

Currently, tomato production is threatened by the invasion of an exotic pest known as tomato

leaf miner (Tuta absoluta) (Zekeya et al., 2016). In Tanzania, the pest is notoriously known as

2

“kantangaze”. The pest spreads rapidly and it is now a serious threat to tomato production in

the world (Desneux et al., 2011). It causes heavy losses in tomatoes ranging from 80 to 100%

when proper control technologies are not employed (Chidege et al., 2016). Tuta absoluta

originated in South America, then it crossed borders and spread to Europe, Middle East, Asia,

and then to Africa, where it was firstly reported in 2008 in Algeria (Zekeya et al., 2017). The

pest has moved swiftly in Africa from North to South, causing substantial and often complete

loss of tomatoes both in greenhouses and open fields. Since the pest invaded African countries

in 2008, it has spread into about 41 of the 54 countries in Africa, causing enormous economic

losses to tomato farmers (Guimapi et al., 2016). In Tanzania, the first occurrence with its

devastating effects of the pest on tomatoes was reported in August 2014 at Ngabobo village,

Ngarenanyuki ward, Arumeru District in Arusha, and since then, it has spread to other regions

(Chidege et al., 2016).

The pest can physiologically adapt and survive in harsh environmental conditions such as hot

temperatures as high as 49 ℃ in summer, temperatures below 5 ℃, and can also tolerate

dryness (Cuthbertson et al., 2013; Tonnang et al., 2015; Van Damme et al., 2015). Since Tuta

absoluta is multivoltine, it can yield up to 12 generations per year and each mature female can

produce between 250 and 300 eggs in its lifetime (Doğanlar & Yİğİt, 2011).

The pest transmission is through females of Tuta absoluta which deposit their eggs on stems,

leaves, and petioles. The four development stages (egg, larva, pupa, and adult) of Tuta absoluta

are all harmful and can infect different parts of the host plant (Guimapi et al., 2016). Larva, the

most dangerous stage has a life span of nine (9) days before turning to pupa. It usually develops

and feeds between the upper and lower epidermis in leaf mines but can also be in fruits and

stems (Cuthbertson et al., 2013). The huge loss in tomato yields caused by Tuta absoluta,

impels scientists to devise effective methods for managing, controlling, and overcoming the

pest early.

Despite the existence of various techniques to control the pest, there has not been an effective

mechanism quantifying Tuta absoluta’s effects at early stages before it causes yield losses to

farmers. Inspired by the advancement and promising results of Deep Learning techniques in

image-based plant pest and disease recognition, this research proposes a deep Convolutional

Neural Network (CNN) model for early quantification of Tuta absoluta’s damage to tomato

3

plants. This can enable farmers to make informed decisions in controlling the pest, improve

tomato productivity, and rescue farmers from the losses they incur every year.

1.2 Statement of the Problem

Despite the efforts of the government to set aside a financial budget each year for the growth

and development of the agricultural sector, farmers still face several challenges such as

inadequate farming methodology, climate changes, and attacks on crops by pests and insects.

The invasion of Tuta absoluta has extensively damaged tomato yield to the extent that growers

are quitting tomato production due to the enormous costs and losses they face (Zekeya et al.,

2017). The rot arising from secondary infection reduces tomato fruit quality, making it unfit

for consumption (Food and Agriculture Organization [FAO], 2017). Figure 1 illustrates the

damage caused by Tuta absoluta to tomatoes. Over the past few years, farmers have been using

different methods in efforts to control the pest. These include the use of pheromone traps and

natural enemies for monitoring the population, cultivation of resistant tomato varieties, and

continual spraying of chemical pesticides, which is still the main control method (Guedes &

Picanço, 2012). Excessive use of these chemicals develops resistance, has uneconomical and

harmful effects on non-targeted organisms, and can also lead to irreparable damage to the

environment (Materu et al., 2016).

However, the extension officers who provide farmers with appropriate knowledge about plant

diseases and pest management are limited in numbers in Tanzania to meet farmers' demands

(Maginga et al., 2018). Although farmers and extension officers struggle with different

methods to control the pest, there has not yet been an effective way for early identification and

quantification of Tuta absoluta’s effects on tomato plants that would enhance farmers’ decision

making. Therefore, this study proposes a computer vision approach for quantifying the extent

of damage caused by Tuta absoluta in tomato plants at early stages. This will enable farmers

and extension officers to make informed decisions on controlling the pest and eventually

increasing productivity.

4

Figure 1: Tuta absoluta's damage on tomatoes

1.3 Rationale of the Study

The agricultural sector is the backbone of a country's economy providing basic food for

individuals and raw materials for industry. Although various crops are grown in Tanzania,

tomato (Solanum Lycopersicum) has the highest consumption, both in raw and processed

forms. Tomato production is particularly socioeconomically significant because it provides

jobs to women, who account for more than 60% of the labour force (Rwomushana et al., 2019).

The damage in tomato production is also likely to negatively affect the livelihoods of small-

scale farmers who are the main producers and traders of tomatoes (FAO, 2017). The increase

in tomato production loss suffered by farmers due to the invasion of Tuta absoluta, has

compelled farmers to look for effective methods to control and overcome the pest early.

This study proposes a Deep Learning model to quantify the effects of a Tuta absoluta in tomato

plants. Determining the extent of the pest’s damage early, can enable farmers and extension

officers to make informed decisions on how to control the pest so as to improve tomato

productivity and rescue farmers from the loss they incur every year.

1.4 Research Objectives

1.4.1 General Objective

The main objective of this research is to develop a deep learning quantification model for

farmers to determine the extent of Tuta absoluta’s effects on tomato plants.

1.4.2 Specific Objectives

The specific objectives of this research are:

(i) To identify the requirements for developing the proposed model.

5

(ii) To develop a Tuta absoluta damage image segmentation model.

(iii) To determine the extent of tomato leaf damage at various Tuta absoluta levels.

(iv) To validate the developed model.

1.5 Research Questions

This research intends to answer the following questions:

(i) What are the requirements for developing a deep learning model for quantifying Tuta

absoluta’s damage on tomato plants?

(ii) How can a Tuta absoluta image segmentation model be developed?

(iii) How can Tuta absoluta’s damage to the tomato plants be quantified?

(iv) How well does the developed model perform?

1.6 Significance of the Study

The findings of this research and the development of a solution for early segmentation and

quantification of Tuta absoluta’s damage to tomato plants can bring hope to the giving up

tomato growers due to costs and losses the pest caused in tomato production. Since the solution

is automated and does not require human intervention, it will reduce the workload of the limited

extension officers in the country. Both farmers and extension officers will be able to understand

the extent of damage in the farm due to the invasion of Tuta absoluta early and take appropriate

measures to control the pest they spread further to a large scale. The intelligently informed

decision made could improve tomato productivity and rescue farmers from the loss they incur

every year.

To the research community, this enhancement will also serve as a foundation for future research

into the integration of the established framework with marketing information systems, which

will provide farmers with up-to-date information about selling and buying crops and fertilizers,

as well as link them with nearby agrovet shops. The study also made its annotated dataset freely

available to other researchers through an open access repository to facilitate further research in

diagnosing Tuta absoluta’s damage to tomato plants (Rubanga et al., 2020).

6

1.7 Delineation of the Study

This work aimed at developing a tool for segmentation and quantification of only Tuta

absoluta’s damage to tomato plants because it significantly affects tomato production

compared to other pests and diseases. The dataset used for the development of the tool

contained only colored images, that is, Red-Green-Blue (RGB) color model collected from the

field. Although experimental results show that the developed tool can accurately determine

Tuta absoluta’s severity status, further research can improve its performance and develop a

decision support system that can detect different diseases in various plants and give suggestions

on actions to be taken to control the disease or pest based on their severity – which is the long-

term motivation of this study.

However, it is worth noting that there are some limitations to this study. The experiments in

this work used insufficient annotated dataset size considering Tuta absoluta only not other

pests and diseases as well as limited computing power, factors that may affect the performance

of the model.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Tomato Cropping

Tomato (Solanum Lycopersicum L.) is one of the most widely grown and consumed crops on

a global scale. Each year, about 160 million tonnes of tomatoes are produced globally (Food

and Agriculture Organization Statistics [FAOSTAT], 2019). However, approximately a quarter

of those 160 million tonnes are produced for processing, making tomatoes the leading

processed vegetable in the world (Tomato News, 2020). In 2016, the tomato was declared the

sixth most valuable crop in the world, worth US$ 87.9 billion (Rwomushana et al., 2019).

Figure 2 illustrates the production of tomatoes in the world from 1961 to 2019. Tomato is the

main source of raw materials for the tomato processing industry and may also be consumed

raw, roasted, stewed, or mixed with other foods or as a sauce (Çetin & Vardar, 2008; Díez &

Nuez, 2006). Due to its high nutritional value and numerous health benefits, tomato constitutes

a crucial component of human diet (Burton-Freeman & Reimers, 2011). Tomato production

creates an income for most producers in developing countries. In spite of the crop’s numerous

advantages, many challenges including pests and diseases make its production unprofitable to

producers (Arah, 2015). The invasion of Tuta absoluta threatens tomato production resulting

in significant yield losses and crop quality reduction.

Figure 2: World production of tomatoes (FAO, 2019)

8

2.2 The Tomato Leaf Miner (Tuta absoluta)

Tomato leaf miner, Tuta absoluta (Meyrick 1917) (Lepidoptera: Gelechiidae) is the most

devastating tomato pest in the world (Doğanlar & Yİğİt, 2011). Since its first discovery, there

have been sequential genus revisions from 1917 to the 1960s. Originally known as Phthorimaea

absoluta (Meyrick, 1917) , it was later transferred to the genus Gnorimoschema (Clarke, 1965),

which was subsequently revised and renamed Scrobipalpula (Povolný, 1967),

Scrobipalpuloides (Povolný, 1985), and finally Tuta (Povolný, 1994). The pest causes severe

damage to tomato plants and substantial yield loss to farmers posing a threat to tomato

production both in greenhouses and open fields. Yield losses can reach as high as 80 - 100% if

no control measures are taken (Desneux et al., 2010). Although its primary host is the tomato,

the pest can also feed and develop on other various crops in the Solanaceous family such as

pepper, common beans, eggplant, potato, tobacco, and solanaceous weed (FAO, 2017;

Rwomushana et al., 2019).

Tomato leaf miner originates from South America but has rapidly spread throughout the world

as illustrated in Fig. 3. The first case of Tuta absoluta was recorded in Huancayo, Peru in 1917;

then it spread to all South American countries between the mid-1960s and the 1990s (Soares

& Campos, 2020). The pest was first detected outside of South America in eastern Spain in

2006, and in a short period, it spread quickly not only across the Mediterranean basin but also

across Europe, the Middle East, Asia, and then to Africa, where it was first recorded in Algeria

in 2008 (Tonnang et al., 2015; Van Damme et al., 2015). No more accurate information is

available on how the pest was introduced and why it spread so quickly to new areas. But

somehow, it seems to be connected to the import of tomato fruits, its ability to fly, and wind

currents, though the history of invasion in Afro Eurasia indicates that Tuta absoluta can spread

and colonize new areas rapidly without any human intervention (Desneux et al., 2011).

Tuta absoluta has four (4) development stages in its life cycle exhibited for about 26 – 28 days

from the egg, larva, pupa to adult (Guedes & Picanço, 2012). Although larva is the most

dangerous one, all four development stages of Tuta absoluta are harmful and can attack

different parts of the host plant (Guimapi et al., 2016). Figure 4 shows the pest’s life cycle and

its damage to tomatoes. Adult females usually lay eggs on the underneath of leaves and stems;

then after hatching, the larvae penetrate between the upper and lower epidermis of the leaves,

fruit or stems where they feed and develop, creating conspicuous mines and galleries

(Cuthbertson et al., 2013; Desneux et al., 2010). The larvae are internal feeders, being located

9

in the leaf mesophyll, in the apical stem, and in the fruit making it extremely hard to control,

and the insecticide resistance further complicates the pest management (Doğanlar & Yİğİt,

2011; Guedes & Picanço, 2012).

Figure 3: Worldwide distribution of Tuta absoluta (Soares & Campos, 2020)

Figure 4: Tuta absoluta’s life cycle and damage images (a) Four stages of Tuta absoluta’s
life cycle (b) Tomato leaf with Tuta absoluta mines (c) Severe damage on tomato
field (d) Damaged tomato fruits in the field (e) Damaged tomato fruit on the
market

10

2.3 Computer Vision Approach

The main purpose of computer vision is to comprehend and interpret visual scenes. This

involves several tasks like identifying objects in a digital image, localizing the objects,

determining the objects’ attributes, characterizing the relationships between objects and

providing a semantic description of the visual scene. Recent advances in computer vision

through the application of deep learning techniques have shown promising results in digital

image processing.

Deep learning using Convolutional Neural Networks (CNNs) has a unique capability of

automatically learning and extracting features based on the given dataset in their raw form

without explicitly being told what features and how to extract them (Lecun et al., 2015;

Voulodimos et al., 2018). The CNNs are made up of neurons that self-optimise through

learning. The CNNs architecture is comprised of three types of layers stacked together. These

are convolutional layers, pooling layers, and fully connected layers (O’Shea & Nash, 2015).

An input image held in form of pixel values is passed through these layers to produce the final

output of the class score between 0 and 1. Convolutional layers apply filters (kernels) to an

input image by calculating the scalar product between their weights and the region connected

to the input to create a feature map also known as activation map. Then Rectified Linear Unit

(ReLU) activation function which is linear in the positive dimension but zero in the negative

dimension is applied to the output of the activation produced by the previous layer. It is the

source of non-linearity in CNNs. Pooling layers take feature maps as input and gradually reduce

their dimensionality preserving important information. As a result, the number of parameters

and the computational complexity of the model are also reduced. Fully connected layers

contain neurons that are directly connected to the neurons in the two adjacent layers to classify

an image. The fully connected layers attempt to generate a class score from the activations to

be used for classification. Figure 5 demonstrates a common form of CNN architecture in which

convolutional layers are continuously stacked between ReLus before passing through the

pooling layer, and then going between one or many fully connected ReLus.

Nevertheless, in many real-world scenarios, it is very expensive or nearly impossible to collect

enough training data and rebuild the CNN models from scratch. Due to the high computational

resources and the large amount of labelled data required to build a model from scratch, transfer

learning has become very popular and useful in deep learning. Most real-world problems lack

enough labelled data points to train such complex models, so transfer learning trains deep

11

neural networks with comparatively small amount data (Pan & Yang, 2010). In transfer

learning, a machine exploits the knowledge gained from a previous task to improve

generalization about another.

Figure 5: Convolutional Neural Network architecture (O’Shea & Nash, 2015)

2.4 Plant Diseases Diagnostics using Deep Learning

Advances in Computer Vision and Machine Learning techniques including Deep Learning,

have presented promising and impressive results in identifying, classifying, quantifying, and

predicting a diverse range of plant diseases and pests. Among Deep Learning methods,

Convolutional Neural Networks (CNNs) have demonstrated exceptional performance in image

recognition tasks (Singh et al., 2018).

For instance, Brahimi et al. (2017) presented a deep learning approach for identifying plant

diseases using images of the leaves. Deep learning is capable of directly exploiting raw data

without the use of handcrafted features. A dataset of 14 828 images was used to train deep

CNN models based on AlexNet and GoogleNet to automatically determine nine (9) diseases

and their symptoms that affect tomatoes. The model’s performance was proved to be 99.185%

accurate compared to shallow models like Support Vector Machine (SVM) and Random Forest.

Amara et al. (2017) used LeNet, a CNN architecture to automatically identify black Sigatoka

and banana speckle, fungal diseases that threaten banana production. The model learns the

visual features from banana leaf images and identifies the leaves affected by the two diseases

and the healthy ones. In their experiment, a dataset of 3700 images was annotated into three

different classes, namely banana Sigatoka, banana speckle, and healthy. The model performed

well with an accuracy of 92.88%.

12

Also, Ferentinos (2018) used several pre-trained deep models such as AlexNet,

AlexNetOWTBn, VGG, Overfeat, and GoogLeNet to identify 58 diseases from different

plants. PlantVillage, an open access repository containing a dataset of 87 848 leaf images from

various plants (Hughes & Salathe, 2015), was used in this study. The VGG model exhibited an

excellent performance of 99.53% compared to other deep models used in this study.

The study by Zhang et al. (2018) proposed pre-trained CNN architectures to identify 8 tomato

diseases using 5550 images from an open access repository. All the models could classify the

diseases into correct classes with the accuracy of 95.83%, 95.66%, and 96.51% for AlexNet,

GoogLeNet, and ResNet50, respectively.

Moreover, Fuentes et al. (2017) introduced the application of deep meta-architectures and

feature extractors for real-time detection of different diseases and recognition of pests in tomato

plants. Deep meta-architectures such as Single ShotMultibox Detector (SSD), Region-based

Fully Convolutional Networks (R-FCN), and Faster Region-based Convolutional Neural

Network (Faster R-CNN) combined with feature extractors like ResNet and VGG-16 were used

to identify 9 different pests and diseases successfully and their location in a tomato plant. The

model was trained with a dataset of 5000 images that includes nine diseases and pests, namely

Cranker, Leaf mold, Plague, Gray mold, Miner, Powdery mildew, Low temperatures,

Nutritional excess and Whitefly. The model showed outstanding performance with an average

accuracy of 83% in recognizing the tomato diseases and pests and dealing with complex tasks

including infection level, sides of the leaves and different background conditions.

Similarly, a dataset containing 4483 leaves images of different plants was used by Sladojevic

et al. (2016) to recognize and distinguish 13 plant diseases from the healthy ones. CaffeNet, a

deep CNN architecture, was trained and tested to determine and differentiate the dataset leaves

images categorized into three classes; 13 infected images, healthy leaf images, and a

background image class to allow good separation of plant leaves and the surroundings. The

diseases recognized were, Taphrina deformans, powdery mildew, Erwinia amylovora,

porosity, wilt, gray leaf spot, Gymnosporangium sabinae, rust, mites, downy mildew and

Venturia in pear, cherry, peach, apple, and grapevine plants. In this study, the precision

between 91% and 98% was achieved for separate class tests, and the overall accuracy of the

developed model was 96.3%.

13

Mkonyi et al. (2020) proposed a VGGNet model to identify Tuta absoluta pest in tomato plants.

In their study, three CNN architectures, namely ResNet50, VGG16, and VGG19, were used in

training classifiers on a dataset of 2145 healthy and infested tomato leaf images. The VGG16

achieved a high accuracy of 91.9% on differentiating the two classes. In this study, there is still

a need to detect the exact location of Tuta absoluta’s damage and to determine the extent of

the damage.

Although several studies addresses the problem of plant leaf disease identification, few have

focused on developing systems that can estimate stress severity. Liang et al. (2019) proposed

a multitasking system called PD2SE-Net consisting of ResNet50 architecture that can diagnose

diseases, recognize plant species, and estimate disease severity. A dataset from the PlantVillage

repository was used to perform the experiments. The overall accuracy for disease severity

estimation and plant disease classification was 91% and 98%, respectively.

In a recent study, Esgario et al. (2020) developed a multi-task system based on CNNs for

classifying and estimating the severity of coffee leaf biotic stresses from 1747 images of

arabica coffee leaves. Among the CNN architectures (MobileNetV2, AlexNet, ResNet50,

GoogLeNet, and VGG16) used, ResNet50 had the best biotic stress classification accuracy of

95.24% and the best severity estimation accuracy of 86.51%.

Furthermore, Wang et al. (2017) proposed a deep learning model for automatic estimation of

black rot disease severity in apple plants. A small dataset of 552 apple leaf images was used

for training the VGGNet model to quantify the severity of the disease in four stages. The model

performed better with an accuracy of 90.4% compared to other models employed in their study.

Additionally, Lin et al. (2019) proposed a segmentation model based on U-Net architecture to

segment powdery mildew in cucumber plants. A dataset of 50 cucumber leaf images captured

in a cucumber fruit leaf phenotype automated analysis platform was used in their experiment.

The model performance was 96.08% outperforming conventional Machine Learning methods

such as K-means and Random Forest.

Wang et al. (2019) presented a tomato disease detection model based on Faster R-CNN and

Mask RCNN. The model detects and segments the locations and shapes of the infected area on

tomato fruits. In their experiment, a dataset of 286 tomato fruit images obtained from the

14

internet was used, and the models achieved mean Average Precision (mAP) of 88.53% and

99.64% for Faster R-CNN and Mask RCNN, respectively.

Also, Pérez-Borrero et al. (2020) proposed a CNN model based on Mask RCNN architecture

for instance segmentation of strawberries. They modified the Mask RCNN network by

removing the object classifier and the bounding box regressor, replacing the non-maximum

suppression algorithm with a new region grouping and filtering algorithm without increasing

the complexity order. In their experiment, a dataset of 3100 strawberry images along with their

annotations was used. They also proposed the Instance Intersection Over Union (I2oU) as a

new performance metric for evaluating instance segmentation. Their model achieved a mean

Average Precision (mAP) of 43.85% compared to 45.36% of the original Mask RCNN and the

mean I2oU of 87.27% compared to 87.70% of the original Mask RCNN.

Tang et al. (2020) developed a dilated encoder network (DE-Net) model based on U-Net

architecture for automatic butterfly ecological image segmentation. To capture deeper semantic

features, they modified the U-Net architecture by replacing the last two pooling layers, the last

three convolution layers, and all fully connected layers with the hybrid cascade dilated

convolution (HCDC). A public dataset of 832 butterfly ecological images was used and the

DE-Net model achieved an accuracy of 98.67%.

The study by Liu et al. (2020) proposed a method to segment overlapped poplar seedling leaves

that are under heavy metal stress by combining Mask RCNN with Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) clustering algorithm. Mask RCNN was used

to segment leaves and then DBSCAN clustered single leaves from the detected overlapping

leaves. A dataset of 2000 RGB-D images with their corresponding annotations was used to

complete the task. In their experiment, the model obtained a pixel-wise Intersection over Union

(p-IoU) and mean accuracy of 0.874 and 0.888, respectively.

2.5 Research Gap

Generally, these studies have achieved excellent results in image-based plant diagnosis using

CNNs. However, very few works in the literature have focused on quantifying the disease’s

severity and to the best of the author’s knowledge, there are no studies that address the

quantification of Tuta absoluta’s effects on tomato plants. Also, some studies used a small

dataset size and images from online repositories which do not reflect real field situations.

15

Therefore, this study proposes a deep learning-based approach for quantifying the effects of a

tomato leaf miner (Tuta absoluta) at the early stages of the tomato plant’s growth by using

images collected from the field. This study will assist Tanzanian farmers and extension officers

in making well-informed decisions that could increase tomato production and rescue farmers

from the loss they suffer every year.

16

CHAPTER THREE

MATERIALS AND METHODS

3.1 Study Area

This study was conducted in Tanzania, targeting various tomato growers both in greenhouses

and open fields around the country. The two regions (Arusha and Morogoro) are some of the

major areas prone to Tuta absoluta infestation in Tanzania. The image dataset collected from

the research area was used to train, test, and adjust the model accordingly so that it performs

well with new data from all parts of the country. The study area is shown in Fig. 6.

Figure 6: Research study area

17

3.2 Field Setup

Two (2) in-house experiments were set up in Arusha and Morogoro regions where tomato

plants were grown. Net houses (Fig. 7) were constructed, one in each region considering

different factors summarized in Table 1. This in-house experiment prevented any pests from

coming into the net house and Tuta absoluta from getting out of the experimental area to

maintain a controlled environment for the study.

Figure 7: Experimental setup in a field

3.2.1 Planting and Pest Introduction

Healthy tomato seedlings (free from other diseases and pests) were planted in each net house

in the two regions as shown in Fig. 8. On the second day following the transplant, Tuta absoluta

was introduced to some tomato plants by placing 2 to 8 larvae on top of the leaves of randomly

selected plants. The pest immediately started to mine the leaves. Plants to infect were randomly

selected so that to have a dataset of both infested and healthy tomato plants. This process was

done under the supervision of an agricultural expert as shown in Fig. 9.

18

Figure 8: Transplanting the tomato seedlings in (a) Arusha and (b) Morogoro fields

Figure 9: A researcher and an agricultural expert performing infestation in the field (a)
The process carried out in Arusha field (b) Process in Morogoro field

19

3.3 The Dataset

A dataset of 5235 tomato images was collected directly from the constructed experimental net

houses. This includes 2319 images collected in Arusha and 2916 images that were collected in

Morogoro. Table 1 shows factors taken into account to obtain a diverse dataset of the real field

situations, such as regions in the country that are highly infested with Tuta absoluta, crop cycle

season, commonly grown tomato varieties, and commonly practised farming systems. Images

of tomato leaves at early growth stages were collected using a Canon EOS Kiss X7 camera

with a resolution of 5184 x 3456 pixels for high-resolution images and a Samsung SM-G570F

camera with a resolution of 320 x 240 for low-resolution images. Images of different

resolutions were collected so as to train the model with images of different qualities. Since the

model will be employed in the field and assuming that smallholder farmers in Tanzania use

cheap phones with low resolution, the model was trained using both high and low-resolution

images. The images were taken daily for two consecutive weeks after infestation focusing on

capturing the top approximately 30 centimetres from the plant (Fig. 10) since the plant crown

is always affected by the pest in the early growth stages of the plant.

The plants with less than 3 Tuta absoluta were considered to have low pest damage (Low Tuta),

those with more than 3 Tuta absoluta were considered to have severe pest damage and healthy

ones (No Tuta) as shown in Fig. 11.

20

Figure 10: Data collection using (a) high and (b) low-resolution cameras in Arusha and
Morogoro fields

Table 1: Data collection setup and factors considered for each experiment

Duration Season Region Variety
Farming
system

Number of
Images

Oct - Dec
2019

dry/wet north 3 drip 2319

Jan - Apr
2020

wet east 2 drip, furrow,
bund

2916

Figure 11: Some images from the field depicting the Tuta absoluta’s damage status

21

3.4 Research Framework

The research framework in Fig. 12 shows the logical flow of the study and gives a clear

understanding of how the research was undertaken from data collection to model development

and validation until the delivery of an optimized model. Two (2) deep meta-architectures,

namely U-Net and Mask RCNN, were used to develop semantic and instance segmentation

models, respectively. The segmentation model can determine the exact spot in the plant where

the Tuta absoluta affected. Then a custom function built on top of the instance segmentation

model was used to determine the extent of Tuta absoluta damage to the tomato plant. The

model’s performance is then evaluated using different evaluation metrics and the model’s

parameters are tuned to get an optimized model. The model is deployed on a mobile phone to

enable and facilitate farmers to automatically detect affected areas on tomato plants.

Figure 12: Research conceptual framework

3.5 Image Preprocessing

Image preprocessing is an important stage for enabling a deep learning architecture to learn

and extract features from an image during model training. It is a manipulation of raw image

data before feeding it to a deep model for better performance. In this work, the image

preprocessing process involved labelling and cropping, image annotation, image resizing, and

augmentation. The preprocessed images were then used as input data to the model.

22

3.5.1 Labelling and Cropping

The images were manually labelled to distinguish between healthy and infected plants by Tuta

absoluta. This helps to make a clear distinction between the classes. The label included the

block in the net house where the plant is located, the date the image was captured, the plant

number, and the infestation status of the plant (healthy or non-healthy). In this study, 2319

images (1107 healthy and 1212 infested with Tuta absoluta) collected in Arusha and 2916

images (1870 healthy and 1046 infested with Tuta absoluta) collected in Morogoro were

labelled, making a total of 5235 tomato images in the dataset as shown in Table 2. Then the

images were manually cropped to removed unwanted objects on the background. Figure 13

shows some images from the dataset after the labelling and cropping process. It also shows the

development of Tuta mines on different days.

Table 2: Dataset distribution

Region Healthy Non-Healthy Total Dataset
Arusha 1107 1212 2319
Morogoro 1870 1046 2916
Total 2977 2258 5235

23

Figure 13: Labelled and cropped images from the dataset showing the development of
Tuta mines on different days

3.5.2 Image Annotation

It is necessary to annotate the images indicating the area of interest in order to train a

segmentation model. A total of 1212 and 1240 images with infested tomato plants were selected

from the entire dataset collected from the field to be used in developing semantic and instance

segmentation models, respectively. For each image, a ground truth labelled image was

manually generated containing the individual segmentation of all the Tuta absoluta’s mines

present in the image. Labelme (Russell et al., 2008) and VGG Image Annotator (Dutta &

Zisserman, 2019) open-source tools were used to annotate images for semantic and instance

segmentation tasks respectively as revealed in Fig. 14. The specific operation was to define the

continuous contour of all Tuta absoluta’s mines by marking the area and shape of the infested

spot with irregular polygons and then labelling the spot with “tuta” as shown in Fig. 15. Each

image contained at least one tuta mask indicating the presence of the Tuta absoluta’s mine in

the image. The annotations obtained were saved in the VOC (Everingham et al., 2010) format

and COCO (Lin et al., 2014) format with their corresponding images to be used in the semantic

and instance segmentation tasks, respectively. The image annotation process with its outputs

is illustrated in Fig. 16.

24

Figure 14: Examples of the two data annotation methods (a) Labelme annotation tool (b)
VGG Image Annotator (VIA) tool

Figure 15: Image annotation process

25

Figure 16: Illustration of the image annotation process (a) Original image (b) Polygonal
annotation of the Tuta mines contour (c) Visualization of labels (d) Extraction
of the mask (e) Original image with the overlapping mask

3.5.3 Resizing the Images

Image resizing is an important preprocessing step in computer vision. Principally, the CNN

models train faster on smaller images. A large input image requires the neural network to learn

from many image pixels adding up the training time and other computational costs. Therefore,

many CNN architectures require that the input images are of the same size. Images in the

dataset were varying in size so we used a standard resize function in Keras to resize all images

to the dimensions of 512 x 512 pixels. When the dimension of an image is smaller than 512,

the image is upscaled by adding zero paddings as necessary to obtain a square image.

3.5.4 Augmentation

Deep neural networks need a large amount of training data to achieve good performance and

avoid overfitting. Overfitting refers to the phenomenon when a network perfectly models the

training data but fails to generalize on unseen data (Lawrence & Giles, 2000). Unfortunately,

we were not able to collect enough data to sufficiently train a CNN model. Data augmentation

26

is a solution to the problem of limited data. Image data augmentation encompasses a suite of

techniques that can be used for artificially expanding the size and enhancing the quality of the

training set by creating modified versions of the original images in the dataset (Shorten &

Khoshgoftaar, 2019). The techniques include random rotation, shifts, shear, zooming, and flips.

In this study, we performed image augmentation for some experiments. Specifically, the

following set of augmentation techniques was applied to the training set only with data values

in a range of (0, 1):

(i) Horizontal flip: All images in the training set were horizontally flipped with a

probability of 0.5.

(ii) Vertical flip: All images in the training set were vertically flipped with a probability

of 0.2.

(iii) Crop: A random crop was applied on images with the interval of (0, 0.1). That is,

each image is cropped by 0 – 10% of its height/width.

(iv) Gaussian Blur: A gaussian blur with a probability of 0.5 was applied to images with

a random sigma of between 0 and 0.5.

(v) Contrast Normalization: Contrast normalization was applied to strengthen or

weaken the contrast in each image in the interval (0.75, 1.5).

(vi) Gaussian Noise: Gaussian noise with a probability of 0.5 was added to images. For

50% of all images, the noise is sampled once per pixel. And for the remaining 50%

of all images, the noise is sampled per pixel and channel. This changes the colour of

the pixels.

(vii) Brightness modification: A change of brightness was applied with a probability of

0.2 and a random value in the interval (0.8, 1.2) is chosen. This made some images

brighter and some darker.

(viii) Transformation: A series of random affine transformations were applied to each

image. This implies scaling or zooming images to 90 – 110% of their height/width

(each axis independently). Translate/move them by -20 to +20 relative to their

height/width per axis. Rotate images by -5 to +5 degrees and slightly shear them by -

2 to +2 degrees.

The images generated from the aforementioned data augmentation techniques are presented in

Fig. 17 and Fig. 18.

27

Figure 17: Original image (top) and the results of the data augmentation techniques

Figure 18: Mask augmentations

28

3.6 Transfer Learning

Transfer learning involves reusing pre-trained models for a specific task and fine-tuning them

to a new related task, usually with a limited amount of data (Weiss et al., 2016). The

transferring of information from a related domain improves a new model. This work employs

transfer learning based on the CNN models, Mask RCNN and U-Net that have been trained

and shown best performance on COCO (Lin et al., 2014) and International Symposium on

Biomedical Imaging (ISBI) (Ronneberger et al., 2015) datasets for instance and semantic

segmentation tasks respectively.

3.6.1 U-Net for Semantic Segmentation

Semantic segmentation classifies each pixel in an image from a predefined set of classes. The

image is divided into different segments, each representing a distinct entity. In semantic

segmentation, different instances of the same object are not distinguished they are given the

same label. Ronneberger et al. (2015) introduced a U-shaped CNN architecture that is designed

to be trained end-to-end with very few images and yet produce more precise segmentations.

This makes it very suitable for the agricultural field since in the real world, there is not enough

labelled data to train complex CNN architectures (Lin et al., 2019). The model has performed

exceedingly well first in the biomedical image segmentation and later in many other fields

outperforming the earlier segmentation methods (Ciresan et al., 2012). The U-Net architecture

consists of three sections namely, a contraction section (also known as encoder), a bottleneck

section, and an expansion section (also known as decoder) hence the name encoder-decoder

structure. The encoder which is basically a stack of convolutional and max-pooling layers

downsamples the input image and captures its context. It outputs a tensor that contains

information about the object, its shape and size. The decoder which contains upsampling layers,

takes this information and uses transposed convolutions to produce segmentation maps. This

upsampling process makes the network’s output the same size as the input image achieving

pixel-level segmentation. The bottleneck section mediates between the encoder and decoder

sections. It uses skip connections to concatenate the intermediate outputs of the encoder with

the inputs to the intermediate layers of the decoder at appropriate positions. This concatenation

process enables the precise localization of the target objects. The U-Net architecture is

described in Fig. 19.

29

Figure 19: U-Net architecture

30

3.6.2 Mask RCNN for Instance Segmentation

Instance segmentation distinguishes each object instance of each pixel for every known object

within an image. It integrates an object detection task that aims to detect the object class as

well as predict the bounding box in an image, with a semantic segmentation task that classifies

each pixel into pre-defined categories. Therefore, instance segmentation enables us to detect

objects in an image while precisely segmenting a mask for each object instance.

A Mask Region-based Convolutional Neural Network is a deep neural network for instance

segmentation that takes an input image and outputs a bounding box, label, and the

corresponding mask (He et al., 2018). Basically, it is an extension of the Faster RCNN model

which has two outputs for each candidate object, namely, a class label and a bounding-box

offset (Ren et al., 2017). Mask RCNN adds a third branch that outputs the object mask

decoupling class prediction and mask generation. This makes it an effective algorithm for more

challenging instance segmentation tasks. Instance segmentation is a challenging task because

it necessitates accurate detection of all objects in an image while precisely segmenting each

instance. The architecture of the proposed Mask RCNN model is illustrated in Fig. 20.

Figure 20: Proposed Mask RCNN model architecture

31

(i) Backbone

The CNN backbone architecture is used to extract features from an entire image. Mask RCNN

uses ResNet50 and ResNet101 for feature extraction. The extracted features act as an input for

the next layer. The backbone feature maps at different layers are shown in Fig. 21.

Figure 21: Backbone feature maps at (a) input layer, (b) res2c_out activation layer, (c)
res3c_out activation layer, and (d) res4c_out activation layer

32

(ii) Region Proposal Network (RPN)

The Region Proposal Network is applied to the feature maps obtained in the previous step and

outputs a set of object/region proposals, i.e., Regions of Interest (RoIs), each with its objectness

score. To generate region proposals, RPN uses a sliding window over the convolutional feature

maps producing anchor boxes of different shapes and sizes. Then for each anchor box, the RPN

predicts the probability that an anchor is an object (i.e., objectness score) and the bounding box

regressor for adjusting the anchors to best fit the object. Figure 22 illustrates how the RPN

works. Using the Non-Maximum Suppression (NMS) technique, the RPN refine anchors with

a high objectness score and suppress or reject all other boxes. The RPN regions of interest and

anchors are shown in Fig. 23. The output of this step is the feature maps or regions that the

model predicts to contain some objects.

Figure 22: Illustration of how RPN works (Pawang, 2020)

33

Figure 23: The RPN anchors (a) Regions of Interest (RoIs) (b) Negative anchors (c)
Positive anchors (d) Top anchors before refinement (e) Top anchors with
refinement (f) Refined anchors after non-max suppression

(iii) Regions of Interest (RoI) Align

Both RoIs and their corresponding feature maps from the previous step are passed through the

RoI Align layer which converts them to a fixed shape and size. The RoIAlign uses binary

interpolation to generate a small feature map of fixed size (e.g., 7 x 7) from each RoI. The RoI

Align layer properly aligns the extracted features with the input and accurately maps RoIs from

the original image onto the feature map without rounding up to integers.

(iv) Fully Connected Layers

On top of the fully connected network, a softmax layer is used to predict classes in the image.

The softmax layer applies a softmax function to the input to assign decimal probabilities to each

class which must add up to 1. A linear regression layer is also used alongside the softmax layer

to output bounding box coordinates for predicted classes.

34

(v) Fully Convolutional Network

The output of the ROI Align layer also goes separately to the convolutional layer to predict the

mask. This ConvNet takes an RoI as input and outputs the m*m mask representation. The mask

shape normally is 28 x 28.

3.7 Implementation

The experiments were carried out on a computer, pre-installed with Windows 10 equipped with

one Intel® Core™ i7-8550U 3.6 GHz CPU, Intel® Iris® Plus Graphics, 512 GB SSD storage,

and 16 GB memory. Google Collaboratory with Tesla P100-PCIE GPU and 27 GB memory

was utilized. To implement this work, python (Travis, 2007) programming language with Keras

(Chollet, 2017) library and TensorFlow (Abadi, 2016) as backend were used.

3.8 Training Phase

3.8.1 U-Net: Hyperparameters Tuning and Network Training

A U-Net architecture was used in this implementation to develop a Tuta absoluta semantic

segmentation model. In this custom U-Net, 32 convolutional filters were set in the initial

convolutional block which will be doubled after every block while setting 4 layers in the

encoder path. Since the problem in this study was binary segmentation, sigmoid was set as the

activation function in the output layer. All images in the dataset were rescaled to a range of (0

– 1) and then resized to a dimension of 512 x 512 pixels. Given the insufficient size of our

dataset to effectively train a CNN architecture, random data augmentation was performed to

expand the training dataset size. The augmentation techniques included horizontal and vertical

flipping, the zoom range of 0.2, shear in a range of 40, width and height shift in a range of 0.05,

and rotation in a range of 5.0 degrees. The images with their corresponding annotations were

transformed in the same way. Figure 24 shows the generated images with their corresponding

annotations after augmentation.

The network was trained using 200 epochs with a learning rate of 0.01 and Adam (Kingma &

Ba, 2014) as the optimization function. The IoU threshold for minimum detection probability

is kept at 0.5.

35

Figure 24: Augmented images with their corresponding annotations

3.8.2 Mask RCNN: Hyperparameters Tuning and Network Training

This implementation is based on an open-source Mask R-CNN by Matterport with

Massachusetts Institute of Technology (MIT) license (Abdulla, 2017), built on ResNet101 and

Feature Pyramid Network (FPN) as a backbone. Two CNN architectures, namely ResNet50

and ResNet101, were used separately as backbone architectures of proposed Mask RCNN

model. Images are resized in square mode to a minimum dimension of 800 pixels and a

maximum dimension of 1024 pixels. Since the inference is ran on one image at a time, the

batch size was set to 1 where each batch has 1 image per GPU. A learning rate of 0.001, weight

decay of 0.0001 and learning momentum of 0.9 have been used in this implementation. The

minimum detection probability is kept at 0.7 so that RoIs with scores larger than this threshold

are kept and below that are skipped. The training was developed during 200 epochs, and a

model was evaluated on the validation set at the end of each epoch. Configurations used to

train the Mask RCNN model are summarized in Table 3.

36

Table 3: Configurations used for training Mask RCNN model

Hyperparameter(s) Value(s)
Backbone ResNet50 or ResNet101
Backbone Strides [4, 8, 16, 32,64]
Batch Size 1
Detection Maximum Instances 100
Detection Minimum Confidence 0.7
Detection NMS Threshold 0.3
GPU Count 1
Images per GPU 1
Image Maximum Dimension 1024
Image Minimum Dimension 800
Image Resize Mode Square
Image Shape [1024 1024 3]
Learning Momentum 0.9
Learning Rate 0.001
Mask Shape (28, 28)
Number of Classes 2
RPN Anchor Scales (8, 16, 64, 128, 256)
RPN Anchor Stride 1
RPN NMS Threshold 0.9
Weight Decay 0.0001

37

3.9 Evaluation

Model evaluation is a measure of how the trained model generalizes on new previously unseen

data. It aims at estimating the generalization accuracy on new data. The performance of a deep

learning model can be evaluated using different evaluation metrics. The choice of evaluation

metrics depends on a given deep learning task (such as classification, localization, among

others). In this work, the performance of instance and semantic segmentation models was

evaluated using Intersection over Union, Dice Coefficient, precision, recall, and mean Average

Precision (mAP) as defined below.

3.9.1 Intersection over union (IoU)

Intersection over Union also known as Jaccard Index, is a metric that evaluates how similar the

predicted bounding box or mask is to the ground truth bounding box or mask. It is basically the

ratio of the area where the two boxes or masks overlap (intersection between predicted box or

mask and actual box or mask) to the total area of the two boxes or masks (their union). A

prediction is considered to be True Positive (TP) if the IoU is greater than a defined threshold

and False Positive (FP) if the IoU is less than a given threshold. The equation below illustrates

the calculation of IoU.

𝐼𝑜𝑈 =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
(3.1)

This metric ranges from 0 – 1 with 0 indicating that there is no overlap between the masks or

bounding boxes and 1 signifying that there is a perfect overlap between the bounding boxes or

masks as illustrated in Fig. 25. The IoU = 1, if the prediction is perfectly correct. The lower the

prediction result, the lower the IoU value.

38

Figure 25: Illustration of bounding boxes or masks overlaps and their corresponding IoU
values

3.9.2 Dice Coefficient (F1 Score)

Dice Coefficient also known as F1 Score, refers to the measure of overlap between ground

truth and predicted masks. It is quite similar to Jaccard’s index but doubles the count of the

intersections (TPs). It is 2 times the area of overlap divided by the total number of pixels in

both images. Like IoU, Dice Coefficient ranges from 0 to 1 with 1 indicating a perfect overlap

while 0 indicates no overlap between the predicted and ground truth masks.

Dice coefficient is defined as:

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛 + 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
=

2 ×
(3.2)

3.9.3 Precision

Precision is the measure of the percentage of correct positive predictions among all predictions

made. That is, of all positive predictions, how many predictions are True Positives? To get the

precision value, the ratio of True Positives to the total number of positive predictions is

calculated. Precision is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.3)

39

Where

𝑇𝑃 (True Positive) is the number of positive samples correctly predicted as positive i.e., the

number of correctly detected tuta mines.

𝐹𝑃 (False Positive) is the number of negative samples that are wrongly predicted as positive

i.e., the number of falsely detected tuta mines.

3.9.4 Recall

Recall is measuring the percentage of correct positive predictions among all actual positive

cases. That is to say, of all actual positives, how many are True positive predictions? To get

the recall value, the ratio of the True Positives to the total number of all samples that should

have been identified as positive is calculated.

Recall is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.4)

Where

𝑇𝑃 (True Positive) is the number of positive samples correctly predicted as positive i.e., the

number of correctly detected tuta mines.

𝐹𝑁 (False Negative) is the number of negative samples that are correctly predicted as negative.

i.e., the number of missed/undetected tuta mines.

3.9.5 Mean Average Precision (mAP)

Mean Average Precision is used as the primary evaluation metric to measure the quality of the

segmentations obtained by the model. It provides the average precision of object locations in

all predictions matching to ground-truth objects giving each object equal importance.

Mean Average Precision (mAP) is defined as:

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃 (3.5)

40

Where

𝑚𝐴𝑃 is the mean Average Precision of all classes.

𝐴𝑃 is the Average Precision.

∑𝐴𝑃 is the sum of the Average Precision values.

𝑁 is the number of all classes.

The Average Precision (AP) is defined by the area under the Precision-Recall (PR) curve, the

x-axis being recall and the y-axis being precision. To plot the graph, multiple precision-recall

value pairs are obtained by setting an IoU threshold value. Any detection with an IoU value

below the set threshold is treated as a FP and TP otherwise. Calculating the precision and recall

at each detection sorted by the threshold and after going through all precision-recall value pairs,

the precision-recall graph is obtained.

3.9.6 Loss Function

The loss function is used to optimize the parameter values in a CNN model. It maps a set of

network parameter values to a scalar value that shows how well those parameters perform the

role that the network is designed to do. The value calculated by the loss function is simply

referred to as "loss". That is to say, the loss function is a method of evaluating how well the

algorithm models/fits the dataset. If a model's performance is good, the loss function will output

a lower number and vice versa. Loss enables one to understand how much the predicted value

differs from the actual value.

(i) U-Net Loss Function

The U-Net uses a pixel-wise cross-entropy loss that examines each pixel individually compared

to the ground truth pixel then averaged over all pixels. Each pixel of the network's output is

compared with the corresponding pixel in the ground truth segmentation image. In their

original paper, (Ronneberger et al., 2015) states that “The energy function is computed by a

pixel-wise soft-max over the final feature map combined with the cross-entropy loss function”.

That is, pixel-wise softmax is applied to the output image followed by the standard cross-

entropy loss function. This loss weighting scheme helps the U-Net model segment tuta mines

in tomato leaf images in a discontinuous fashion such that individual tuta mines can be easily

identified within the binary segmentation map.

41

The loss is defined as:

𝐿 = ∑− (𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖))

𝑚

𝑖=1

(3.6)

Where

 𝐿 is the total loss in U-Net.

𝑚 is the number of pixels in an image.

i is the index of a pixel.

𝑦𝑖 is the binary indicator i.e., the ground truth or real value of the i-th pixel whose value is 0 or

1.

𝑙𝑜𝑔 is the natural log.

𝑝𝑖 is the predicted probability/value of the i-th pixel. Its value ranges from 0 to 1.

(ii) Mask RCNN Loss Function

The loss function is defined as a complex multi-task loss function which is calculated as the

weighted sum of various losses at each stage of Mask RCNN model training. This comprises

of three (3) losses, namely loss due to classification, regression, and mask prediction. The

regression and mask loss are only applied to positive examples.

The total loss is defined as:

𝐿𝑇 = ∑𝐿𝑐𝑙𝑠
𝑖

(𝑝𝑖,𝑔𝑖) + ∑𝑔𝑖𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖

+ ∑𝑔𝑖𝐿𝑚𝑎𝑠𝑘(𝑚𝑖,𝑚𝑖
∗)

𝑖

(3.7)

Where

𝐿𝑇 = 𝐿({𝑝𝑖}, {𝑡𝑖}, {𝑚𝑖}) is the total loss in Mask R-CNN.

i is the index of an anchor.

𝑝𝑖 is the predicted probability of an anchor i being an object.

𝑔𝑖 is the ground-truth probability of anchor i. Ground-truth label 𝑔𝑖 is 1 if the anchor is positive

and is 0 otherwise.

42

 𝑡𝑖 = (𝑡𝑖
𝑥, 𝑡𝑖

𝑦
, 𝑡𝑖

ℎ , 𝑡𝑖
𝑤) is a vector with the horizontal and vertical coordinates of the centre point

as well as the height and width coordinates of the predicted bounding box.

𝑡𝑖
∗ is a vector representing four (4) parameterized coordinates (x, y, h, w) of the ground-truth

bounding box associated with a positive anchor i.

𝐿𝑐𝑙𝑠 is the classification loss.

𝐿𝑟𝑒𝑔 is the regression loss. The term 𝑔𝑖𝐿𝑟𝑒𝑔 means that regression loss is only activated for

positive anchors (𝑔𝑖 = 1) and is disabled otherwise (𝑔𝑖 = 0).

𝐿𝑚𝑎𝑠𝑘 is the mask loss. The term 𝑔𝑖𝐿𝑚𝑎𝑠𝑘 means that mask loss is only activated for positive

anchors (𝑔𝑖 = 1) and is disabled otherwise (𝑔𝑖 = 0).

3.10 Model Deployment

This refers to the integration of a machine learning model into an existing production

environment such as web applications, mobile applications or IoT systems to make practical

decisions based on data. The proposed model was deployed into a mobile phone to enable and

facilitate farmers and extension officers to automatically detect affected areas on tomato plants

using their smartphones.

Since CNN models are complex and heavy, requiring a lot of memory and storage size to run,

the proposed model was converted into a lighter format using the TensorFlow Lite framework.

TensorFlow Lite (TFLite) is a set of tools designed to execute TensorFlow models efficiently

on mobile, IoT and other embedded devices with limited computing and memory resources.

Converting models reduce their file size, increase execution speed, and introduce optimizations

that do not affect accuracy. Appendix 3 describes the TFLite converter used in this work.

3.10.1 Requirement Analysis

This phase focuses on determining the conditions and services the mobile application should

meet and provide respectively. It encompasses the set of tasks that lead to an understanding of

what the mobile app impact will be, what the end-user wants and how they will interact with

the application software. The main requirement of this research was tomato leaf images

collected using high and low-resolution cameras to develop a CNN model for detecting areas

affected by Tuta absoluta pest. Data collected from the aforementioned methodologies and

field experience were used to obtain functional and non-functional requirements.

43

(i) Functional Requirements

Functional requirements define the services that a software must offer. They describe the

specific behaviors between inputs and outputs. The functionalities of the developed mobile

application include the following:

(a) Capturing images.

(b) Uploading images from the gallery.

(c) Providing general information about tomatoes and Tuta absoluta pest.

(d) Embedding CNN model for running inference on captured or uploaded images to

segment tuta mines on tomato plants.

(e) Displaying segmentation results.

(ii) Non-functional requirements

Non-functional requirements specify criteria that can be used to evaluate the operation of a

system. They describe the system’s operational capabilities as well as constraints that enhance

its functionality. Non-functional requirements of the developed mobile application include the

following:

(a) Availability: The developed mobile application operates offline thus can be

available all the time once downloaded from Google Playstore.

(b) Reliability: The application is reliable since it fulfills its assigned tasks, which

include accurately segmenting tuta mine on tomato leaf images.

(c) Usability: The developed mobile application is simple and easy to use without

guidance.

(d) Performance: The developed mobile application has good performance since it

takes only 5 seconds to run inference on a captured tomato leaf image.

(e) Compatibility: The application is compatible with all mobile devices installed with

the Android operating system.

44

3.10.2 Assumptions and Dependencies

The development of a Tuta absoluta segmentation mobile application was based on the

following assumptions for software and hardware features:

(i) The mobile application will be available and operate offline.

(ii) The project will follow agile methodology The users of the software will be

smallholder farmers and extension officers.

(iii) Most of the smallholder farmers who will be the primary users of the developed

mobile application are poor and use cheap smartphones installed with the Android

operating system.

(iv) The users have a good knowledge of smartphones and can well interact with

installed application software.

(v) The project will follow agile methodology throughout execution.

3.10.3 Use Case Modelling

A use case model describes how various types of users interact with the system, their

expectations and the system’s necessary actions to achieve these goals. It depicts the use cases,

actors and the relationships between them. The use case diagram of the Tuta absoluta

segmentation mobile application is shown in Fig. 26. Each of the use case shown is described

in Table 4. There two types of actors in this system that can perform the following tasks:

(i) Capture/take tomato leaf images.

(ii) Uploading tomato leaf images from the gallery.

(iii) View the uploaded/captured image.

(iv) Display general information about tomatoes.

(v) Display general information about Tuta absoluta pest.

(vi) Displaying segmentation results.

45

Farmer/Extension officer

View tomato info

View Tuta absoluta info

Capture/take image

Upload image

View image

Display segmentation
results

CNN model runs
inference

<<extend>>

<<include>>

<<include>>

Figure 26: The use case diagram for Tuta absoluta segmentation application

46

Table 4: Description of the Use Cases

Use Case Description Actor (s)
View tomato info The user(s) can display

general information about
tomatoes such as the
scientific name, production
statistics, and planting
information.

Farmer or Extension officer

View Tuta absoluta info The user(s) can display
general information about
Tuta absoluta such as their
common and scientific
names, physiology, and life
cycle.

Farmer or Extension officer

Capture/take photo The user(s) can access their
mobile phone’s camera to
take a photo of a tomato
plant. Then the system will
automatically run inference
on the photo using the CNN
model in the background to
segment tuta mines.

Farmer or Extension officer

Upload an image The user(s) can upload a
tomato plant image from
their mobile phone’s gallery.
Then the system will
automatically run inference
on the uploaded photo using
the CNN model in the
background to segment tuta
mines.

Farmer or Extension officer

View image The user(s) can view the
captured or uploaded image
in the mobile application.

Farmer or Extension officer

Display segmentation results The user(s) can display the
original image, segmentation
results, and overlay in the
mobile application.

Farmer or Extension officer

47

3.10.4 Activity Diagram

The activity diagram depicts the dynamic aspect of the application software. It graphically

represents a series of actions or flow of control in a system with support for iteration and

concurrency. Figure 27 describes the activity diagram for Tuta absoluta segmentation mobile

application.

Capture image

Disease
Diagnosis

New
image

View tomato info

View tuta info

Segment tuta

Upload image

Knowledge
need

Existing
image

View segmentation
results

Tomato

Tuta
Absoluta

Run inference
using CNN model

• Original image
• Predicted masks
• Mask overlay
• Execution time
• Labels found

Figure 27: The activity diagram for Tuta absoluta segmentation application

3.10.5 Sequence Diagram

The sequence diagram describes how objects interact with each other for a particular scenario

of the system. It details the way operations in the application software are performed. Figure 28

shows the sequence diagram for Tuta absoluta segmentation mobile application.

48

User App CNN
model

View tomato/tuta info

Display tomato/tuta info

Upload/Capture image

Segment/detect tuta mines

Segmentation results

Display original image

Display segmentation results

Figure 28: The sequence diagram for Tuta absoluta segmentation application

3.10.6 Software Development Methodology

For mobile application development, the agile approach was used. This is a software

development methodology that allows developers to build a prototype, show its functionality

to users, and make changes based on their input. It encourages continuous development and

testing iteration throughout the software development lifecycle. This approach was important

in delivering reliable, user-friendly and efficient software in a short time. Figure 29

demonstrates the agile software development life cycle.

49

Figure 29: Agile methodology (Abellán, 2020)

3.10.7 Technologies Used

In the development of this mobile application, the python programming language was used to

convert the CNN models to a mobile-compatible format. Then Extensible Markup Language

(XML) and Kotlin programming language were used to define the interface and functionalities

of the application, respectively. The following platforms were used in the implementation of

the application software:

(i) Android Studio Integrated Development Environment (IDE).

(ii) Anaconda Platform

(iii) Samsung SM-A025F for testing the mobile application.

50

3.11 Quantification

On top of the proposed instance segmentation model, Mask RCNN, a custom function was

developed for counting the detected tuta mines using Open-Source Computer Vision

(OpenCV) library in Python programming language. OpenCV is an open-source and cross-

platform library built to provide a common infrastructure for computer vision applications

focusing on image and video processing and analysis (Bradski & Kaehler, 2009). In this

implementation, the OpenCV library is used to find the detected tuta mines using contours with

the find_contours() method, draw bounding boxes around and count them. Then putText(), an

OpenCV method is used to add text at the top left corner of the image, showing the number of

detected tuta mines in one tomato leaf image at a time. Appendix 5 describes the code for the

implementation of OpenCV object counting based on the proposed Mask RCNN model.

51

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 The Dataset

For this work, 1212 and 1240 image sets with only infested plants from the total collection of

images that make up the dataset were selected. The criterion for selecting the images was that

each image must contain at least one tuta mask indicating the presence of Tuta absoluta’s mine

in the image. The distribution of the annotated dataset was split into training and test sets in a

ratio of 80:20 respectively as shown in Table 5. The training set was used to train the model

while the test set was used to evaluate the model’s performance.

Table 5: Train/test set splits

Model Data Ratio Training set Test set Total
U-Net (VOC format) 80:20 969 243 1212
Mask RCNN (COCO
format)

80:20 992 248 1240

4.2 Loss Results

4.2.1 Mask RCNN Loss Results

Mask RCNN with ResNet50 and ResNet101 as backbone architectures was trained separately

on the annotated dataset described in Table 5 keeping a record of the training and validation

loss for 200 epochs. Figure 30 demonstrates the loss diagrams of the proposed Mask RCNN

model during the training process using the loss function described in Equation (3.7). The

training and validation losses were estimated after each training epoch. As the training process

progresses, the value of training loss rapidly decreases, followed by validation loss. As revealed

in the figure, the validation loss starts to display an upward trend after several epochs while the

training loss continues to decrease slightly making a gap between the two losses. This suggests

that the model is overfitting. The last epoch that did not overfit is selected.

52

Figure 30: Training and validation loss for Mask RCNN (a) Loss graph for Mask RCNN-
ResNet50 (b) Loss graph for Mask RCNN-ResNet101

Then the network was retrained with augmentation techniques described in Section 3.5.4

keeping a record of the total loss. As shown in Fig. 31, the loss function monotonically

decreases during the training phase. The losses stabilize at the end of the training, indicating

that the proposed model learns and segments the tuta mines well without overfitting.

Figure 31: Training and validation loss for Mask RCNN with augmentations. (a) Loss
graph for Mask RCNN-Resnet50 with augmentations. (b) Loss graph for
Mask RCNN-Resnet101 with augmentations

53

4.2.2 U-Net Loss Results

On the other hand, U-Net demonstrated better performance with a low loss value compared to

that of Mask RCNN. As shown in Fig. 32, the training loss starts at around 0.2761 and

validation loss starts at 0.0604 then keeps decreasing steadily as the number of iterations

increases. Approaching the 125th epoch, the validation loss slightly starts to increase while

training loss continues to decrease, creating a small gap between the two losses. The small gap

between training and validation loss implies that the model fits well on the features of the

dataset at the early and later stages of the training process and can segment the tuta mines well

without overfitting. It also indicates that the performance of the proposed model can be

improved to a better value upon adding more data.

Figure 32: Training and validation loss for U-Net

54

4.3 Evaluation Metrics Results

4.3.1 Jaccard Index/IoU

The U-Net model was trained on our dataset for 200 epochs keeping a record of the training

and validation IoU values thresholded at 0.5. As shown in Fig. 33, the training IoU starts at a

minimum point of 0.3356 and the validation IoU starts at 0.5028 then keeps on increasing as

the number of epochs increases. When approaching the end of the training process at the 200th

epoch, the IoU is 0.7860 and the validation IoU is 0.7490. This implies that the model could

learn well the features in the dataset and semantically segment the tuta mines well from other

parts of the images.

Figure 33: Intersection over Union (IoU) curve for U-Net model

4.3.2 Dice Coefficient

While training the U-Net model on the dataset described in Table 5, values of the dice

coefficient at each iteration for 200 epochs were recorded. Figure 34 shows the dice coefficient

curve as the training process progresses. As shown, the Dice Coefficient starts at a minimum

point of 0.2092 and the validation dice coefficient starts at 0.4900 then increases as the training

process progresses. In the end, U-Net achieves a high detection rate with a dice coefficient as

55

high as 0.8286 and a validation dice coefficient of 0.8116, implying that the model fits well on

the data and can precisely segment tuta mines on tomato leaves.

The evaluation metrics results for the semantic segmentation model, U-Net are summarized in

Table 6. Some examples of segmentation executed by the proposed U-Net model are shown in

Fig. 35. As can be seen, the model generates precise segmentations of tuta mines in tomato

plants.

Figure 34: Dice Coefficient curve of the U-Net model

Table 6: The evaluation metrics results for semantic segmentation model

Method
Jaccard

Index/IoU (%)
Dice Coefficient

(%)
Validation IoU

(%)
Validation Dice
Coefficient (%)

U-Net 78.60 82.86 74.90 81.16

56

Figure 35: Examples of segmentations achieved by the proposed U-Net model

4.3.3 The mAP

The area under the Precision-Recall (PR) curve, which defines the Average Precision (AP), can

summarize the performance of a segmentation model, the x-axis being recall and the y-axis

being precision. A threshold of IoU was set at 0.5 below which any segmentation with a score

less than this is considered a FP. As shown in Fig. 36, the PR curve was monotonically

decreasing, which is suitable for better performance. The precision of a detector with good

performance remains high as recall increases, implying that it can detect a large proportion of

TP before it starts detecting FP.

57

Figure 36: The P-R Curve

Table 7 presents the mAP values used to evaluate the performance of the proposed methods in

detecting and segmenting tuta mines on tomato images with minimum detection confidence of

0.7. The mAP value of Mask RCNN-ResNet50 with augmentations is as high as 85.67%,

achieving the highest detection rates on tuta mines in tomato plants compared to other methods.

As seen in the table, the performance of Mask RCNN-ResNet50 and Mask RCNN-ResNet101

is relatively low, with mAPs of 81.01% and 81.09%, respectively. This is likely because of the

complexities of backbone architectures to train on an inadequate amount of data. Examples of

segmentations produced by the proposed Mask RCNN model are shown in Fig. 37. As can be

seen, the model could detect even the smallest tuta mines on tomato leaves.

58

Table 7: The mAP (primary metric) values of the tomato images obtained by different
detection architectures

Method(s) mAP (%)
Mask RCNN-ResNet50 81.01
Mask RCNN-ResNet50 with augmentations 85.67
Mask RCNN-ResNet101 81.09
Mask RCNN-ResNet101 with augmentations 83.60

Figure 37: Examples of segmentations carried out by the proposed Mask RCNN model

4.4 Training Time

The efficiency of the model is another important performance criterion apart from the detection

rates. Table 8 reveals the training time in minutes for each method employed in this study for

all tomato leaf images. It can be seen that the training time of U-Net is 483.50 minutes which

is 169.91, 187.07, 359.45, and 369.9 minutes shorter than that of Mask RCNN-ResNet50, Mask

RCNN-ResNet50 with augmentations, Mask RCNN-ResNet101, and Mask RCNN-ResNet101

with augmentations, respectively. This is because the ResNet101 has a more complex structure

compared to ResNet50 and U-Net hence longer training time. Additionally, Mask RCNN with

59

ResNet101 as a backbone, Mask RCNN with ResNet50 as a backbone, and U-Net models had

63 621 918, 44 603 678 and 7 763 041 trainable parameters, respectively. Therefore, U-Net

was more efficient in this category compared to other training methods.

Table 8: Training time

Method(s) Training time (minutes)
Mask RCNN-ResNet50 653.41
Mask RCNN-ResNet50 with augmentations 670.57
Mask RCNN-ResNet101 842.95
Mask RCNN-ResNet101 with augmentations 853.40
U-Net 483.50

4.5 Developed Mobile Application

The U-Net model was selected for mobile application deployment since it has a less complex

structure, requiring less computational costs than other training methods in this study. The U-

Net model was converted to TFLite format then embedded to a mobile application in Android

Studio as described in Section 3.10.

A simple and user-friendly mobile application was developed to allow smooth interaction

between the farmers/extension officers and the application. After installing the application in

their Android smartphones, the farmer/extension officer simply clicks on the application icon

which welcomes them with a colorful splash screen with a progress bar displayed only for two

seconds before landing to the scrollable home page. As shown in Fig. 38, the home screen

includes two clickable cards with quick facts about the tomato plant and Tuta absoluta as well

as a clickable floating button for tuta segmentation. The user can click on the tomato plant card

to view general information about tomatoes such as their scientific name, production statistics,

and cropping information such as water, soil, and fertilizer they need to grow as shown in Fig.

39 (a). Also, the user can view general information about the tomato leaf miner such as their

common and scientific names, physiology, and life cycle by clicking on the Tuta absoluta card

from the home page as shown in Fig. 39 (b). This will help the farmer learn and understand the

pest well to easily take measures to control it.

Additionally, a clickable floating button for tuta segmentation was included on every page in

the mobile application so that the farmer can easily navigate to the disease diagnosis page to

detect and segment tuta mines in tomato leaf images. The disease diagnosis page consists of a

60

frame layout that accesses and displays the device camera, a floating camera button for

capturing tomato leaf images, a floating upload button for uploading images stored in the

phone’s gallery, and a horizontally scrollable section that displays the original tomato leaf

image captured or uploaded to the application, predicted masks and the masks overlayed with

the original image. It also consists of a bottom sheet layout that displays the input image size,

information about the labels found during detection with their colors or no labels found, model

execution time in milliseconds and the button to rerun the model. In summary, the farmer or

extension officer can use the mobile application to segment tuta mines in tomato leaf images

as follows:

(i) The user clicks the “Segment Tuta” button from any other page that will take him/her

to the “Disease Diagnosis” page.

(ii) On the “Disease Diagnosis” page, the user can click the camera or upload buttons to

capture or upload a tomato leaf image respectively.

(iii) The mobile application will process the image using a CNN segmentation model

running in the background and then give feedback which is displayed in the

application.

(iv) Suppose the image does not have tuta mines. In that case, the application will display

a text “No labels found”, otherwise the application will display three images namely,

original image, predicted masks and overlay as well as the labels found with their

colors and the model execution time as shown in Fig. 40.

The Tuta absoluta segmentation mobile application was designed to be available and operate

offline once installed. This will help the poor farmers avoid the costs of buying internet bundles

to access the mobile application and detect tuta mines in their farms.

61

Figure 38: Tuta absoluta segmentation mobile application (a) Splash screen (b)
Landing/home page

62

Figure 39: Tuta absoluta segmentation mobile application (a) The description page for
tomato cropping (b) Description page for Tuta absoluta

63

Figure 40: Tuta absoluta segmentation mobile application (a) A healthy plant with no tuta
mines (b) Original image and mask prediction (c) Segmentation results

64

4.6 Quantification Results

Figure 41 shows the quantification results obtained using the OpenCV library built on top of

the proposed Mask RCNN model. As can be observed, the model was able to accurately find

the detected regions with tuta mines, count them and display the number of tuta mines present

in a tomato leaf image. This can help farmers understand the extent of the damage caused by

Tuta absoluta to tomato plants and take appropriate measures to control the pest before it causes

further damage to tomatoes in the farm.

Figure 41: Examples of quantification results carried out by the OpenCV function built
on top of the proposed Mask RCNN model

65

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

While several studies have been conducted in the agricultural sector to diagnose various

diseases and pests in plants, relatively few studies in the literature have focused on predicting

disease severity. And to the best of the authors' knowledge, none discuss the segmentation and

quantification of Tuta absoluta's damage on tomato plants. However, to control these diseases

and pests on plants without causing uneconomical damage to the environment, it needs accurate

segmentations to determine the extent of damage caused. The development of a sophisticated

technical solution for the early detection of Tuta absoluta-caused tomato plant damage is in

high demand due to the need to rescue farmers' tomato productivity losses.

This study aimed to tackle the problem of precisely segmenting Tuta absoluta’s damage on

tomato plants and determining the extent of damage at their early growth stage. To address this

problem, this novel work proposed deep CNN models based on U-Net and Mask RCNN

architectures which are used for automatic semantic and instance segmentation, respectively.

For accomplishing this work, an annotated dataset with 2452 images collected from the field

was used to train the models separately. The experimental results show that the Mask RCNN-

ResNet101 model performs best achieving a mAP of 85.67%, while the U-Net model obtained

78.60% and 82.86% of Jaccard index and Dice Coefficient, respectively. Also, Mask RCNN-

ResNet50 has a shorter training time than Mask RCNN-ResNet101 due to its less complex

structure. Both suggested models were very accurate in segmenting the shapes of Tuta

absoluta-infected areas in tomato leaves and determine their extent of the damage. The instance

segmentation model, Mask RCNN, was then used to automatically determine the number of

tuta mines present in tomato leaf images. This demonstrates that deep learning is the new

promising technology for fully automatic and early determination of Tuta absoluta severity

status.

5.2 Recommendations

This work has laid the foundation that could be used to provide both theoretical and practical

analysis for future works in segmentation-based quantification of Tuta absoluta’s damage to

tomato plants. It demonstrated how the integration of modern technology in agriculture,

66

particularly diseases and pests diagnosis, could help control and possibly overcome diseases

and pests in plants and improve their productivity. This study recommends that the robustness

of the proposed model be further stabilized by expanding the diversity of tomato images adding

other pests and diseases that affect the plant. Even though the validation results of the proposed

models indicate good segmentation accuracy, more annotated data is needed to further validate

and improve the performance.

In the future, a CNN decision support system will be developed and deployed in a mobile or

computer to enable farmers and extension officers to make intelligently informed decisions on

how to control the pest so that to increase productivity. The system will be able to suggest

actions to be taken such as the application of Integrated Pest Management (IPM) techniques to

control the pest based on their severity.

67

REFERENCES

Abadi, M. (2016). TensorFlow: Learning Functions at Scale. Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, 51(9), 1–1. https://doi.o

rg/10.1145/3022670.2976746

Abdulla, W. (2017). Mask R-CNN for object detection and instance segmentation on Keras

and TensorFlow. Matterport. https://github.com/matterport/Mask_RCNN. Accessed on

July 30,2020.

Abellán, E. (2020, February 6). What’s the Agile Methodology and How Can It Benefit Your

Enterprise? WAM. https://www.wearemarketing.com/blog/what-is-the-agile-methodolo

gy-and-what-benefits-does-it-have-for-your-company.html. Accessed on April 5, 2021.

Amara, J., Bouaziz, B., & Algergawy, A. (2017). A Deep Learning-based Approach for Banana

Leaf Diseases Classification. In B. Mitschang, D. Nicklas, F. Leymann, H. Schöning, M.

Herschel, J. Teubner, T. Härder, O. Kopp, & M. Wieland (Eds.), Datenbanksysteme für

Business, Technologie und Web (BTW 2017) - Workshopband (pp. 78–88). Gesellschaft

für Informatik e.V. https://dl.gi.de/handle/20.500.12116/944

Arah, I. K. (2015). An overview of post-harvest challenges facing tomato production in Africa.

African Studies Association of Australasia and the Pacific (AFSAAP) 37th Annual

Conference, 11, 1-21. Dunedin, New Zealand.

Bradski, G., & Kaehler, A. (2009). Learning OpenCV: Computer Vision with the OpenCV

Library. O’Reilly Media, Inc. https://doi.org/10.1109/mra.2009.933612

Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep Learning for Tomato Diseases:

Classification and Symptoms Visualization. Applied Artificial Intelligence, 31(4), 299–

315. https://doi.org/10.1080/08839514.2017.1315516

Burton-Freeman, B., & Reimers, K. (2011). Tomato Consumption and Health: Emerging

Benefits. American Journal of Lifestyle Medicine, 5(2), 182–191. https://doi.org/10.1177/

1559827610 387488

68

Çetin, B., & Vardar, A. (2008). An economic analysis of energy requirements and input costs

for tomato production in Turkey. Renewable Energy, 33(3), 428–433. https://doi.org/10.

1016/j.renene.2007.03.008

Chidege, M., Al-zaidi, S., Hassan, N., Abisgold, J., Kaaya, E., & Mrogoro, S. (2016). First

record of tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in

Tanzania. Agriculture and Food Security, 5(1), 1–7. https://doi.org/10.1186/s40066-016-

0066-4

Chollet, F. (2017). Introduction to Keras. In Deep Learning with Python (1st ed., pp. 60–62).

Manning Publications Co.

Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep Neural

Networks Segment Neuronal Membranes in Electron Microscopy Images. Proceedings of

the 25th International Conference on Neural Information Processing Systems, 25, 2843–

2851.

Clarke, J. F. (1965). Microlepidoptera of Juan Fernandez Island. Proceedings of the United

States National Museum, 34(2), 36–107. https://doi.org/10.4039/Ent3436-2

Cuthbertson, A. G. S., Mathers, J. J., Blackburn, L. F., Korycinska, A., Luo, W., Jacobson, R.

J., & Northing, P. (2013). Population development of Tuta absoluta (Meyrick)

(Lepidoptera: Gelechiidae) under simulated UK glasshouse conditions. Insects, 4(2), 185–

197. https:// doi.org/10.3390/insects4020185

Desneux, N., Luna, M. G., Guillemaud, T., & Urbaneja, A. (2011). The invasive South

American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and

beyond: the new threat to tomato world production. Journal of Pest Science, 84(4), 403–

408. https://doi.org/ 10.1007/s10340-011-0398-6

Desneux, N., Wajnberg, E., Wyckhuys, K. A. G., Burgio, G., Arpaia, S., Narváez-Vasquez, C.

A., González-Cabrera, J., Ruescas, D. C., Tabone, E., Frandon, J., Pizzol, J., Poncet, C.,

Cabello, T., & Urbaneja, A. (2010). Biological invasion of European tomato crops by Tuta

absoluta: Ecology, geographic expansion and prospects for biological control. Journal of

Pest Science, 83(3), 197–215. https://doi.org/10.1007/s10340-010-0321-6

69

Díez, M. J., & Nuez, F. (2006). Tomato. Genetic Resources, Chromosome Engineering, and

Crop Improvement: Vegetable Crops, 3, 59–113. https://doi.org/10.2307/j.ctt1ffjk9m.28

Doğanlar, M., & Yİğİt, A. (2011). Parasitoids Complex of the Tomato Leaf Miner, Tuta

absoluta (Meyrick 1917), (Lepidoptera: Gelechiidae) in Hatay Turkey. KSU Journal of

Natural Sciences, 14(4), 28-37. https://doi.org/10.18016/ksujns.36297

Dutta, A., & Zisserman, A. (2019). The VIA annotation software for images, audio and video.

MM 2019 - Proceedings of the 27th Association for Computing Machinery (ACM)

International Conference on Multimedia, 2276–2279. https://doi.org/10.1145/3343031.

3350535

Esgario, J. G. M., Krohling, R. A., & Ventura, J. A. (2020). Deep learning for classification

and severity estimation of coffee leaf biotic stress. Computers and Electronics in

Agriculture, 169, 105162. https://doi.org/10.1016/j.compag.2019.105162

Everingham, M., Gool, L. Van, Williams, C. K. I., & Winn, J. (2010). The PASCAL Visual

Object Classes (VOC) Challenge. International Journal of Computer Vision, 88, 303–

338. https://doi .org/10.1007/s11263-009-0275-4

FAO. (2017). Transboundary Threats To Food and Nutrition Security in Southern Africa. In

Food and Agriculture Organization of the United Nations (FAO) (1). http://www.fao.org/

3/a-i7691e.pdf. Accessed on January 27, 2020.

FAO. (2019). FAOSTAT - Crops Production. Food and Agriculture Organization (FAO)

Statistics. http://www.fao.org/faostat/en/?#compare. Accessed on January 18, 2020.

FAOSTAT. (2019). Tomato Production Worldwide. Food and Agriculture Organization

(FAO). http://www.fao.org/faostat/en/?#data/QC. Accessed on March 27, 2020.

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis.

Computers and Electronics in Agriculture, 145(1), 311–318. https://doi.org/10.1016/

j.compa g.2018.01.009

Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector

for real-time tomato plant diseases and pests recognition. Sensors, 17(9), 2022-2043.

https://doi.org/ 10.3390/s17092022

70

Guedes, R. N. C., & Picanço, M. C. (2012). The tomato borer Tuta absoluta in South America:

Pest status, management and insecticide resistance. European and Mediterranean Plant

Protection Organization Bulletin, 42(2), 211–216. https://doi.org/10.1111/epp.2557

Guimapi, R. Y. A., Mohamed, S. A., Okeyo, G. O., Ndjomatchoua, F. T., Ekesi, S., & Tonnang,

H. E. Z. (2016). Modeling the risk of invasion and spread of Tuta absoluta in Africa.

Ecological Complexity, 28, 77–93. https://doi.org/10.1016/j.ecocom.2016.08.001

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 42(2), 386–397. https://doi.org/10.1109/

TPAMI.2018.2844175

Hughes, D. P., & Salathe, M. (2015). An open access repository of images on plant health to

enable the development of mobile disease diagnostics. http://arxiv.org/abs/1511.08060

Kingma, D. P., & Ba, J. (2014, December 22). Adam: A Method for Stochastic Optimization.

http://arxiv.org/abs/1412.6980

Lawrence, S., & Giles, C. L. (2000). Overfitting and Neural Networks: Conjugate Gradient and

Backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks. Neural Computing: New Challenges and Perspectives for the New

Millennium, 1, 114–119. https://doi.org/10.1109/IJCNN.2000.857823

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Liang, Q., Xiang, S., Hu, Y., Coppola, G., Zhang, D., & Sun, W. (2019). PD 2 SE-Net:

Computer-assisted plant disease diagnosis and severity estimation network. Computers

and Electronics in Agriculture, 157, 518–529. https://doi.org/10.1016/j.compag.2019.01.

034

Lin, K., Gong, L., Huang, Y., Liu, C., & Pan, J. (2019). Deep learning-based segmentation and

quantification of cucumber powdery mildew using convolutional neural network.

Frontiers in Plant Science, 10(2), 1–10. https://doi.org/10.3389/fpls.2019.00155

71

Lin, T., Zitnick, C. L., & Doll, P. (2014). Microsoft COCO: Common Objects in Context.

European Conference on Computer Vision, 8693, 1–15. https://doi.org/10.1007/978-3-

319-10602-1_48

Liu, X., Hu, C., & Li, P. (2020). Automatic segmentation of overlapped poplar seedling leaves

combining Mask R-CNN and DBSCAN. Computers and Electronics in Agriculture,

178(5), 105753. https://doi.org/10.1016/j.compag.2020.105753

Maginga, T. J., Nordey, T., & Ally, M. (2018). Extension System for Improving the

Management of Vegetable Cropping Systems. Journal of Information Systems

Engineering and Management, 3(4), 29-39. https://doi.org/10.20897/jisem/3940

Materu, C. L., Shao, E. A., Losujaki, E., & Chidege, M. (2016). Farmer’s Perception

Knowledge and Practices on Management of Tuta Absoluta Meyerick (Lepidotera

Gelechiidae) in Tomato Growing Areas in Tanzania. International Journal of Research

in Agriculture and Forestry, 3(2), 1–5.

Meyrick, E. (1917). Descriptions of South American micro-lepidoptera. Transactions of the

Entomological Society of London, 1917, 1–52. https://www.cabdirect.org/cabdirect/abstra

ct/20057001788

Ministry of Agriculture. (2017). Annual Agriculture Sample Survey Crop and Livestock Report.

https://www.nbs.go.tz/nbs/takwimu/Agriculture/2016-17_AASS Report _Final.pdf

Mkonyi, L., Rubanga, D., Richard, M., Zekeya, N., Sawahiko, S., Maiseli, B., & Machuve, D.

(2020). Early identification of Tuta absoluta in tomato plants using deep learning.

Scientific African, 10, e00590. https://doi.org/10.1016/j.sciaf.2020.e00590

Mutayoba, V., & Ngaruko, D. (2018). Assessing Tomato Farming and Marketing Among

Smallholders in High Potential Agricultural Areas of Tanzania. International Journal of

Economics, Commerce and Management, VI(8), 577–590.

O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. Computing

Research Repository, abs/1511.0, 1–11. http://arxiv.org/abs/1511.08458

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

72

Patil, V. C., Al-Gaadi, K. A., Biradar, D. P., & Rangaswamy, M. (2012). Internet of Things

(Iot) and Cloud Computing for Agriculture: An Overview. Agro-Informatics and

Precision Agriculture 2012, India, 292–296. http://insait.in/AIPA2012/ articles/054.pdf

Pawang, S. (2020, March 1). Mask R-CNN | ML - GeeksforGeeks. GeeksforGeeks.

https://www. geeksforgeeks.org/mask-r-cnn-ml/. Accessed on January 18, 2021.

Pérez-Borrero, I., Marín-santos, D., Gegúndez-Arias, M. E., & Cortés-Ancos, E. (2020). A fast

and accurate deep learning method for strawberry instance segmentation. Computers and

Electronics in Agriculture, 178, 105-736. https://doi.org/10.1016/j.compag.2020.105736

Povolný, D. (1967). Genitalia of some nearctic and neotropic members of the tribe

Gnorimoschemini (Lepidoptera, Gelechiidae). Acta Entomologica Musei Nationalis

Pragae, 37, 51–127.

Povolný, D. (1985). Gnorimoschemini of Southern America III: the scrobipalpuloid genera

(Insecta, Lepidoptera: Gelechiidae). Steenstrupia (Copenhagen), 11(1), 1-91. https://pasc

al-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9082178

Povolný, D. (1994). Gnorimoschemini of southern South America VI: identification keys,

checklist of Neotropical taxa and general considerations (Insecta, Lepidoptera,

Gelechiidae). Steenstrupia, 20(1), 1–42.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical

image segmentation. International Conference on Medical Image Computing and

Computer-Assisted Intervention, 9351, 234–241. https://doi.org/10.1007/978-3-319-

24574-4_28

73

Rupanagudi, S. R., Ranjani, B. S., Nagaraj, P., Bhat, V. G., & Thippeswamy, G. (2015). A

novel cloud computing based smart farming system for early detection of borer insects in

tomatoes. Proceedings - 2015 International Conference on Communication, Information

and Computing Technology, 2015, 1-6. https://doi.org/10.1109/ICCICT.2015. 7045722

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe : A database

and web-based tool for image annotation. International Journal of Computer Vision,

77(1–3), 157–173. http://people.csail.mit.edu/brussell/research/AIM-2005-025-new.pdf

Rwomushana, I., Beale, T., Chipabika, G., Day, R., Gonzalez-Moreno, P., Lamontagne-

Godwin, J., Makale, F., Pratt, C., & Justice, T. (2019). Tomato leafminer (Tuta absoluta):

Impacts and coping strategies for Africa. CABI (No. 12). https://doi.org/10.1079/

CABICOMM-62-8100

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep

Learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

Singh, A. K., Ganapathysubramanian, B., Sarkar, S., & Singh, A. (2018). Deep Learning for

Plant Stress Phenotyping: Trends and Future Perspectives. Trends in Plant Science,

23(10), 883–898. https://doi.org/10.1016/j.tplants.2018.07.004

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep Neural

Networks Based Recognition of Plant Diseases by Leaf Image Classification.

Computational Intelligence and Neuroscience, 2016, 1–11. https://doi.org/10.1155/2016/

3289801

Soares, M. A., & Campos, M. R. (2020). Invasive Species Compendium: Datasheet report for

Tuta absoluta (tomato leafminer). European and Mediterranean Plant Protection

Organization (EPPO), Food and Agriculture Organization (FAO). https://www.cabi.org/

isc/datasheet/49260#tosummaryOfInvasiveness

Tang, H., Wang, B., & Chen, X. (2020). Deep learning techniques for automatic butterfly

segmentation in ecological images. Computers and Electronics in Agriculture, 178(5),

105739. https://doi.org/10.1016/j.compag.2020.105739

74

Tomato News. (2020). The global tomato processing industry. The Tomato Online Conference.

http://www.tomatonews.com/en/background_47.html. Accessed on January 16, 2021.

Tonnang, H. E. Z., Mohamed, S. F., Khamis, F., & Ekesi, S. (2015). Identification and risk

assessment for worldwide invasion and spread of tuta absoluta with a focus on Sub-

Saharan Africa: Implications for phytosanitary measures and management. PLoS ONE,

10(8), 1–19. https://doi.org/10.1371/journal.pone.0135283

Travis, E. O. (2007). Python for Scientific Computing. Computing in Science and Engineering,

9(3), 10–20. https://doi.org/10.1109/MCSE.2007.58

Tzounis, A., Katsoulas, N., & Bartzanas, T. (2017). Internet of Things in agriculture, recent

advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/

10.1016/j.biosystemseng.2017.09.007

United Nations. (2017). World Population Prospects: The 2017 Revision, Key Findings and

Advance Tables. https://esa.un.org/unpd/wpp/publications/files/wpp2017_keyfindings.

pdf

United Nations. (2018). United Nations, The Sustainable Development Goals Report 2018. 40.

https://doi.org/10.29171/azu_acku_pamphlet_k3240_s878_2016

Van Damme, V., Berkvens, N., Moerkens, R., Berckmoes, E., Wittemans, L., De Vis, R.,

Casteels, H., Tirry, L., & De Clercq, P. (2015). Overwintering potential of the invasive

leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse

tomato production in Western Europe. Journal of Pest Science, 88(3), 533–541.

https://doi.org/10.1007/s10340-014-0636-9

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for

Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 2018,

1-14. https://doi.org/10.1155/2018/7068349

Wang, G., Sun, Y., & Wang, J. (2017). Automatic Image-Based Plant Disease Severity

Estimation Using Deep Learning. Computational Intelligence and Neuroscience, 2017, 1-

8. https://doi. org/ 10.1155/2017/2917536

75

Wang, Q., Qi, F., Sun, M., Qu, J., & Xue, J. (2019). Identification of Tomato Disease Types

and Detection of Infected Areas Based on Deep Convolutional Neural Networks and

Object Detection Techniques. Computational Intelligence and Neuroscience, 2019, 1-15.

https:// doi.org/ 10.1155/2019/9142753

Weiss, K., Khoshgoftaar, T. M., & Wang, D. D. (2016). A survey of transfer learning. Journal

of Big Data, 3(1), 1-40. https://doi.org/10.1186/s40537-016-0043-6

Zekeya, N., Chacha, M., Ndakidemi, P., Materu, C., Chidege, M., & Mbega, E. (2016). Tomato

Leafminer (Tuta absoluta Meyrick 1917): A Threat to Tomato Production in Africa.

Journal of Agriculture and Ecology Research International, 10(1), 1–10. https://doi.org/

10.9734/ jaeri/2016/28886

Zekeya, N., Ndakidemi, P. A., Chacha, M., & Mbega, E. (2017). Tomato Leafminer, Tuta

absoluta (Meyrick 1917), an emerging agricultural pest in Sub-Saharan Africa: Current

and prospective management strategies. African Journal of Agricultural Research, 12(6),

389–396. https://doi.org/10.5897/AJAR2016.11515

Zhang, K., Wu, Q., Liu, A., & Meng, X. (2018). Can deep learning identify tomato leaf disease?

Advances in Multimedia, 2018, 1-10. https://doi.org/10.1155/2018/6710865

76

APPENDICES

Appendix 1: Mask RCNN Model Source Code

Import important libraries
import os

import sys

import random

import math

import re

import time

import datetime

import numpy as np

import cv2

import matplotlib

import matplotlib.pyplot as plt

import json

import skimage.draw

for visualization

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import matplotlib.lines as lines

from matplotlib.patches import Polygon

%matplotlib inline

Setup configurations
class TutaConfig(Config):

 # Give the configuration a recognizable name

 NAME = "tuta"

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1

 # Number of classes (including background)

 NUM_CLASSES = 1 + 1 # Background + tuta

 #resize the images to a

 IMAGE_MIN_DIM = 512

 IMAGE_MAX_DIM = 512

 # Number of training steps per epoch

 STEPS_PER_EPOCH = 1000

 VALIDATION_STEPS = 50

 # Backbone network architecture

 # Supported values are: resnet50, resnet101.

77

 BACKBONE = 'resnet50'

 # The strides of each layer of the FPN Pyramid.

 BACKBONE_STRIDES = [4, 8, 16, 32, 64]

 # Anchor stride

 RPN_ANCHOR_STRIDE = 1

 # Non-max suppression threshold to filter RPN proposals.

 RPN_NMS_THRESHOLD = 0.9

 # Length of square anchor side in pixels

 RPN_ANCHOR_SCALES = (8, 16, 64, 128, 256)

 # Minimum probability value to accept a detected instance

 DETECTION_MIN_CONFIDENCE = 0.9

 WEIGHT_DECAY = 0.0001

config = TutaConfig()

config.display()

Custom function to load the dataset

class TutaDataset(utils.Dataset):

 def load_dataset(self, dataset_dir, subset):

 # Add classes. We have only one class to add.

 self.add_class("tuta", 1, "tuta")

 # Train or validation dataset?

 assert subset in ["train", "test"]

 dataset_dir = os.path.join(dataset_dir, subset)

 annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))

 annotations = list(annotations.values())

 # The VIA tool saves images in the JSON even if they don't have any

 # annotations. Skip unannotated images.

 annotations = [a for a in annotations if a['regions']]

 # Add images

 for a in annotations:

 # Get the x, y coordinaets of points of the polygons that make up

 if type(a['regions']) is dict:

 polygons = [r['shape_attributes'] for r in a['regions'].values()]

 else:

 polygons = [r['shape_attributes'] for r in a['regions']]

 # load_mask() needs the image size to convert polygons to masks.

 image_path = os.path.join(dataset_dir, a['filename'])

78

 image = skimage.io.imread(image_path)

 height, width = image.shape[:2]

 self.add_image(

 "tuta",

 image_id=a['filename'],

 path=image_path,

 width=width, height=height,

 polygons=polygons)

 def load_mask(self, image_id):

 image_info = self.image_info[image_id]

 if image_info["source"] != "tuta":

 return super(self.__class__, self).load_mask(image_id)

 # Convert polygons to a bitmap mask of shape

 # [height, width, instance_count]

 info = self.image_info[image_id]

 mask = np.zeros([info["height"], info["width"], len(info["polygons"])],

 dtype=np.uint8)

 for i, p in enumerate(info["polygons"]):

 # Get indexes of pixels inside the polygon and set them to 1

 rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])

 mask[rr, cc, i] = 1

 # Return mask, and array of class IDs of each instance.

 return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32)

 def image_reference(self, image_id):

 """Return the path of the image."""

 info = self.image_info[image_id]

 if info["source"] == "tuta":

 return info["path"]

 else:

 super(self.__class__, self).image_reference(image_id)

79

Load the training and validation dataset

Training dataset.

with tf.device(device_name):

 dataset_train = TutaDataset()

 dataset_train.load_dataset('Experiments/TutaDatasetVIA/', "train")

 dataset_train.prepare()

 print("Images with annotations: {}\nClasses: {}".format(len(dataset_train.image_ids), datase

t_train.class_names))

Validation dataset

dataset_val = TutaDataset()

dataset_val.load_dataset('Experiments/TutaDatasetVIA/', 'test')

dataset_val.prepare()

print("Images with annotations: {}\nClasses: {}".format(len(dataset_val.image_ids), dataset_va

l.class_names))

Build the Model
Create model in training mode

with tf.device(device_name):

 model = modellib.MaskRCNN(mode="training",

 config=config,

 model_dir=MODEL_DIR)

 model.keras_model.summary()

Train the Model
Train the head branches

Passing layers="heads" freezes all layers except the head

layers.

print("Training network heads")

start_train = time.time()

model.train(dataset_train, dataset_val,

 learning_rate=config.LEARNING_RATE,

 epochs=20,

 layers='heads'

)

history = model.keras_model.history.history

end_train = time.time()

minutes = round((end_train - start_train) / 60, 2)

print(f'Training took {minutes} minutes')

Use our developed model for detection
class InferenceConfig(TutaConfig):

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1

inference_config = InferenceConfig()

Recreate the model in inference mode

80

with tf.device(device_name):

 model = modellib.MaskRCNN(mode="inference",

 config=inference_config,

 model_dir=MODEL_DIR)

model_path = model.find_last()

Using our developed model for detection
Load trained weights

print("Loading weights from ", model_path)

model.load_weights(model_path, by_name=True)

81

Appendix 2: U-Net Model Source Code

Import libraries

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import glob

import os

import sys

import time

import math

import datetime

from PIL import Image

Load images with their masks

masks = glob.glob("Annotations/*.png")

og_images = glob.glob("Images/*.JPG")

Resizing the images and their corresponding masks

with tf.device(device_name):

 imgs_list = []

 masks_list = []

 for image, mask in zip(orgs, masks):

 imgs_list.append(np.array(Image.open(image).resize((512,512))))

 masks_list.append(np.array(Image.open(mask).resize((512,512))))

 imgs_np = np.asarray(imgs_list)

 masks_np = np.asarray(masks_list)

Compile the model

from keras.optimizers import Adam, SGD

from keras_unet.metrics import iou, jaccard_coef, dice_coef

from keras_unet.losses import jaccard_distance

with tf.device(device_name):

 model.compile(

 optimizer=Adam(),

 #optimizer=SGD(lr=0.01, momentum=0.99),

 loss='binary_crossentropy',

 #loss=jaccard_distance,

 metrics=[iou, iou_thresholded, dice_coef]

)

Train the model

start_train = time.time()

82

history = model.fit_generator(

 train_gen,

 steps_per_epoch=1000,

 epochs=200,

 validation_data=(x_val, y_val),

 callbacks=[callback_checkpoint]

)

end_train = time.time()

minutes = round((end_train - start_train) / 60, 2)

print(f'Training took {minutes} minutes')

83

Appendix 3: Tensorflow Lite Converter Source Code

Import TensorFlow
import tensorflow as tf

Defining the custom metrics since they are not save with the model during development
#iou

def iou(y_true, y_pred, smooth=1.):

 y_true_f = K.flatten(y_true)

 y_pred_f = K.flatten(y_pred)

 intersection = K.sum(y_true_f * y_pred_f)

 return (intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + smooth)

#iou thresholded

def iou_thresholded(y_true, y_pred, threshold=0.5, smooth=1.):

 y_pred = threshold_binarize(y_pred, threshold)

 y_true_f = K.flatten(y_true)

 y_pred_f = K.flatten(y_pred)

 intersection = K.sum(y_true_f * y_pred_f)

 return (intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + smooth)

#dice coefficient

def dice_coef(y_true, y_pred, smooth=1.):

 y_true_f = K.flatten(y_true)

 y_pred_f = K.flatten(y_pred)

 intersection = K.sum(y_true_f * y_pred_f)

 return (2. * intersection + smooth) / (

 K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

Convert the Keras model to a TensorFlow Lite model and write the .tflite file
Convert the model.

converter = tf.compat.v1.lite.TFLiteConverter.from_keras_model_file('segm_model_v3.h5',

custom_objects={'iou':iou, 'iou_thresholded':iou_thresholded, 'dice_coef':dice_coef})

tflite_model = converter.convert()

Save the model.

with open('unet_model.tflite', 'wb') as f:

 f.write(tflite_model)

Check the output data type and shape.
import tensorflow as tf

import numpy as np

interpreter = tf.lite.Interpreter(model_path="unet_model.tflite")

interpreter.allocate_tensors()

print(interpreter.get_input_details()[0]['shape'])

print(interpreter.get_input_details()[0]['dtype'])

84

print(interpreter.get_output_details()[0]['shape'])

print(interpreter.get_output_details()[0]['dtype'])

Adding metadata to tflite model
!pip install tflite-support

Model information: Metadata starts by creating a new model info:

from tflite_support import flatbuffers

from tflite_support import metadata as _metadata

from tflite_support import metadata_schema_py_generated as _metadata_fb

""" ... """

"""Creates the metadata for an image classifier."""

Creates model info.

model_meta = _metadata_fb.ModelMetadataT()

model_meta.name = "UNet Image Segmentation"

model_meta.description = ("Detect and locate affected areas in "

 "tomato leaf image caused by "

 "the tomato leaf miner tuta absoluta")

model_meta.version = "v1"

model_meta.author = "Loyan"

model_meta.license = ("Apache License. Version 2.0 "

 "http://www.apache.org/licenses/LICENSE-2.0.")

Input / output information: This section shows you how to describe your model's input and

output signature. This metadata may be used by automatic code generators to create pre- and

post- processing code. To create input or output information about a tensor:

Creates input info.

input_meta = _metadata_fb.TensorMetadataT()

Creates output info.

output_meta = _metadata_fb.TensorMetadataT()

Image input

input_meta.name = "image"

input_meta.description = (

 "Input image to be segmented. The expected image is {0} x {1}, with "

 "three channels (red, blue, and green) per pixel. Each value in the "

 "tensor is a single byte between 0 and 255.".format(512, 512))

input_meta.content = _metadata_fb.ContentT()

input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT()

input_meta.content.contentProperties.colorSpace = (

 _metadata_fb.ColorSpaceType.RGB)

input_meta.content.contentPropertiesType = (

85

 _metadata_fb.ContentProperties.ImageProperties)

input_normalization = _metadata_fb.ProcessUnitT()

input_normalization.optionsType = (

 _metadata_fb.ProcessUnitOptions.NormalizationOptions)

input_normalization.options = _metadata_fb.NormalizationOptionsT()

input_normalization.options.mean = [127.5]

input_normalization.options.std = [127.5]

input_meta.processUnits = [input_normalization]

input_stats = _metadata_fb.StatsT()

input_stats.max = [255]

input_stats.min = [0]

input_meta.stats = input_stats

Model Path
model_file = "unet_model.tflite"

Label output: Label can be mapped to an output tensor via an associated file using

TENSOR_AXIS_LABELS.

import os

Creates output info.

output_meta = _metadata_fb.TensorMetadataT()

output_meta.name = "probability"

output_meta.description = "Probabilities of the 1001 labels respectively."

output_meta.content = _metadata_fb.ContentT()

output_meta.content.content_properties = _metadata_fb.FeaturePropertiesT()

output_meta.content.contentPropertiesType = (

 _metadata_fb.ContentProperties.FeatureProperties)

output_stats = _metadata_fb.StatsT()

output_stats.max = [1.0]

output_stats.min = [0.0]

output_meta.stats = output_stats

label_file = _metadata_fb.AssociatedFileT()

label_file.name = os.path.basename("labels.txt")

label_file.description = "Labels for objects that the model can recognize."

label_file.type = _metadata_fb.AssociatedFileType.TENSOR_AXIS_LABELS

output_meta.associatedFiles = [label_file]

Create the metadata Flatbuffers: The following code combines the model information with the

input and output information

Creates subgraph info.

subgraph = _metadata_fb.SubGraphMetadataT()

subgraph.inputTensorMetadata = [input_meta]

subgraph.outputTensorMetadata = [output_meta]

model_meta.subgraphMetadata = [subgraph]

86

b = flatbuffers.Builder(0)

b.Finish(

 model_meta.Pack(b),

 _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)

metadata_buf = b.Output()

Pack metadata and associated files into the model: Once the metadata Flatbuffers is created,

the metadata and the label file are written into the TFLite file via the populate method

populator = _metadata.MetadataPopulator.with_model_file(model_file)

populator.load_metadata_buffer(metadata_buf)

populator.load_associated_files(["labels.txt"])

populator.populate()

Visualize the metadata
displayer = _metadata.MetadataDisplayer.with_model_file(model_file)

export_json_file = os.path.join(FLAGS.export_directory,

 os.path.splitext(model_basename)[0] + ".json")

json_file = displayer.get_metadata_json()

Optional: write out the metadata as a json file

with open(export_json_file, "w") as f:

 f.write(json_file)

87

Appendix 4: Model Deployment Android Studio Source Code

ImageSegmentationModelExecutor.kt

package org.tensorflow.lite.examples.tutaSegmentation.tflite

import android.content.Context

import android.graphics.Bitmap

import android.graphics.Color

import android.os.SystemClock

import androidx.core.graphics.ColorUtils

import android.util.Log

import java.io.FileInputStream

import java.io.IOException

import java.nio.ByteBuffer

import java.nio.ByteOrder

import java.nio.MappedByteBuffer

import java.nio.channels.FileChannel

import kotlin.random.Random

import org.tensorflow.lite.Interpreter

import org.tensorflow.lite.examples.TutaSegmentation.utils.ImageUtils

import org.tensorflow.lite.gpu.GpuDelegate

/**

 * Class responsible to run the Image Segmentation model.

 */

class ImageSegmentationModelExecutor(

 context: Context,

 private var useGPU: Boolean = false

) {

 private var gpuDelegate: GpuDelegate? = null

 private val segmentationMasks: ByteBuffer

 private val interpreter: Interpreter

 private var fullTimeExecutionTime = 0L

 private var preprocessTime = 0L

 private var imageSegmentationTime = 0L

 private var maskFlatteningTime = 0L

 private var numberThreads = 4

 init {

 interpreter = getInterpreter(context, imageSegmentationModel, useGPU)

 segmentationMasks = ByteBuffer.allocateDirect(1 * imageSize * imageSize * NUM_CLASSES * 4)

 segmentationMasks.order(ByteOrder.nativeOrder())

 }

 fun execute(data: Bitmap): ModelExecutionResult {

 try {

 fullTimeExecutionTime = SystemClock.uptimeMillis()

 preprocessTime = SystemClock.uptimeMillis()

 val scaledBitmap =

 ImageUtils.scaleBitmapAndKeepRatio(

 data,

 imageSize, imageSize

)

 val contentArray =

 ImageUtils.bitmapToByteBuffer(

 scaledBitmap,

 imageSize,

 imageSize,

 IMAGE_MEAN,

 IMAGE_STD

)

 preprocessTime = SystemClock.uptimeMillis() ­ preprocessTime

 imageSegmentationTime = SystemClock.uptimeMillis()

 interpreter.run(contentArray, segmentationMasks)

 imageSegmentationTime = SystemClock.uptimeMillis() ­ imageSegmentationTime

88

 Log.d(TAG, "Time to run the model $imageSegmentationTime")

 maskFlatteningTime = SystemClock.uptimeMillis()

 val (maskImageApplied, maskOnly, itemsFound) =

 convertBytebufferMaskToBitmap(

 segmentationMasks, imageSize, imageSize, scaledBitmap,

 segmentColors

)

 maskFlatteningTime = SystemClock.uptimeMillis() ­ maskFlatteningTime

 Log.d(TAG, "Time to flatten the mask result $maskFlatteningTime")

 fullTimeExecutionTime = SystemClock.uptimeMillis() ­ fullTimeExecutionTime

 Log.d(TAG, "Total time execution $fullTimeExecutionTime")

 return ModelExecutionResult(

 maskImageApplied,

 scaledBitmap,

 maskOnly,

 formatExecutionLog(),

 itemsFound

)

 } catch (e: Exception) {

 val exceptionLog = "something went wrong: ${e.message}"

 Log.d(TAG, exceptionLog)

 val emptyBitmap =

 ImageUtils.createEmptyBitmap(

 imageSize,

 imageSize

)

 return ModelExecutionResult(

 emptyBitmap,

 emptyBitmap,

 emptyBitmap,

 exceptionLog,

 HashMap<String, Int>()

)

 }

 }

 @Throws(IOException::class)

 private fun loadModelFile(context: Context, modelFile: String): MappedByteBuffer {

 val fileDescriptor = context.assets.openFd(modelFile)

 val inputStream = FileInputStream(fileDescriptor.fileDescriptor)

 val fileChannel = inputStream.channel

 val startOffset = fileDescriptor.startOffset

 val declaredLength = fileDescriptor.declaredLength

 val retFile = fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength)

 fileDescriptor.close()

 return retFile

 }

 @Throws(IOException::class)

 private fun getInterpreter(

 context: Context,

 modelName: String,

 useGpu: Boolean = false

): Interpreter {

 val tfliteOptions = Interpreter.Options()

 tfliteOptions.setNumThreads(numberThreads)

 gpuDelegate = null

 if (useGpu) {

 gpuDelegate = GpuDelegate()

 tfliteOptions.addDelegate(gpuDelegate)

 }

 return Interpreter(loadModelFile(context, modelName), tfliteOptions)

 }

 private fun formatExecutionLog(): String {

 val sb = StringBuilder()

 sb.append("Input Image Size: $imageSize x $imageSize\n")

 sb.append("Model execution time: $imageSegmentationTime ms\n")

 sb.append("Mask flatten time: $maskFlatteningTime ms\n")

89

 sb.append("Full execution time: $fullTimeExecutionTime ms\n")

 return sb.toString()

 }

 fun close() {

 interpreter.close()

 if (gpuDelegate != null) {

 gpuDelegate!!.close()

 }

 }

 private fun convertBytebufferMaskToBitmap(

 inputBuffer: ByteBuffer,

 imageWidth: Int,

 imageHeight: Int,

 backgroundImage: Bitmap,

 colors: IntArray

): Triple<Bitmap, Bitmap, Map<String, Int>> {

 val conf = Bitmap.Config.ARGB_8888

 val maskBitmap = Bitmap.createBitmap(imageWidth, imageHeight, conf)

 val resultBitmap = Bitmap.createBitmap(imageWidth, imageHeight, conf)

 val scaledBackgroundImage =

 ImageUtils.scaleBitmapAndKeepRatio(

 backgroundImage,

 imageWidth,

 imageHeight

)

 val mSegmentBits = Array(imageWidth) { IntArray(imageHeight) }

 val itemsFound = HashMap<String, Int>()

 inputBuffer.rewind()

 for (y in 0 until imageHeight) {

 for (x in 0 until imageWidth) {

 var maxVal = 0f

 mSegmentBits[x][y] = 0

 for (c in 0 until NUM_CLASSES) {

 val value = inputBuffer

 .getFloat((y * imageWidth * NUM_CLASSES + x * NUM_CLASSES + c) * 4)

 if (c == 0 || value > maxVal) {

 maxVal = value

 mSegmentBits[x][y] = c

 }

 }

 val label = labelsArrays[mSegmentBits[x][y]]

 val color = colors[mSegmentBits[x][y]]

 itemsFound.put(label, color)

 val newPixelColor = ColorUtils.compositeColors(

 colors[mSegmentBits[x][y]],

 scaledBackgroundImage.getPixel(x, y)

)

 resultBitmap.setPixel(x, y, newPixelColor)

 maskBitmap.setPixel(x, y, colors[mSegmentBits[x][y]])

 }

 }

 return Triple(resultBitmap, maskBitmap, itemsFound)

 }

 companion object {

 public const val TAG = "SegmentationInterpreter"

 private const val imageSegmentationModel = "unet_model.tflite"

 // private const val imageSize = 257

 private const val imageSize = 512

 // const val NUM_CLASSES = 21

 const val NUM_CLASSES = 2

 private const val IMAGE_MEAN = 127.5f

 private const val IMAGE_STD = 127.5f

 val segmentColors = IntArray(NUM_CLASSES)

 val labelsArrays = arrayOf(

 "_background_", "tuta"

)

90

 init {

 val random = Random(System.currentTimeMillis())

 segmentColors[0] = Color.TRANSPARENT

 for (i in 1 until NUM_CLASSES) {

 segmentColors[i] = Color.argb(

 (128),

 getRandomRGBInt(

 random

),

 getRandomRGBInt(

 random

),

 getRandomRGBInt(

 random

)

)

 }

 }

 private fun getRandomRGBInt(random: Random) = (255 * random.nextFloat()).toInt()

 }

}

91

Appendix 5: Mask RCNN Object Counting Source Code.

Import libraries
import random

import itertools

import colorsys #defines conversion of color values

import numpy as np

from skimage.measure import find_contours

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import matplotlib.lines as lines

from matplotlib.patches import Polygon

import IPython.display

import cv2

from mrcnn import utils

Define classes
class_names = ['BG', 'tuta']

Visualization functions

#Display the given set of images
def display_images(images, titles=None, cols=4, cmap=None, norm=None,

 interpolation=None):

 titles = titles if titles is not None else [""] * len(images)

 rows = len(images) // cols + 1

 plt.figure(figsize=(14, 14 * rows // cols))

 i = 1

 for image, title in zip(images, titles):

 plt.subplot(rows, cols, i)

 plt.title(title, fontsize=9)

 plt.axis('off')

 plt.imshow(image.astype(np.uint8), cmap=cmap,

 norm=norm, interpolation=interpolation)

 i += 1

 plt.show()

#Get the detected objects, draw contours and add text
def get_masked_fixed_color(image, boxes, masks, class_ids, class_names,

 colors=None, scores=None, title="",

 figsize=(16, 16), ax=None, show=True):

 objects = dict()

 # Number of instances

 N = boxes.shape[0]

 if not N:

 print("\n*** No instances to display *** \n")

 else:

92

 assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]

 # Generate random colors

 if colors == None:

 # classN = len(class_names)

 classN = ['blue', 'purple', 'red', 'green', 'orange', 'salmon', 'pink', 'gold',

 'orchid', 'slateblue', 'limegreen', 'seagreen', 'darkgreen', 'olive',

 'teal', 'aquamarine', 'steelblue', 'powderblue', 'dodgerblue', 'navy',

 'magenta', 'sienna', 'maroon']

 colors = random_colors(classN)

 # colors="Red"

 masked_image = np.array(image)

 for i in range(N):

 color = colors[class_ids[i]]

 # Bounding box

 if not np.any(boxes[i]):

 # Skip this instance. Has no bbox. Likely lost in image cropping.

 continue

 y1, x1, y2, x2 = boxes[i]

 cv2.rectangle(masked_image, (x1, y1), (x2, y2), (255,255,0), thickness = 1)

 # Label

 class_id = class_ids[i]

 score = scores[i] if scores is not None else None

 label = class_names[class_id]

 if(label in objects):

 objects[label] += 1

 else:

 objects[label] = 1

 x = random.randint(x1, (x1 + x2) // 2)

 caption = "{} {:.3f}".format(label, score) if score else label

 cv2.putText(masked_image, caption, (x1 + 5, y1 + 16), cv2.FONT_HERSHEY_SIMPLEX, 0.4,

(255,0,0))

 # Mask

 mask = masks[:, :, i]

 if show:

 masked_image = apply_mask(masked_image, mask, color)

 # Mask Polygon

 # Pad to ensure proper polygons for masks that touch image edges.

 padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)

 padded_mask[1:-1, 1:-1] = mask

 contours = find_contours(padded_mask, 0.5)

 for verts in contours:

 # Subtract the padding and flip (y, x) to (x, y)

 verts = np.fliplr(verts) - 1

 verts = verts.reshape((-1, 1, 2)).astype(np.int32)

93

 # Draw an edge on object contour

 cv2.polylines(masked_image, verts, True, color)

 print(str(objects))

 cv2.putText(masked_image, str(objects), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.4,

(255,0,0))

 return masked_image

#Object counting using OpenCV
import cv2

import time

colors = random_colors(len(class_names))

#image1 = cv2.imread('input_images_and_videos/input.png')

image1 = cv2.imread('/content/drive/My

Drive/Experiments/TutaDatasetVIA/test/BLK_1_0924_PL002_NH.JPG')

image1 = cv2.resize(image1, None, fx=0.5, fy=0.5)

image_batch = [image1]

Run detection

t = time.time()

results = model.detect(image_batch, verbose=0)

t = t - time.time()

print (t)

masked_image_batch = []

Visualize results

r = results[0]

t = time.time()

for i in range(len(results)):

 r = results[i]

 im = image_batch[i]

 masked_image = get_masked_fixed_color(im, r['rois'], r['masks'], r['class_ids'],

class_names, colors, r['scores'], show=True)

 masked_image = cv2.resize(masked_image, None, fx=3, fy=3)

 masked_image_batch.append(masked_image)

t = t - time.time()

print (t)

result = cv2.imwrite("/content/drive/My

Drive/Experiments/TutaDatasetVIA/object_counting_results_resnet101aug/BLK_1_0924_PL002_NH.png"

, masked_image_batch[0])

94

RESEARCH OUTPUTS

Research Output 1: Publications

Loyani, L., Bradshaw, K., & Machuve, D. (2021). Segmentation of Tuta absoluta’s damage on

tomato plants: A computer vision approach. Applied Artificial Intelligence. 2021, 1-21.

https://doi.org/10.1080/08839514.2021.1972254

Loyani, L., & Machuve D. (2021). A Deep Learning-based Mobile Application for Segmenting

Tuta absoluta’s Damages on Tomato Plants. Engineering, Technology and Applied

Science Research, 11(5), 7730-7737. https://doi.org/10.48084/etasr.4355

Research Output 2: Poster Presentations

(i) Decision Support System for Farmers against Tuta Absoluta’s Effects on Tomato

Plants

(ii) A Deep Learning Approach for Quantifying Tuta Absoluta’s damage on Tomato

Plants

