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ABSTRACT 

The Prosopis julifrola plant is a thorny leguminous shrub or small tree, a kind of mesquite in a 

family of Fabacea. It is extremely aggressive and invasive. The spreading agents include livestock 

dispersal and seeds in their droppings, human activity by vegetation restoration, firewood and 

charcoal and soil erosion control. In this study a deterministic model examines the dynamics of 

Prosopis juliflora plant by adopting a similar approach of a dynamical system as used in 

epidemiological modeling. The local and global stability analyses of the equilibrium points of the 

model were conducted by using next generation matrix for the computation of basic reproduction 

number R0  and Lypunov function. The study showed that the Prosopis juliflora plant free 

equilibrium of the model is both locally and globally asymptotically stable if and only if the 

number of secondary infections is less than unity, that is if R0 < 1. Furthermore, the study shows 

that there exists Prosopis juliflora endemic equilibrium for the spread of the plant when R0> 1. 

The numerical simulation was implemented in MATLAB ODE 45 algorithm for solving linear 

ordinary differential equations. The study showed that the plant spread with an increase of animals 

that ingested it. Based on the study, recommended is the application of the model on the endemic 

area to improve the existing situation through: Enlightening and involving policymakers, 

environmentalists, stakeholders and community groups in the preservation framework on the 

spread and control strategy of the Prosopis juliflora invasion. 

 Keywords: Prosopis juliflora plant, Mathematical model, Equilibria, Stability and Numerical 

simulation 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

The Prosopis juliflora is a thorny leguminous shrub or small tree a kind of mesquite in a family 

of Fabaceae. It is extremely aggressive and invasive. From its origins in the South Americas it 

made its way into East Africa mainly Northern Uganda and Kenya and quickly proliferated to 

Tanzania in the 1980s particularly the northern enclave of Mwanga in the Kilimanjaro region. The 

plant is widely used locally for firewood and in the charcoal production. It is also quite effective 

as a wind shelter and its quick proliferation and survival in dry conditions renders it a choice agent 

for combating desertification and the restoration of vegetation in arid and semi-arid areas. 

The leading agents for the spread of the plant include livestock movements as they cross from one 

place to another by way of dispersal and their ready to germinate seeds in their droppings, human 

activity due to vegetation restoration, firewood, and charcoal as well as soil erosion control 

(Kilawe et al., 2017). The plant can also be spread by any other means that enables water to 

facilitate the germination of the seeds. The following is the map showing the invaded area in 

Tanzania (Kilawe et al.,  2017).  

 

Figure 1: Current and potential distribution area of Prosopis julifrola plant in Tanzania 

(Kilawe et al., 2017) 

As regards to the plant’s impact on the environment, its rapid invasion displaces the indigenous 

vegetation thus interfering with the appropriate utilization of resources. It is important to 
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appreciate the adverse effect the plant has on the disruption of the natural ecological balance 

especially on indigenous species, its rapid expansion invading open spaces and paths prevents 

penetration access and productive activities (Meroni et al., 2017). In East Africa, the Prosopis 

juliflora plant is a disaster on biodiversity and measures to eradicate its presence are inevitable. 

Currently the Centre for Agriculture and Bioscience International (CABI) has embarked on 

measures to eradicate the plant from Tanzania, Kenya, and Ethiopia. However, in areas already  

invaded by the plant adverse effects are noted on the land quality, livestock activities, agricultural 

activities, and water availability (Obiri, 2011). Efforts Are in place towards this goal and  countries 

such as  Kenya, Ethiopia, Sudan, South Sudan, and South Africa have published National 

Management Strategies against this invasive plant (Eckert et al., 2020). 

The serious adverse effects posed by the Prosopis juliflora plant in Tanzania calls for concerted 

measures of its containment and control because of its negative impact on livestock and indigenous 

species. This includes illness of livestock, replacement of native plants, and accelerating invasion 

to another unexposed land (Obiri, 2011). However, the control of invasiveness of the plant should 

go hand in hand with the creation of awareness of its negative impact to the stakeholders and the 

general public.  

1.2 Statement of the Problem 

The plant grows and survives in any place, including arid, semi-arid, and non-arid conditions, and it 

may result in the disaster of native species replacement. The Prosopis juliflora plant can be spread on 

land by livestock movement through their droppings mainly dung. The high germination nature of the 

seed that has been ingested by livestock spreads rapidly through dung. This mechanism of the seed 

dispersal and its extensive-range ecological adaptability are the main drivers for the high invasion rate 

of the expansion of the Prosopis juliflora plant affecting human health, suppressing indigenous plants 

and decreasing livestock productivity. 

So far few studies among others have conducted studies on a plant using statistical and biological 

approach and none of these studies conducted mathematical model on epidemiological approach 

(Haregeweyn et al., 2013; Mazimbuko, 2012; Tilahun & Asfaw, 2012). This study aims at 

formulating a mathematical model which describes the spread and control measures of Prosopis 

juliflora plant due to animal movement on acres of land through application of epidemiological 

approach. 
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1.3 Rationale of the Study 

The study aims at providing a solution for the precarious situation caused by the Prosopis 

juliflora plant and other invasive species. Furthermore, the findings of the study paves a way 

forward to contain its invasiveness which negatively affect livestock, environmental, agricultural 

and fishing activities. Concerted efforts should be put in place toward off animals from invaded 

areas to curb ingesting the Prosopis juliflora plant pods and seeds that facilitate its spread in 

Tanzania and African countries in general. 

1.4 Research Objectives 

1.4.1 General Objective 

The general objective of the research is to develop and analyze a mathematical model for the 

dynamics and spread control of the Prosopis juliflora plants. 

1.4.2 Specific Objectives 

(i) To formulate a mathematical model describing the spread of Prosopis juliflora due to 

livestock movement on land. 

(ii) To derive equilibrium states of Prosopis plant and establish conditions for their stability. 

(iii) To compute basic reproduction number and find which parameter are sensitive to the 

spread of Prosopis juliflora plant. 

1.5 Research Questions 

(i) How can a Mathematical Model for the dynamics and spread control of the Prosopis   

juliflora plant be formulated? 

(ii) To what extent does livestock contribute in spread of the Prosopis juliflora plant? 

(iii) How will the sensitivity analysis be obtained? 

(iv) What is the optimal method of controlling the spread of the Prosopis juliflora plant that 

spares the needed vegetation without invading the farmland? 
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1.6 Significance of the Study 

The findings from the study will benefit society, government and other stakeholders on the plant 

invasion understanding and control measures. Through this study it justifies that there is a need of 

having best strategy to manage and control the spread and control of Prosopis juliflora plants to 

policy makers, society and government as whole by implementing control measures suggested by 

this study. Through application of study control measures towards the invasion farming, 

pastoralism and fishing activities will be conducted without any interference.   

1.7 Delineation of the Study 

In fact, mathematical modeling of Prosopis juliflora plants considered livestock as the main agency 

of spreading the plant and concentrated in some places where the invasion is very high due to the 

limitation of time.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 General Overview 

The first point of entry of  the Prosopis juliflora  plant from the Americas in the late 1800  into 

the African continent was  South Africa where it was widely distributed and planted up to 1960 to 

provide fodder and shade during a time of severe drought (Mazibuko, 2012). It also served as a 

wind shelter, prevention of soil erosion and restoration of vegetation as well as providing firewood 

and charcoal for domestic consumption. 

It was later that the plant’s adverse effects became apparent outweighing the advantages that had 

been envisaged. It negatively impacted the environment especially causing soil fertility decline 

which degrades the quality of land for livestock grazing and farming. However, the plant has 

proved very difficult to control and eradicate due to the rapid expansion of the invaded areas. 

Furthermore the interventions and management of Prosopis julifrola including removal, 

restoration on the invaded land, rehabilitation and use of cleared area and prevention of further 

spread lead into national and regional research extension programs towards the plant (Assefa, 

2017). The negative impact of the plant species in a biological and human context, ecological, 

social and environmental aspects is clearly revealed (Shackleton et al., 2017).  The other negative 

effects of the Prosopis julifrola plant are the death of live stocks by poisoning and destroying the 

indigenous flora. It has already invaded 500 000 and 700 000 hectares in Kenya and Ethiopia 

respectively and this rate is alarming. 

It also makes the soil loose and as such unable to retain water, moreover foliage for feeding wildlife 

animals is highly curtailed resulting into starvation and death of animals. It is revealed  that the 

invaded area was at a rate of 3.48 kilometers square per annum for a newly invaded area as a result 

by 2020, thirty point eight one percent (30.81%) of the study area will be covered by the plant as 

the result of displacement of native species and decrease of livestock productivity (Haregeweyn et 

al., 2013). However, in Ethiopia, the Prosopis juliflora grows so fast to make thick forests such 

that land can no longer be accessed for other economic activities. Also, the existence of this plant 

had been reported not only to have disrupted the natural ecological balance and loss of agricultural 

land but also to sustain physical injuries to those working on the invaded land. The government of 

Ethiopia, through her ministry of agriculture, somehow tries to recover the agricultural land after 

having managed to remove the Prosopis julifrola plant on the invaded land and explained much 

on the negative impact of the plant (Obiri, 2011; Mudavanhu et al., 2017). Several countries 
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including Kenya, Sudan, Eritrea, Malawi, and Pakistan outlined the serious negative impact of 

Prosopis juliflora invasion to their communities. 

2.2 Prosopis Juliflora Mathematical Model 

Tilahun and Asfaw (2012) developed a mathematical model on estimating the rate of Prosopis 

julifrola plant expansion in the Middle Awash area of Afar Region in Ethiopia by using the least 

square method and secondary data for twenty years. It showed that the spread of the plant in the 

Afar region of Ethiopia was at a rate of 50 000 hectares per year, and in the model they had 

developed, proposed that after 15 years from the date of research, Prosopis juliflora could be 

contained within 200 000 hectares, which is dangerous and environmentally alarming.  However, 

there are some studies that developed dynamical epidemiological mathematical models using 

techniques of sensitivity analysis, numerical simulation to formulate the model by means of 

compartmental diagram, and differential equations (Aloyce & Kuznetsov, 2017). 

Studies, pointed out that invasive species always harm the existence of indigenous species a model 

was developed to measure the biological risks of plant species through identifying potential 

invaders compared to manual conducted risks assessment (Peiris et al., 2013), developed 

Mechanistic models for the spatial spread of species under climate change.  The study used a 

reaction-diffusion equation in describing a change in the density of population over a climate to 

predict the speed of spatial spread of locally introduced species in an unbounded homogeneous 

landscape. The mathematical model provides an analytical measure that can estimate past and 

present; and predict the future species responses to the changing climate. 

Modes of an invasive species to identify the unrecognized evolutionary process that involves an 

interaction between life history and dispersal evolution during the expansion, distance spread 

under various evolutionary stages has been developed. Alex et al. (2013) and Edward (2014) 

developed deterministic epidemiological model. They used reproductive number in the 

determination of model equilibrium and stability and sensitivity analysis as well as they performed 

numerical simulation. In our model we will use a similar epidemiological approach in determining 

the model equilibria. Zhonghua and Yaohong (2014) developed an epidemiological dynamical 

stability and sensitivity analysis. They used reproductive number, Jacobian matrix and eventually 

performed numerical simulation. In this study the same approach in implementing the spread of 

Prosopis julifrola plant model was adopted; the only difference being our model is an ecological 

model. 
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Tilahun and Asfaw (2012) developed a mathematical model on the expansion of the Prosopis 

juliflora plant in the Afar region in Ethiopia they used the least square method and optimization 

on plant economic benefits. It was also proved that through using resistant varieties of Alfalfa can 

increase yield up to eighty three percent (83%) and slow down invasion speeds of nematodes 

species (Negara, 2015). Aloyce and Kuznetsov (2017) developed an epi-ecological dynamical 

model on maize population and performed sensitivity analysis, numerical simulation and they 

managed to formulate the model by means of compartmental diagram and differential equations.  

Through observing the impact of Prosopis juliflora plant and all ways in which different scholars 

acted upon the challenge, presented an opportunity to model the Prosopis juliflora plant as a 

dynamical system. Developing a mathematical model on the spread and control of the Prosopis 

Julifrola plant, used will be the methods applied in the epidemiological model to apply ecological 

mathematical model to explain the spread and control of the Prosopis julifrola plant. Moreover, 

differential equations to study the dynamics, stability, and sensitivity analysis used to reflect the 

real situation of the spread of the plant and its control through varying the parameters. 

Therefore, through the development of a mathematical dynamic system model for controlling and 

eradicating the spread of the Prosopis julifrola plant, agricultural activities will be enhanced,  

indigenous species will be restored and  livestock activities will be  improved.  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Design and Methods 

The study involves model formulation in the first phase and model analysis in the second phase. 

However, the assessment of various parameters on the control and spread of the Prosopis juliflora 

plant will be conducted. 

 A mathematical model will take into account the interactions between land and livestock 

populations in the spread of Prosopis juliflora plant. The spread process is denoted by three 

exclusive compartments for the land and two for animal population. In this case, we considered 

the approach which is similar to dynamical system as applied in epidemiological modeling and 

ecological modeling. The livestock is considered as the main contributor to the spread of the plant 

to unaffected piece of land. 

3.1.1 Model Formulation 

In this study a method similar to that used by Akinade et al. (2019) was used in  their study. The 

significance in formulating a mathematical model of a given real life situation in our daily life is 

very useful in providing a deeper great understanding of the situation. For the dynamics of 

Prosopis juliflora plant, a similar approach of a dynamical system as in epidemiological modeling 

was used. The model is formulated by using the two populations particularly land and animals. 

The land involves three compartments, which are: Susceptible land ( LS ), invaded land  ( LI ) and 

the reclaimed land ( LR ): Whereas for the animals there are two compartments which are 

susceptible animals ( AS ) and infestation animals ( AI ). The susceptible land compartment      ( LS

) refer to the piece of land which is not yet invaded by the plant. The invaded land compartment (

LI ) is the portion of land which has the seeds of plant that have already germinated on land and 

need to be reclaimed; Reclaimed land compartment ( LR ) are portions of land in acres that has been 

invaded by the plant but is successfully being recovered by physical removal, application of 

chemicals, harvesting, application of leaves sprays to the plant and limitations on growing the 

plant excessively. As regards to animal population there are susceptible animals ( AS ) which are 

cattle grazing in the invaded land and so are prone in ingesting the plant seeds on the land. The 

infected animal ( AI ), are cattle that have already ingested seeds of the plant and have dropped 

dung on land with seeds. 
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3.1.2 Model Assumptions 

 In this model formulation, the following assumptions were made: 

(i) The plant seeds are primarily spread to susceptible land portions by grazing animals mixing 

is homogeneous in the considered ecosystem. 

(ii) The occurrence of natural calamities and constructions projects can take place at any 

compartment of land population. 

(iii) Recruitment of animals into the system is only through susceptible animal compartment 

by interaction. 

(iv) The land restoration should take place only on the invaded land. 

(v) The land is reclaimed from infected acres of land. 

 Table 1 and Table 2 describe the variables and parameters respectively used in the model. 

Table 1: Five variables for both land and animal populations 

Variable Description 

LS  Is the portion of land which is not yet invaded 

LI  Is the portion of land that has already germinated and need to be restored 

LR  
Are acres of land that has been invaded by the plant but is successfully 

recovered by various measures 

AS  Number of  animals not yet infected with plant seed 

AI  Number of animals that have ingested plant seeds 
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Table 2: Parameters and their descriptions 

3.1.3 Flow Diagram Chart 

Basing the dynamics of Prosopis juliflora plant in animal and land population and the assumptions 

made, the flow diagram chart for the interactions between the plant, the land and the animals is 

shown in Fig. 2. 

 

Figure 2: The flow diagram for the spread of Prosopis juliflora plant on piece of land by 

animals that ingest the plant seeds 

2 L AI S   Describes the spread of Prosopis juliflora plant after interacting infected land and   susceptible animal. 

1 L LS  Describes the spread of Prosopis juliflora plant after interacting susceptible land and infected animal. 

Model Equations: Through compartmental consideration, as in Fig.  2 depicts, we formulate the 

basic mathematical model which shows the dynamics for Prosopis juliflora plant using the 

following differential Equations: 

Parameter Description 

1  Reclamation rate into the susceptible acres of land portions population 

2  Per capita birth rate of animal population 

A  Per capita natural death  rate of animal population 

Ad  Per capita death rate of animal population induced by ingested seed 

L  Land portion used for constructions project and occurrence of natural calamities 

L  Rate of progression from invaded land to the reclaimed land 

  Rate of recovery or restoration of infested animal into susceptible animal 

2  Rate of recovery or restoration of invaded land  into susceptible land 
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2
L

L L L L L

dR
I R R

dt
      

2( )L
L L L L

dR
I R

dt
      

 2
L

L L

dR
R

dt
     
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 2
L

L

L

dt
dR

R
     

 

 
 

0
2

0

L t

L

R t
L

L
R

L

dt
dR

R
      

 

 
 2

0

ln
0

L

L

R t
t

R
 

 
    

 
 

 

 
 2

0 0
L tLR t

e
R

  
 

  
 

 

     2

0 0 0L t

LR t R e
  

   

Thus,   0LR t   

For Susceptible land: 

1 2 1
L

L L L L L

dS
R I S S

dt
        

1

L

A L L L

dS
I S S

dt
   

 

1
( )L

A L L

dS
I S

dt
   

 

1
( )L

A L

L

dS
I dt

S
   

 

 

 

1
0

( )
L

L
A L

S t
L

S
L

I dt
dS

S
     

 
  1ln ( )
0

L

L

A L

S

S

t
I t  

 
 

 
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 
 

1( )

0
A L

L I t

L

S
e

S

t
  


 

   1( ) 00 A L

L L

I t
S t S e

  
 

 

( ) 0
L

S t   

Through applying the same technique, we get: 

         0, 0, 0, 0, 0
L L L A A

S I R S It t t t t      

Therefore, this satisfies that          0, 0, 0, 0, 0
L L L A A

S I R S It t t t t      

3.3 Invariant Region 

Invariant region is the one which shows the boundedness of the solution. To determine the region, 

the animal and land population we considered separately. 

For land:    
L L L LN S I R    

By differentiating size of land compartment we get:

 
 1 2 1 2

L L LL
L L L L L

d S I RdN
R I S S

dt dt
  

 
     

 

1
L L L L

L L L L L L

dN dS dI dR
S I R

dt dt dt dt
           

 
 1

L L L

L L L L

d S I R
S I R

dt


 
      

 
 1

L

L L

dN t
N t

dt
    

 1

( )
( ) 3L

L L

dN t
N t

dt
    

Equation  3  is the linear ode. Now to obtain the solution, the integrating factor is applied. 

Thus the integrating factor 
L

L
dt tI e e

    
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Multiplying Equation  3  with integrating factor we get: 

1

( )
( )L L Lt t tL

L L

dN t
e N t e e

dt

      

  1
( )L L

L

t td
e N t e

dt

 
   

   1( ) 4L Lt t

Ld N t e e dt 
   

Integrating Equation  4  in both side we get: 

  1( ) L Lt t

Ld N t e e dt 
    

1( ) Lt

LN t Ce


    

 ( )1( ) 5L t

L

L

N t Ce 




   

By computing C at 0t  , we get: 

1(0)L

L

C N



 

 

By substituting C  Equation  5  we get: 

1 1( ) (0) Lt

L L

L L

N t N e 

 

  
   

 
 

Now through considering two cases; 

1(0)L

L

N





 

1(0)L

L

N



  

Now the boundedness condition is 
1( ) (0),L L

L

N t Max N


 
  

 
 

For animal population, we differentiate total number of animals: A A AN S I   and we get: 
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   2 6A A A
A A A A A

dN dS dI
S d I

dt dt dt
       

 

 
 2

A A

A A A A A

d S I
S I d I

dt



    

 

 
2

A

A A A A

d N
N d I

dt
   

 

 
 2 7

A

A A

d N
N

dt
  

 

Multiplying equality  7   with integrating factor we get; 

 
2

A A AAt t t

A A

d N
e N e e

dt

    
 

   2 8A At t

A Ad N e e dt     

Integrating Equation   8  in both sides we get: 

  2
A At t

A Ad N e e dt      

 2
1( ) 9At

A

A

N t C e 




   

Computing  1C   in  9 at 0t 
2

1 ( )A

A

C N t



    

2 2( ) ( ) A

A A

A A

t
N t N t e



 

 
  

 
 
 

 

Now through considering two cases, thus 
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2(0)
A

A

N





 

2(0)
A

A

N



  

For  animal population, the boundedness condition is 2( ) max (0),
A A

A

N t N
N




 
 
 

. 

Therefore, the model system  1  is positive invariant in the region: 

     5 1, , , , : max 0 ,L L L A A L L

L

S I R S I R N t N


 
     

 
and     2max 0 ,A A

A

N t N
N

 
  

 
 

3.4 Model Analysis 

In this analysis we to find the existence of Prosopis free equilibrium for the Prosopis dynamics 

and computation of its Reproduction number. 

3.4.1 Existence of Prosopis Free Equilibrium (PFE) Point 

Now PFE is obtained when we set derivatives equal to zero and 0L A LI I R   and then, we 

solve for 
L AS and S  as follows: 

0L A L A LdS dS dR dI dI

dt dt dt dt dt
      

 

   

 

1 1 2

1

2

2 2

2

0

0

0 10

0

0

L A L L L

L A L L L

L L L L

A L L A A

A L A A A A

S I S R

S I I

I R

S I I S

S I I d I

  

  

  

  

  

    


  


  

    

    

 

1 0L LS    

2 0A AS   1
L

L

S



  and 2

A

A

S



  

Therefore, there exist a Prosopis free equilibrium (PFE)  
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0E  0 0 0 0 0, , , ,L L L A AS I R S I which is equal to 1 2,0,0, ,0
L A 

  
 
 

 

3.4.2 Local stability of Prosopis juliflora Free Equilibrium point (PFE) 

In order to get local stability of (PFE), we have to show that the variation matrix  0J E  of the 

model system (1) has negative Eigen values (Nyerere et al., 2020). Computing the differentiation 

of the system (1) with respect to  , , , ,L L L A AS I R S I  at the Prosopis juliflora free equilibrium: 

 0J E =

 

 

 

   

 

1 1 2

1

2

2 2

1 1

0 0

0 0 0

0 0 0

0 0

0 0

L L L

L L L

L L

A L L

A L A A

I S

S

S I

S I d

   

  

  

   

   

   
 

  
  
 

   
    

 

Evaluating Jacobian at Prosopis Free Equilibrium point we get: 

 

 

 

 

1 1
2

2

2 2

1 2

0 0

0 0 0 0

0 0 0
| 1

0 0

0 0 0

L

L

L L

L L

PFE

A

A

A A

A

J

d


 



 

  


 




 



 
  
 
  
 

  
 

  
 
 

   
 

 

eigen values of Jacobian are 1 20, 0l A         . 

Also in the second evaluation we get: 

 

 

 

 

2

1 2
2

0 0

| 2 0

0

L L

PFE L L L

A A

A

J

d

 

   


 



 
 
 

   
 

   
 

 

Which implies    3 4 20, 0L L L             and  5 0A Ad       . 

The Prosopis juliflora free equilibrium for each population is locally asymptotically stable if and 

only if the number of secondary infections, is less than unit, that is 0R <1 and this is fact because 

we got negative eigen values. 
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3.4.3 The Prosopis Endemic Equilibrium Point (PEE)  

The Prosopis juliflora endemic equilibrium PEE of the model system (1) E  is steady solution in 

which the spread of the plant persists and in the solution 0, 0, 0.L L AI R I    Now from Equation 

system  1 all derivatives are set equal to zero. 

Let E =  , , , ,L L L A AS I R S I      be the equilibrium and performing computations as follows: 

From first equation we get:  
  

2 2
2

2

0 L
A L A A A A

A A A L A

I
S I d I I

d I


  

   

 





     

  
 

From second equation we get :

 
 

     
1 1 2

1 *

2 1 2

0
A L

L A L L L L

L L L L A L L

I
S I I I

I

  
  

        




 

    
   

 

From third Equation we get:  2

2

0 L L
L L L L L

L

I
I R R


  

 


    


 

From fourth Equation we get: 

 

  
1 2 2

1 1 2

2 1 2

0
L L LL L

L A L L L

L A L L

II
S I S S

I

   
  

     


   



   
       

   
 

From fifth Equation we get: 2
2 2

2

0 A
A A L A A A

L A

I
I S I S S

I


  

 


    



 
      


 

E  , , , ,L L L A AS I R S I     =

 

  

 

        
1 2 2 1 1 2 2 2 2

*
2 21 2 2 1 2 2

, , , ,
L L L A L L L A L

L L AA L L L L L L A L L A A A L A

I I I I I

II I d I

         

                   

     

 

        
 

           

 

Because of having the values of  , , , ,L L L A AS I R S I      as shown above which are identically 

positive then, there is an exist of Prosopis endemic equilibrium point. 
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3.4.4 Reproduction Number 0R
of Prosopis juliflora Dynamics 

 The basic reproduction number is the average of secondary spread of seed plant by single seed 

plant when introduced in an entirely susceptible land population (Diekmann et al., 1990; Van den 

Driessche & Watmough, 2002). It determines whether the spread persists or clear out. The spread 

clears out when 
0R <1 and persist when  

0R >1(Van den Driessche & Watmough, 2002). In 

computing basic reproduction number, we adopt the method similar to (Efraim et al., 2018) used 

in  their  epidemiological study. In this case the similar next generation matrix method used in 

which new spread and transfer terms are considered. If the new spread is mathematically defined 

by 
if  and transfer terms by 

iv , then: The matrices F and V  are given by: 

  i

i

f
X

I





F  and i

j

v

I





V as defined by (Van den Driessche & Watmough, 2002). 

By consideration of infested subpopulation which are: 

 

 

 

1

2

11

L
L A L L L

A
A L A A A

dI
S I I

dt

dI
S I d I

dt

  

  


  




    


 

Now we find matrix F  and matrix V  where by F contains force of infestation and V , is the 

remaining terms. 

Let X =  ,L AI I , 1 1 L Af S I , 2 2 A Lf S I ,  1 L L LV I   ,  2 A A AV d I     

  1

2

f
f X

f

 
  
 

 

 f X
1

2

L A

A L

S I

S I





 
  
 

 and  
 

 
L L L

A A A

I
X

d I

 

 

 
  

  
V  

By computing partial derivatives on system Equation  11  for F and V we get: 

1 1

2 2

L A

L A

f f

I I

f f

I I

  
  
 
  
 
  

F
1

2

0

0

L

A

S

S





 
  
 
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1 1

2 2

L A

L A

V V

I I

V V

I I

  
  
 
  
 
  

V
0

0

L L

A Ad

 

 

 
  

  
 

Through evaluation of F  and V  at PFE we get: 

0

1

0

2

0

0

L

A

S

S





 
  
 

F

1 1

2 1

0

0

L

A









 
 
 
 
 
 

 

0
|

0

L L

PFE

A Ad

 

 

 
  

  
V  

 

Finding the inverse of  V  we get: 

  
1

01

0

A A

L LL L A A

d

d

 

    


  

  
    

V  

en we compute 1FV we get: 

1FV =

1 1

2 1

0

0

L

A









 
 
 
 
 
 

  

  

0

0

A A

L L A A

L L

L L A A

d

d

d

 

   

 

   

  
   
 
 
 

   

 

 

 

1 1

1

2 2

0

0

L A A

A L L

d



  



  



 
  
 
 
 

 

FV  

We have to compute the Eigen values: 1| | 0  FV  

= 
 

 

1 1

2 2

L A A

A L L

d




  




  

 
  

 
 

 
 
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  
2 1 2 1 2

A L L L A Ad

 


     

 


  
 

  
1 2 1 2

A L L L A Ad

 


     

 
 

  
 

In this case the reproduction number is given by  spectral radius  1 
FV : 

Which gives:  1

0R  FV
  

 1 2 1 2 ............................... 12
A L L L A Ad

 

     

 


  
 

3.4.5 Global Stability of Prosopis juliflora Free Equilibrium Point (PFE) 

The Lyapunov Method and LaSalle’s Invariance Principle have been generally used to break 

downisecurity of self-governing frameworks of differential conditions (Irunde et al, 2016; Nyerere 

et al, 2019), proposed unequivocal Lyapunov work which was utilized to break down SEIR and 

SEIS scourge models. Ferrera et al. (2017) developed a logarithmic Lyapunov capacity to examine 

Lotka-Volterra frameworks furthermore, later this capacity was applied by  Khan et al. (2020) to 

dissect endemic equilibrium for SIR, SIRS and SIS pestilence models. Dind (2019)   set forward 

the composite quadratic Lyaponuv capacity to dissect solidness of endemic equilibrium for SIR, 

SIRS and SIS scourge models and later developed a composite-Volterra capacity to break down 

endemic equilibrium for the model with backslide. In this work we receive express Lyapunov 

work. 

Under this part we study the global behavior of the Prosopis endemic equilibrium, *E  for the 

model system  1 . 

Theorem 1: The endemic equilibrium point for the Prosopis model System  1  is asymptotically  

 if 0 1R   stable.    

Proof: We construction an explicitly Lyapunov function for the Model System  1 using (Irunde 

et al., 2016; Nyerere et al., 2019). Approaches as it is useful to the most of the Sophisticated 

Compartmental epidemiological models. In this approach, we construct Lyapunov function of the 

form: 

 
 *

i i iL a X X lnX   
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Where 
ia is a properly selected positive constant, 

iX  is the population of the 
thi  is the 

equilibrium level. We define the Lyapunov function candidate V for the model System  1  as: 

 
5 *

1 i i ii
L a X X In X


   

L=  *

1 L L La S S lnS +  *

2 lnL L La I I I +  *

3 lnL L La R R R +  *

4 A A Aa S S lnS +  *

5 A A Aa I I lnS

where 
1a ,

2a ….
6a  are positive constant. The time derivative of the Lyapunov function L is given 

by: 

1 2 3 4 5. . . . .L L L A A

L L L A A

S I R S IL V V V V V
a a a a a

t S t I t R t S t I t

         
    

          
 

     

   

1 2 1

2

* * *

1 2 1 3 2

* *

4 2 2 5 ( )

1 1 1

1 1

L A L L L

L A A A A A

L L L
A L L L L L L L L L L

L L L

A A
A L A A A

A A

R I S S

I S I d I

S I RL
a a I S I I a I R R

t S I R

S I
a I I S S a

S I

  

  

     

  

   

  

     
               

      

   
         

   

 

At endemic equilibrium point: 

 
*

* * *

1 1 11 L
A L L L A L L L

L

SL
a I S S I S S

t S
   

 
     

  
+  

*
* *

2 1 L
L L L L L L L L

L

I
a I I I I

I
   

 
    

 
+ 

 
*

*

3 1 L
L L L L

L

R
a R R

R
 

 
  

 
+  

*
* * *

4 2 21 A
L A A A L A A A

A

S
a I S S I S S

S
   

 
    

 
+ 

    
*

* *

5 1 A
A A A A A A A A

A

I
a I d I I d I

I
   

 
      

 
 

Through rearranging the terms, we get: 

* * * * * * *

1 1 21 1 1 1 1 1L A L L L L L
A L L L L L L L

L A L L L L L

S I S S I I IL
a I S S a I I

t S I S S I I I
   

              
                         

               

* * * * * *

3 4 21 1 1 1 1L L A L A A
L L L A A A

L L A L A A

R R S I S S
a R a I S S

R R S I S S
  

            
                    

            
+ 

 
* * *

5 1 1 1A A A
A A A A

A A A

I I I
a I d I

I I I
 

      
           

      
 

Through simplification we get: 
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 
 

 
2 2

* *

1 2

L L L L

l L L

L L

S S I IL
a a

t S I
  
           
   
   

   
2 2

* *

3 4

L L A A

L A

L A

R R S S
a a

R S
 

    
    
   
   

 

 
 

 

2
*

5

A A

A A

A

I I
a d G

I
 

 
     
 
 

 

Where   
     * * * * * *

1 1 4 2L L A L A L A A L A L A

L A

a S S I S I S a S S I S I S
G

S S

     
    

The function  G   is a non-positive, thus   0G    for all   . Therefore,  0
L

t





 in   and 

is zero when    , since  0
L

t





 in   is zero when    , his implies that the largest 

compact set in    when 0
L

t





 is singleton {  } which is the endemic equilibrium. By 

Lassalle’s invariant principle (Irunde et al., 2016; Nyerere et al., 2019), then it implies that the 

endemic equilibrium   is globally asymptotically stable in the interior of   when 0 1R  , 0R

depends on the interactions of infected land and susceptible animals and ingested animal and 

susceptible land. The 0 1R   occurs when the interaction between interactions of infected land and 

susceptible animals and ingested animal and susceptible land with birth rate of animals is very 

high. At this point since the endemic equilibrium is stable when 0 1R   means it implies that high 

interaction between interactions of infected land and susceptible animals and ingested animal and 

susceptible land with birth rate of animals makes the endemic equilibrium to be globally 

asymptotically stable. 

3.5 Sensitivity Analysis of basic Reproduction Number 0R
 

Under this section, we performed the forward sensitivity analysis of Reproduction number 0R

with respect to its parameters to determine which parameter is sensitive to the invasion of the plant 

on land. In finding a way of reducing the invasion of Prosopis juliflora plant, it is better to 

understand the proportional importance of factors that are reliable for the spread and eradication 

on the plant invasion. The forward sensitivity index of parameter   with respect to basic 

Reproduction number 0R is denoted by 0

i

R

  
using the approach by Irunde et al. (2016) and Nyerere 

et al. (2019).  




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The normalized forward sensitivity index of a parameter 
i  with respect to Reproduction number 

0R is defined by: 

 0 0

0

.................. 13
i

R i

i

R
x

R








using the parameters in Table 2 and definition in Equation  13  the sensitivity indices of 

Reproduction number with respect to its parameters are given in Table 3. 

Table 3: Sensitivity indices for 
0R  

Parameter Value Sensitivity Index 

 
1  0.95 + 0.5000 

2  0.0902 + 0.5000 

1  0.000062 + 0.5000 

2  0.000059 + 0.5000 

A  0.00237 0.6597  

L  0.00548 0.8051 

L  0.0035 0.1949 

d
 0.00005 0.00034 

  0.005 0.3369 

The positive indices show that the basic Reproduction number is directly proportional to the values 

of its parameter. On the other hand, the negatives indices indicate that the basic Reproduction 

number is inversely proportional to the parameters. 

In Table 3: 1 , 2 , 1 , 2  have positive indices which are most sensitive parameters contributing 

in great extent in spreading the plant. Under this situation, this implies that the Reproduction 

number is proportional to birth rate of animals, interaction between ingested animals and 

Susceptible land, on other hand interaction between infected land and susceptible animals and 

reclamation land rate into susceptible acres of land as well. However, the negative indexed 

parameters are: A , L , L , d  and  . Due to this result, the natural death rate of animals, land 

other uses rate most sensitive negative parameters of the model, this shows that the secondary 

infection of land by the plants will decrease as ingested animal deceases.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Results and Discussion 

4.1.1 Numerical Simulation 

In order to determine which parameter is sensitive to the spread of Prosopis juliflora plants 

Dynamics, we simulate the model using the parameters found in Table 3. 

(i) The effects of Prosopis juliflora plants Dynamics on land 

 

Figure 3: Dynamics of Prosopis juliflora Plants on Acres of Land 

Figure 3 shows that the Dynamics of Prosopis juliflora plants on acres of land, as animals that 

ingested the plant increases, the susceptible land and susceptible animals decreases while infected 

land increases.  
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(ii) The effects of birth rate of animals in spreading the plant on Land 

 

  

Figure 4: (a) Effects of variation of 
2  on Land    (b)      Effects of variation

2  with   infected 

Land         

The Fig. 4 shows that as per capita birth rate of animals increase it leads to the increase of invaded 

land as from 152 acres of land  to 183 acres within four months. This is a serious  invasion of 

species and therefore there is need of extra efforts towards resolving the problem. On the other 

hand Fig. 4 (b) shows that the interaction force between the susceptible animals and the infected 

land as it increases it results to an increase of animals that  ingested the plant.  
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(iii) The effects of  Ingested Animals and Infected Land on susceptible land 

  

Figure 5: (a) Effects of Infested Land and Susceptible land     (b)   Ingested Animals and 

Susceptible land        

Figure 5 (a)  shows that as infected land increases it leads to a decrease in the susceptible land 

while Fig. 5 (b) shows that as animals that  ingested the plant  increases it results to decreases of 

susceptible animals. In facts both Figures shows that its relationship are inversely propotional.   
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(iv) The effect of ingested Animals on Acres of land 

 

Figure 6: Variation of Ingested Animals on Acres of Land 

Figure 6 shows that as number of animals that ingested the plant increases it leads to an increase 

of acres of infected land. Moreover, the Figure shows that within four months the area that plant 

infected increased from 148 acres to 178 acres an increase of 7.5 acres per month which is equal 

to 20 % infection or spread of the plant per month. In that case there is a need for extra effort to 

remedy the situation by containing the plant spread. 
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4.1.2 Determination impact of each of the parameters on the control of the spread of 

Prosopis juliflora plant 

  

Figure 7:  (a)The spread of Prosopis Juliflora plants  (b)The spread of Prosopis Juliflora 

plants before control in 1.5 Months after control in 1.5 Months 

 

Figure 8: The spread of Prosopis Juliflora plants after control in 10 Months 

Figure 8 Shows that the spread increased before measures were taken while Fig. 10 shows that 

after applying reduction and eradication measures the plant spread decreased within a short period 

of one month and a half. Through applying the method for long time the measures will prevent the 

plant from spreading as shown in Fig. 7 (b)  and 8  above.  Yet this was attained by varying the 

progression rate of invaded land to reclaimed land by sixty one point four three percent (61.43%), 

L  from 0.0035 to 0.035 through certain time as in this case ten months.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, we used mathematical model to study Prosopis juliflora dynamics. The aim was to 

formulate and compute basic reproduction number 
0R by using next generation matrix to 

determine which parameter are sensitive to the plant dynamics and propose the control measure 

against the plant. Moreover, the equilibrium states were developed and their stability investigated. 

We managed to identify sensitive parameters which gives us the opportunity to propose the ways 

of controlling the plant. Through appropriate assumptions, we managed to formulate a 

mathematical model describing the spread and control of Prosopis juliflora plant with the aid of 

differential equations. Through Lyapnov function stability analysis for the equilibrium states was 

established whereas sensitivity analysis index for each parameter was computed by forward 

normalized sensitivity index method. 

The deterministic model for the Prosopis juliflora plant dynamics with five variables and ten 

parameters is presented and analyzed. The study shows that when 0R < 1 Prosopis juliflora free 

equilibrium is locally and asymptotically stable. On the other hand, endemic equilibrium of 

Prosopis juliflora dynamics is globally asymptotically stable when there is 0R > 1. 

5.2 Recommendations 

Furthermore, the spread of the plant can be majorly be minimized on acres of land if the 

intervention are made to ensure that the endemic equilibrium of this model does not exist and when 

happen it should be unstable. This can be happen on the following ways: 

(i) Pastoralism communities like maasai, sukuma, kurya  and farmers should be informed on  

the negative impacts of the plant through conducting seminars to every place where the 

plant invaded. 

(ii) People have to be informed on not using the plant on fens purposes because by so doing 

it results to rapid invasion of the plant. 

(iii) It is advisedly that at any water sources, the plant should be completely eradicated. 
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(iv) Authorities particularly at the level of government should try their utmost to campaign 

and provide education via seminars by environmental clubs for interventions aimed at 

total eradication of this menace. 

(v) To facilitate policy makers and environmental stakeholders to gain a deeper and accurate 

understanding of safeguarding the habitat in general and autochthonous species in 

particular. 

As regard to recommendations, the study should be the source knowledge on future research by 

including other agencies of plant spread such as rainfall, wind, water and people whereas 

conducting on cost effectiveness analysis of the control on plant invasion can be another idea of 

future study.  
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APPENDECIES 

Appendix 1: Matlab Codes for Figure 3 

function PROSOPIS_Model_Fig3 () 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.000005;gamma2=0.070;mu_l=0.000548;  

mu_A=0.00367; 

beta_1=0.000062;beta_2=0.000059;omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModeK_3,[0.005 150],[150 148 150 150 148],options); 

hold on 

 plot(T,Y(:,1),'b',T,Y(:,2),'r',T,Y(:,4), 'g', T,Y(:,5), 'k','linewidth',1.5) 

legend('Susceptible Land','Infected land','Susceptible Animal','Ingested Ainamals' ) 

xlabel('Time(Days)') 

ylabel('Land Population') 

grid on 

hold off 

 function dy= PRModeK_3 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end 
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Appendix 2: Matlab Codes for Figure 4 a 

function PROSOPIS_Model_4() 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.00005;gamma2=0.070;mu_l=0.00548; 

mu_A=0.00367; 

beta_1=0.000062;beta_2=0.000059;omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModeK_4,[0.05 120],[150 148 150 150 148],options); 

hold on 

 plot(T,Y(:,2)*1.015,'k','linewidth',1.5) 

 plot(T,Y(:,2)*1.020,'y','linewidth',1.5) 

 plot(T,Y(:,2)*1.025,'b','linewidth',1.5) 

 plot(T,Y(:,2)*1.030,'r','linewidth',1.5) 

xlabel('Time ( Months)') 

ylabel( 'Acres of Infected Land') 

legend('\Lambda_2= 0.0927','\Lambda_2= 0.0936','\Lambda_2= 0.0945','\Lambda_2= 0.0954') 

grid on 

hold off 

 function dy= PRModeK_4 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

 end 

end 
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Appendix 3: Matlab Codes for Figure 4 b 

function PROSOPIS_Model_4() 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.005;gamma2=0.0070;mu_l=0.000548;mu_A=0.000

237; 

beta_1=0.000062;beta_2=0.000059; omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-6,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModeK_4,[0.05 300],[60 58 60 60 58],options); 

hold on 

plot(T,Y(:,4),'r','linewidth',2) 

plot(T,Y(:,4)*1.02,'m','linewidth',2) 

plot(T,Y(:,4)*1.04,'b','linewidth',2) 

plot(T,Y(:,4)*1.05,'k','linewidth',2) 

legend('\beta_2=0.0000607','\beta_2=0.0000613','\beta_2=0.00006195','\beta_2=0.00006254') 

ylabel('Variations of Land/Animal Population') 

xlabel ('Time (Days)') 

grid on 

hold off 

 function dy= PRModeK_4 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end 
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Appendix 4: Matlab Codes for Figure 5 a 

function PROSOPIS_Model_Fig5() 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.005;gamma2=0.0070;mu_l=0.000548;mu_A=0.000

237; 

beta_1=0.000062;beta_2=0.000059; omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-6,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModeK_5,[0.0 300],[150 148 150 150 148],options); 

plot(T,Y(:,1),'b','linewidth',2) 

plot(T,Y(:,2),'r','linewidth',2) 

legend('Susceptible Land','Infected Land','Susceptible Animals','Ingested Animals' ) 

xlabel('Time (Months)') 

ylabel('Variations of Land/Animal Population') 

grid on 

hold off 

 function dy= PRModeK_5 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end 
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Appendix 5: Matlab Codes for Figure 5 b 

function PROSOPIS_Model_F5() 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.0902;gamma=0.00005;gamma2=0.070;mu_l=0.00548; 

mu_A=0.000367; 

beta_1=0.000062;beta_2=0.000059;omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModeK_5,[0.005 350],[150 148 150 150 148],options); 

hold on 

plot(T,Y(:,1)*1.035,'b','linewidth',1.5) 

plot(T,Y(:,2)*1.04,'r','linewidth',1.5) 

legend('Susceptible Land','Infected land') 

xlabel('Time (Months)') 

ylabel('The Acres of Land Infected') 

grid on 

hold off 

 function dy= PRModeK_5 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end 
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Appendix 6: Matlab Codes for Figure 6 

function PROSOPIS_Model_F6( ) 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.00005;gamma2=0.070;mu_l=0.00548;mu_A=0.003

67; 

beta_1=0.000062;beta_2=0.000059;omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModel_6,[0.05 120],[150 148 150 150 148],options); 

hold on 

plot(T,Y(:,2)*1.01,'r','linewidth',2) 

plot(T,Y(:,5)*1.01,'m','linewidth',2) 

xlabel('Time ( Months)') 

ylabel( 'Acres of Infected Land') 

legend('Infected Land','Ingested Animal') 

grid on 

hold off 

 function dy= PRModel_6 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

 end 

end 
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Appendix 7: Matlab Codes for Figure 7 a 

function PROSOPIS_Model_Fig7 () 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.000005;gamma2=0.070;mu_l=0.000548;  

mu_A=0.00367; 

beta_1=0.000062;beta_2=0.000059;omegal=0.0035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModeK_7,[0.005 150],[150 148 150 150 148],options); 

hold on 

 plot(T,Y(:,1),'b',T,Y(:,2),'r',T,Y(:,4), 'g', T,Y(:,5), 'k','linewidth',1.5) 

legend('Susceptible Land','Infected land','Susceptible Animal','Ingested Ainamals' ) 

xlabel('Time(Days)') 

ylabel('quantity of acres of land/Number of animals') 

grid on 

hold off 

 function dy= PRModeK_7 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end 
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Appendix 8: Matlab Codes for Figure 7 b 

function PROSOPIS_Model_7b() 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.005;gamma2=0.070;mu_l=0.0548;mu_A=0.0167; 

beta_1=0.000062;beta_2=0.000059;omegal=0.035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModel_7,[0.05 90],[150 148 150 150 148],options); 

hold on 

 plot(T,Y(:,1),'b',T,Y(:,2),'r',T,Y(:,3),'y',T,Y(:,4), 'g', T,Y(:,5), 'k','linewidth',1.5) 

title('A GRAPH OF LAND COMPARTMENT') 

legend('Susceptible Land','Infected land','Reclaimed land','Susceptible Animal','Ingested 

Ainamals' ) 

xlabel('Time(Days)') 

ylabel('The Acres of Land Population') 

hold off 

 function dy= PRModel_7 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end  
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Appendix 9: Matlab Codes for Figure 8 

function PROSOPIS_Model_8() 

clear; 

clc; 

lambda_1=0.95;lambda_2=0.902;gamma=0.005;gamma2=0.070;mu_l=0.0548;mu_A=0.0167; 

beta_1=0.000062;beta_2=0.000059;omegal=0.035;d_A=0.005; 

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4]); 

[T,Y]=ode45(@PRModel_8,[0.05 300],[150 148 150 150 148],options); 

hold on 

grid on 

 plot(T,Y(:,1),'b',T,Y(:,2),'r',T,Y(:,3),'y',T,Y(:,4), 'g', T,Y(:,5), 'k','linewidth',1.5) 

legend('Susceptible Land','Infected land','Reclaimed land','Susceptible Animal','Ingested 

Ainamals' ) 

xlabel('Time(Days)') 

ylabel('Quantity of acres of land/ Number of animals') 

hold off 

 function dy= PRModel_8 (t,y) 

    dy=zeros(5,1); 

    dy(1)=lambda_1+gamma2*y(3)-beta_1*y(5)*y(1)-mu_l*y(1); 

    dy(2)=beta_1*y(5)*y(1)-mu_l*y(2)-omegal*y(2); 

    dy(3)=omegal*y(2)-gamma2*y(3)-mu_l*y(3); 

    dy(4)=lambda_2+gamma*y(5)-beta_2*y(2)*y(4)-mu_A*y(4); 

    dy(5)=beta_2*y(2)*y(5)-gamma*y(5)-(d_A+mu_A)*y(5); 

end 

end 
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RESEARCH OUTPUTS 

(i) Publications 

Simon, J., Mirau, S., & Luboobi, S. L. (2020). A deterministic Model for the Control of Spread of 

Prosopis julifora Plants. Journal of Mathematics and Informatics, 19(2020), 93-114. 
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