
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Masters Theses and Dissertations [CoCSE]

2020-12

Development of an early detection tool

for banana diseases: A case of Mbeya

and Arusha region

Sanga, Sophia

NM-AIST

http://doi.org/10.58694/20.500.12479/1346

Provided with love from The Nelson Mandela African Institution of Science and Technology

DEVELOPMENT OF AN EARLY DETECTION TOOL FOR BANANA

DISEASES: A CASE OF MBEYA AND ARUSHA REGION

Sophia Leonard Sanga

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Master’s in Information and Communication Science and Engineering of the Nelson

Mandela African Institution of Science and Technology

Arusha, Tanzania

December, 2020

i

ABSTRACT

In Tanzania, smallholder farmers are mainly involved in farming activities which contribute

significantly to food security and nutrition. Kagera, Mbeya and Arusha regions lead in high

banana production, however, diseases and pests are threats to the yields. Early detection and

identification of banana diseases is still a challenge for smallholder farmers and extension

officers due to lack of the necessary tools such as sensors and mobile applications. In this

research, an early detection tool for banana fungal diseases was developed. This research

presents deep learning models trained for the detection of banana diseases of Fusarium wilt and

Black sigatoka and deployed on a smartphone for the early detection of the diseases in real

time. The five models selected and trained include VGG16, Resnet18, Resnet50, Resnet152

and InceptionV3. The VGG16 model achieved an accuracy of 97.26%, Resnet50 achieved an

accuracy of 98.8%, Resnet18 achieved an accuracy of 98.4%, InceptionV3 achieved an

accuracy of 95.41% and Resnet152 achieved an accuracy of 99.2%. We therefore, used

InceptionV3 model for deployment in mobile phones because it has low computation cost and

low memory requirements of the all models. The developed tool was capable of detecting

diseases with 99% of confidence of the captured leaves from the real world environment. The

system was developed on Android based application in English language. The developed tool

has the potential to support smallholder farmers and extension officers to detect banana fungal

disease at early stages. We conclude that early detection of the diseases is important. Hence

control and management of banana fungal diseases will be done early for the improvement of

banana yield.

ii

DECLARATION

I, Sophia Leonard Sanga do hereby declare to the Senate of the Nelson Mandela African

Institution of Science and Technology that this dissertation is my own original work and that

it has neither been submitted nor being concurrently for degree award in any other institution.

Sophia Leonard Sanga ……………………………

………………

 Name and Signature of Candidate Date

The above declaration is confirmed

Dr. Dina Machuve ……………………………

......…………...

 Name and Signature of Supervisor Date

iii

COPYRIGHT

This dissertation is copyright material protected under the Berne Convention, the Copyright

Act of 1999 and other international and national enactments, on that behalf, on intellectual

property. It must not be reproduced by any means, in full or in part, except for short extracts in

fair dealing; for researcher private study, critical scholarly review or discourse with an

acknowledgment, without the written permission of the office of Deputy Vice-Chancellor for

Academics, Research and Innovations, on behalf of both the author and the Nelson Mandela

African Institution of Science and Technology.

iv

CERTIFICATION

The undersigned certify that has read the dissertation titled “Development of an Early

Detection Tool for Banana Diseases” and found the dissertation acceptable by the Nelson

Mandela African Institution of Science and Technology (NM-AIST).

Dr. Dina Machuve …………………………… ………………

 Name and Signature of the Supervisor Date

v

ACKNOWLEDGMENTS

First and foremost, I am very grateful to my Lord for His grace, love, mercy, blessing all the

time during my studies.

Secondly, I am grateful for the financial support from the DAAD German that covered my

scholarship during the duration of my master’s degree studies.

My supervisor Dr. Dina Machuve provided me great support and mentorship throughout my

studies and I am thankful. I also extend my appreciation to Mr. Kennedy Jomanga for his

expert advice, time, constructive comments and encouragement, during data collection and

preparation of manuscript as an agricultural expert from Agriculture IITA.

I especially thank my colleagues Victor Mero, Mpawe Mleke, and Angelica Kayanda for their

support and cooperation.

I am also indebted to recognize the role played by staff and Management from NM-AIST for

their support and assistance which helps us to achieve our goals.

vi

DEDICATION

I dedicate my dissertation to my husband Joachim Nchimbi Kimisha, my daughters Jocelyne

and Jordine and my son Joshua for their support, motivation and love.

vii

 TABLE OF CONTENTS

ABSTRACT .. i

DECLARATION ... ii

COPYRIGHT .. iii

CERTIFICATION .. iv

ACKNOWLEDGMENTS ..v

DEDICATION .. vi

LIST OF TABLES ..x

LIST OF FIGURES .. xi

LIST OF APPENDICES ... xiii

LIST OF ABBREVIATIONS ... xiv

CHAPTER ONE ...1

INTRODUCTION ..1

1.1 Background of the Study ..1

1.2 Statement of the Problem ...3

1.3 Rationale of the Study ..4

1.4 Objectives ...5

1.4.1 Main Objective ..5

1.4.2 Specific Objective ...5

1.5 Research Questions ..5

1.6 Significance of the Study ...5

1.7 Delineation of the Study...6

CHAPTER TWO ..7

LITERATURE REVIEW ...7

2.1 Overview of Banana Fungal Diseases ..7

2.2 Image-Based Detection of Plant disease Using Deep convolution Neural Network7

2.3 Mobile Application for Supporting Farmers in Disease Detection ..9

2.4 Deep Learning ..10

2.5 Deep Learning Network Architectures ..11

2.5.1 VGG16 ..11

2.5.2 Residual Network (ResNet) ..12

2.5.3 InceptionV3 ...13

2.6 The Research Gap ..14

CHAPTER THREE ..16

MATERIALS AND METHODS ..16

3.1 Study Area ..16

3.2 Research Framework ..18

3.3 Data Analysis and Preprocessing ...18

viii

3.3.1 Labeling ..18

3.3.2 Resizing Images ..18

3.3.3 Reducing Overfitting...19

3.4 Experimental Setup ..19

3.5 Retraining Selected Models ...20

3.5.1 Training Procedures ..20

3.6 Evaluation of the Classifier ..21

3.6.1 Confusion Matrix ..22

3.6.2 Accuracy ...22

3.7 Development of a Mobile Application ...22

3.7.1 System Analysis ..23

3.7.2 Feasibility Analysis ...23

3.7.3 Technology and System Feasibility ..24

3.7.4 Operational Feasibility ..24

3.7.5 Economic Feasibility...24

3.7.6 Requirement Analysis ...24

3.7.7 Functional Requirements ..25

3.7.8 Non-Functional Requirements of the System ...26

3.7.9 Use Case Diagrams ...26

3.8 System Design ..27

3.8.1 Data Flow Diagrams (DFDs) ..27

3.8.2 Activity Diagram...29

3.9 System Implementation ..29

3.10 System Interface ...30

CHAPTER FOUR ...31

RESULTS AND DISCUSSION ...31

4.1 Data Collection Results ..31

4.2 Augmented Dataset Results ...31

4.3 Models Results ...32

4.3.1 Training VGG16 Model on 85:10:5 Dataset Results ..32

4.3.2 Accuracy Graph Results 1 from VGG16 Model ..32

4.3.3 Accuracy Graph Results 2 for VGG16 Model ..33

4.3.4 Accuracy Graph Results 3 for VGG16 Model ..34

4.3.5 Training ResNet Models on 85:10:5 Dataset Results ...35

4.3.6 Training InceptionV3 Model on 85:10:5 Dataset Results ...36

4.3.7 InceptionV3 model Results 1 ..37

4.3.8 InceptionV3 Model Results 2 ...37

4.4 Models Performance Results ..38

4.4.1 Classification Accuracy Results ..39

4.4.2 Confusion Matrix Results ...40

ix

4.5 Mobile Deployment Results ...43

4.5.1 Activities of the user Mobile Application Results ..43

4.5.2 Disease Detection and Disease Details Interface Results ...45

4.5.3 Source Code Screenshot Taken in an Android Studio for Mobile Deployment45

4.6 User Acceptance Testing Results ...47

4.6.1 Agricultural Extension Officers Results ...48

4.6.2 Farmers Results ...48

4.7 Discussion ..48

CHAPTER FIVE ..50

CONCLUSION AND RECOMMENDATIONS ..50

5.1 Conclusion ...50

5.2 Limitation ...51

5.3 Future Work ...51

REFERENCES ...53

APPENDICES ..59

RESEARCH OUTPUT ...88

x

LIST OF TABLES

Table 1: Banana leaves images captured under different condition 17

Table 2: Experimental setup specifications .. 20

Table 3: Images collected from Arusha and Mbeya regions in Tanzania. 31

Table 4: Hyper-parameter used in training VGG16 model .. 32

Table 5: Hyper-parameter used in training Resnet models .. 36

Table 6: Hyper parameter used in training inception V3 model .. 37

Table 7: Performance of the models architectures ... 39

Table 8: Usability testing results for extension officers ... 70

Table 9: Acceptance testing results for evaluation of tool by extension officers 70

Table 10: Farmers usability testing results ... 71

Table 11: Farmers acceptance testing results ... 71

xi

LIST OF FIGURES

Figure 1: CNN architecture for a computer vision task (Voulodimos et al., 2018) 11

Figure 2: VGG16 (Andersen, 2019) .. 12

Figure 3: Residual (inception) connections (He et al., 2015) .. 13

Figure 4: InceptionV3 architecture .. 13

Figure 5: Banana leaves images .. 17

Figure 6: Conceptual Framework .. 18

Figure 7: Data analysis and preprocessing steps ... 19

Figure 8: Transfer learning techniques (Jonsson & Jonsson, 2018) 21

Figure 9: Use case.. 26

Figure 10: Data flow diagram of the FUSI Scanner mobile application 28

Figure 11: Data flow diagram 2 level of the FUSI Scanner mobile application 28

Figure 12: Activity diagram of users in disease detection ... 29

Figure 13: Conceptual design of FUSI SCANNER application.. 30

Figure 14: Dataset division before and after splitting ... 32

Figure 15: Model accuracy results for VGG16 ... 33

Figure 16: Model loss results for VGG16 ... 33

Figure 17: Model accuracy results for VGG16 ... 34

Figure 18: Model loss results for VGG16 ... 34

Figure 19: Model accuracy results for VGG16 ... 35

Figure 20: Model loss results for VGG16 ... 35

Figure 21: InceptionV3 training and validation accuracy results 1 ... 37

Figure 22: InceptionV3 training and validation accuracy results 2 ... 38

Figure 23: InceptionV3 training and validation loss results 3 ... 38

Figure 24: (a) Validation confusion matrix for VGG16 (b) Test confusion matrix for VGG140

Figure 25: (a) Validation confusion matrix for Resnet18 (b) Test confusion matrix for

Resnet18 ... 41

Figure 26: (a) Validation confusion matrix for Resnet50 (b) Test confusion matrix

Resnet50 ... 41

Figure 27: (a) Validation confusion matrix for Resnet152 (b) Test confusion matrix

Resnet152 ... 42

Figure 28: (a) Validation confusion matrix for InceptionV3 (b) Test confusion matrix for

InceptionV3 .. 42

Figure 29: FUSI SCANNER APP disease detection interface .. 44

xii

Figure 30: Implementation of FUSI SCANNER App and its results 44

Figure 31: Screenshots result of FUSI SCANNER app for healthy banana leaves captured

from real environment. ... 45

Figure 32: Screenshots result source code for main activity in Android studio 46

Figure 33: Screenshots result source code for Result Activity in Android studio 47

xiii

LIST OF APPENDICES

Appendix 1: Smalholder farmer’s questions during data collection ... 59

Appendix 2: Extension officer’s questions during data collection ... 62

Appendix 3: Questionnaire for the evaluation of FUSI application...................................... 64

Appendix 4: The geographical distribution of banana Fusarium wilt disease in Tanzania

(Shimwela et al., 2016) .. 66

Appendix 5: An expert collecting data from the field in Arusha region 67

Appendix 6: Verification of FUSI SCANNER App in the real word environment 68

Appendix 7: Screenshots result of FUSI SCANNER app for uploaded image and captured

from real environment respectively .. 69

Appendix 8: Screen shoots result of FUSI SCANNER app for Fusarium wilt race 1

captured from the real environment ... 70

Appendix 9: Source code for mobile deployment in Adroid ... 72

xiv

LIST OF ABBREVIATIONS

App Application

CNN Convolutional Neural Network

CPUs Central Processing Units

DCNN Deep Convolutional Neural Network

ECA East and Central Africa

ERD Entity Relationship Diagram

FP False Positive

FN False Negative

GPUs Graphical Processing units

ICT Information and Communication Technology

IITA International Institute of Tropical Agriculture

SGD Stochastic Gradient Decent

TP True Positive

TN True Negative

UI User Interface

XML Extensible Markup Language

DL Deep Learning

DTL Deep Transfer Learning

ANN Artificial Neural Network

1

 CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Bananas are one of the staple foods and cash crops for about 70 million people especially in East

Africa Counties (Etebu & Young-harry, 2014; Ordonez, Seidl, Waalwijk, Drenth & Kilian,

2015). Banana is largely produced by small-holder farmers in East and Central Africa (ECA)

including Uganda, Rwanda, Burundi, Western Kenya, Tanzania and the Democratic Republic of

Congo (Nkuba et al., 2015). Regardless of its impact, the yields are largely affected by diseases

(Swennen, 2004) commonly are Fusarium wilt race 1 and Black Sigatoka (Ramadhani,

Machuve & Jomanga, 2017; Shimwela et al., 2016).

Black Sigatoka is a leaf spot disease of banana caused by an airborne fungal pathogen called

Cercospora fijiensis (Deltour et al., 2017; Etebu & Young-harry, 2014). In black Sigatoka

disease, the first symptoms appear as dark brown specks on the lower surface of the leaf

(Gutierrez-Monsalve et al., 2015). Fusarium wilt race 1 is a destructive soil-borne disease

caused by Fusarium oxysporum f.sp. Cubense (Foc), can be identified by the symptoms such as

wilting of older leaves and yellowing color which progresses to the young leaves until the whole

plant is affected and eventually die. Another external symptom often linked to banana Fusarium

wilt is the splitting of the pseudostem and an internal symptom in the rhizome and pseudostem,

irrespective of the cultivar affected (Ssali, Potato & Agriculture, 2017; Thangavelu & Mustaffa,

2014). However, the process of identifying and detecting these diseases using human eyes at an

early stage is very difficult.

The production of bananas in East and Central Africa (ECA) has declined since the 1970s and

now yields are a fraction of its potential (Ssali et al., 2017). The low production of bananas has

resulted in significant household food insecurity and loss of income (Nkuba et al., 2015).

Studies in Tanzania indicate that the infestation of banana fungal diseases is still high

(Ramadhani et al., 2017; Shimwela et al., 2016). In Tanzania production of banana is about 2.5

million tons of fruit for each year and ~290000 ha (Mgonja et al., 2020) is the total area under

banana production. Also in Bukoba district, about 11 876 farms were affected by these diseases

(Nkuba et al., 2015).

Early detection of diseases allows for the control and management of diseases properly with

the potential to save crops from damage (Mishra, Mishra & Santra, 2016; Ramchearan et al.,

2

2019). Smallholder farmers and extension officers rely mainly on traditional knowledge to

detect and identify the diseases (Ramadhani et al., 2017). Diseases can be effectively treated

by the time of diagnosis but the availability of tools and methods for early detection, control

and management of the Diseases is a challenge (Dyrmann, Karstoft & Midtiby, 2016; Patil &

Pawar, 2017; Ramcharan et al., 2017).

Machine learning techniques and computer vision have been used to detect diseases from

different crops such as tomatoes, cotton, oranges, grapes and potatoes (Amara, Bouaziz &

Algergawy, 2017). Computer vision systems in agriculture provide useful information in real-

time about diseases and reduce costs and attributes of the product (Amara et al., 2017).

Moreover, image processing using computer vision methods can decrease the computational

costs hence, leaf disease detection can be made easy and faster (Lokesh, Naveenkumar, Rajesh,

Kamath & Rathnam, 2017). In machine learning, Deep Convolutional Neural Network (DCNN)

is used in the detection, identification, and prediction of pests and diseases from crops (Mg,

Hanson, Joy & Francis, 2017). It is also used to provide knowledge and understanding of

different plant pests and diseases response to pathogen effectors (Yang & Guo, 2017). The

recent advancements of a smartphone, advances in deep transfer learning techniques, and

computer vision have indicated deployment of the models on smartphones for disease detection

and identification (Amara et al., 2017; Ramcharan et al., 2017). The uses of smartphone devices

provide many advantages of quick response time and low communication bandwidths.

Deep Convolutional Neural Network has been used in many fields of computer vision such as

natural language processing, speech recognition and face recognition (Voulodimos, Doulamis,

Doulamis & Protopapadakis, 2018). Nevertheless, in computer vision, DL was found more

effective for object detection, image recognition, image segmentation tasks, self-driving cars

and object recognition (Liu et al., 2017).

In agriculture, deep learning has successfully been deployed on smartphone assisted disease

detection based on leaf images (Eli-chukwu, 2019; Ramcharan et al., 2019). There are efforts

made using a mobile application to provide information to smallholder farmers regarding banana

disease management to prevent crop loss due to diseases (Ramadhani et al., 2017). The study

further indicated information on disease identification is disseminated by local plant clinics and

agricultural extension officers.

Mobile penetration in Tanzania had reached 95% by September 2019, with more than 43.67

million people using mobile phones (Ng’wanakilala, 2019). This fact promises the smartphone

3

infrastructure can be used for the deployment of a deep transfer learning model for banana

disease detection.

The developed tool which is a smartphone-based application will help smallholder farmers and

extension officers detect banana diseases in actual time. Therefore, this research study focused

on the development of an early detection tool (smartphone-based app) for detecting diseases

from banana using leaf images, using DCNN, and transfer learning. Hence, the developed tool

can support smallholder farmers and extension officers in the early detection of banana diseases

to improve banana yield.

The purpose of this research is to develop an early detection tool to support smallholder farmers

in banana diseases detection. The proposed smartphone-based application is expected to also

reduce the workload on the extension officers in disseminating information to farmers regarding

the banana diseases occurrence. The application of deep learning-based techniques and transfer

learning techniques have shown promising results in the detection of crop diseases, among many

types of machine learning techniques using image datasets (Hwan et al., 2014; Mishra et al.,

2016; Ramcharan et al., 2017).

Hence this research is motivated by a challenge on early detection of the most commonly

banana diseases namely, Fusarium wilt race 1 and Black Sigatoka grown by smallholder

farmers in Arusha and Mbeya regions in Tanzania (Ramadhani et al., 2017; Shimwela et al.,

2016). Early detection, control, and management of plant diseases are potentially more

important than the classification of diseases, due to their implications in the agriculture sector

(Rumpf et al., 2010; Yang & Guo, 2017).

1.2 Statement of the Problem

There have been efforts by researchers in providing banana disease outbreak information to the

smallholder farmers and extension officers (Nkuba et al., 2015). Banana is a cash crop and

staple food cultivated in Tukuyu district in Mbeya Region and Arumeru District in Arusha

region in Tanzania. Banana production in these regions is affected by the most two common

diseases of Fusarium wilt race 1 and Black Sigatoka (Gallez et al., 2004; Ganry et al., 2012;

Ramadhani et al., 2017; Shimwela et al., 2016).

Different studies reveal that early detection of plant diseases in the agriculture sector is a big

challenge that needs to be treated with special attention (Fuentes et al., 2017; Mg et al., 2017;

Singh et al., 2016).

4

A few mobile phone tools were developed to detect crop diseases for tomato, Brinjal crop,

cassava and plant diseases identification (Gajanan, Shankar & Keshav, 2018; Gorad &

Kotrappa, 2019; Ramcharan et al., 2019; Ramcharan et al., 2019; Ramcharan et al., 2019;

Ramcharan et al., 2019; Ramcharan et al., 2019; Verma, 2019). Model development work on

banana diseases of Sigatoka and Fusarium wilt by (Owomugisha, Quinn & Mwebaze, 2019)

suggested that the work can be extended to work on mobile phones.

There is a big challenge on early detection of banana fungal diseases for smallholder banana

farmers who live in Arusha and Mbeya regions, due to the lack of necessary tools. Smallholder

farmers in these regions mainly use traditional methods to identify disease occurrence

(Ramadhani et al., 2017). Smartphone-based applications are low cost, user friendly, and

computationally efficient for the deployment of deep learning models such as detection of

banana diseases using image datasets (Deng, 2019; Sharada et al., 2016).

Therefore, this study proposes a smartphone-based application for the deployment of deep

learning models to detect banana diseases of Sigatoka and Fusarium wilt. Machine learning

techniques and computer vision methods have proved to be effective in addressing diagnostics

problems in agriculture (Amara et al., 2017; Jagan et al., 2016; Prabha et al., 2014). Though in

the next chapter, we were able to discuss the disease overview, deep CNN for image

classification, deep learning architectures, and mobile application used to detect diseases for

crops.

1.3 Rationale of the Study

Different studies reveal that early detection of plant diseases in the agriculture sector is a big

challenge that needs to be treated with special attention (Fuentes et al., 2017; Mg et al., 2017;

Singh et al., 2016). There is a big challenge on early detection of banana fungal diseases for

smallholder banana farmers who live in Arusha and Mbeya regions, due to the lack of necessary

tools. Smallholder farmers in these regions mainly use traditional methods to identify disease

occurrence (Ramadhani et al., 2017). Smartphone-based applications are low cost, user friendly,

and computationally efficient for the deployment of deep learning models such as detection of

banana diseases using image datasets (Deng, 2019; Sharada et al., 2016).

5

1.4 Objectives

1.4.1 Main Objective

The main objective of this research is to develop an early detection tool for banana diseases in

Mbeya and Arusha regions.

1.4.2 Specific Objective

(i) To determine the features of banana fungal diseases using the leaves image dataset.

(ii) To develop an image classification model for early detection of banana diseases by

using deep learning.

(iii) To develop a smartphone-based application for the deployment of the proposed model.

(iv) To assess user acceptance of the developed model when deployed on a mobile

application

1.5 Research Questions

(v) What features are required for the early detection of banana fungal diseases?

(vi) How model selection will be conducted?

(vii) How can banana fungal disease detection tool be developed to support farmers in early

detection of banana disease from the proposed model?

(viii) How will the developed tool be tested?

1.6 Significance of the Study

The proposed application has the potential to support extension officers and smallholder banana

farmers in the early detection of banana fungal diseases in real time. The detection, control, and

management of banana diseases are potentially more important than the identification and

classification of diseases, in the future due to the implications in the agriculture sector (Yang &

Guo, 2017). The expected outcome of this research work is supporting smallholder banana

farmers and extension officers in Arusha and Mbeya regions in Tanzania with the provision of a

smartphone-based application for early detection of banana diseases. The tool will enable them

to:

6

(i) Take pictures of an affected leaf using a mobile phone and upload it to the app for

detection and receive feedback.

(ii) Detect and recognize the type of disease the banana plant is affected by using an early

detection tool deployed on a mobile phone.

(iii) Reduce the work of the extension officers in disseminating information to farmers

regarding the banana fungi disease occurrence.

1.7 Delineation of the Study

The study is focused on the development of an early detection tool for two banana diseases,

namely, Fusarium wilt race 1 and Black Sigatoka. The dataset for the development of the tool

was banana leaves images collected at the farm level in Tanzania. The machine learning models

developed were deployed as a mobile application to support smallholder farmers in detecting the

occurrence of banana fungal diseases.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Overview of Banana Fungal Diseases

Black Sigatoka is a leaf spot disease of banana caused by an airborne fungal pathogen called

Cercospora fijiensis (Deltour et al., 2017; Etebu & Young-harry, 2014). The initial symptoms

look like dark brown specks on the lower surface of the leaf (Gutierrez-Monsalve et al., 2015).

Banana plants with Fusarium wilt race 1 is caused by the soil-borne pathogen, called Fusarium

oxysporum f. sp. Cubense is recognized by the symptoms such as wilting and yellowing of the

older leaves (Deltour et al., 2017; Thangavelu & Mustaffa, 2014). This effect progresses to the

youngest leaves until the whole banana plant dies, also the splitting of the pseudostem

irrespective of the cultivar affected (G.Region, 2017; Gutierrez-Monsalve et al., 2015).

However, the majority of smallholder banana farmers rely on traditional methods for disease

identification or detection from banana plants (Ramadhani et al., 2017). Historically, disease

detection or identification has been distributed by agricultural officers and other sectors eg.

local plant clinics (Mohanty et al., 2016). Furthermore, these agricultural experts or officers

must visit plantations regularly to avoid disease spreading. Usually, the method of monitoring or

detecting these diseases by using an agricultural expert or local plant clinics is time consuming

and difficult task for experts (Brahimi, Arsenovic, Laraba & Sladojevic, 2018).

Banana fungal diseases are still a big challenge for smallholder farmers causing high crop losses

of up to 100% (Nkuba et al., 2015). Similar studies have reported different cases of crop loss as

a result of the failure of early disease detection (Jagan et al., 2016; Lokesh et al., 2017;

Martinelli et al., 2015). These challenges makes the need of developing an early detection tool

which is a smartphone-based app to detect and identify diseases, hence control and management

can be done properly to protect banana plants.

2.2 Image-Based Detection of Plant disease Using Deep convolution Neural Network

Patil and Pawar (2017) proposed a deep learning method for detecting diseases from different

plants by using leaves images. They used different detectors for disease detection and

classification using architecture called Region-based Fully Convolutional Network. The

architecture was tested with datasets from images that some were downloaded from the internet

and captured by using camera devices from different places.

8

Sladojevic et al. (2016) proposed a deep learning method that was able to classify 13 different

types of plant diseases using diseased and healthy leaves images, with the capability to

distinguish plant leaves from their environments. CNN approach was used, with leaf images

diseases from the plants were classified and recognized. The model had a performance of 91%

and the precision value was 98% with an average of 96.3%.

A study conducted by Selvaraj et al. (2019) addressing banana pest diseases (based on leaf and

the banana fruits). He proposed an Artificial Intelligence used to detect pests and diseases from

banana plants by using deep machine learning techniques that in the future can be integrated on

a mobile phone. They retrained several convolution network model architectures and finally,

chose ResNet 50 and InceptionV3 for model development. The study finally was capable to

train DTL to create a system that can make correct predictions.

Deep learning and the advances in computer vision allow increasing plant protection from

diseases, in the agriculture sector (Mg et al., 2017). Deep CNN was trained and fine-tuned and

achieved an accuracy of 96.3% while after 100 epochs the training accuracy was 95.8% but this

was done without fine-tuning the parameters. The DCNN method was used to enable an easy

and quick system implementation during training. The datasets were trained by DCNN and the

model was able to differentiate between healthy leaves and unhealthy leaves and the final results

were 95% accurate.

Deep Convolutional Neural Network (DCNN) architectures on a public dataset were applied for

plant disease classification (Brahimi et al., (2018). Three architectures from DCNN were

selected and trained to detect diseases from plants at an accuracy of 99.7%. The saliency maps

visualization technique was used to understand and interpret the result of the DCNN. The

visualization technique increases the transparency of the DL modes and it gives additional

details of the disease detected from the plant.

The study was done by Sharada et al. (2016) used GoogLeNet and AlexNet architectures from

deep learning. The aim was to classify both species and identify diseases on images from plat

leaves that the model has never seen before. Plant Village data set of about 54306 images

contains 26 diseases and 38 classes of 14 crops were used. The accuracy of the trained models

was 99.35%, however, without feature engineering, the trained model succeeded in classifying

disease and crop from 38 classes in 993 out of 1000 images.

Moreover study conducted by Fuentes et al. (2017) was able to detect pests and diseases on

tomato leaves. With a deep learning technique, tomato leaves images were captured by the

9

camera at different resolutions were analysed, processed, and tested for pests and disease

presence and the model was able to give the results (positive or negative pests and or diseases

presence).

2.3 Mobile Application for Supporting Farmers in Disease Detection

There are Some tools have been developed by researchers on the problem of detecting, and

identifying banana leaves diseases.

Ramcharan et al. (2017, 2019) used deep learning techniques and mobile phones for the

detection of cassava disease using images taken from the real environment in Tanzania. The

training for the deep CNN model was used to classify 2 pest occurrence and 3 damage diseases.

However, the best-trained models achieved an accuracy of 98% for brown leaf spot, 96% for

cassava mosaic disease and 98% for cassava brown streak disease damage, during testing the

model accuracy was 93% for the dataset that were not used during the training process. The

models were validated in the real field with a mobile phone application embedded with

TensorFlow android inference. However, the developed mobile application was limited to detect

diseases for cassava only.

Another study conducted by Gorad and Kotrappa (2019) discusses a machine learning model

that was integrated with mobile phones for crop disease prediction in India. By using a

smartphone, camera plant leaves images were captured then transmitted to the back end model

for processing. New images in clusters of different disease categories with historical data were

presented by using K-means algorithm. Through this application, farmers were able to request

information using a desktop GUI form or web browser and through messaging or app service

and access the results.

Selvaraj et al. (2019), addressed a banana pest diseases detection challenge (based on leaf and

the banana fruits) by proposing an AI-banana disease and pest detection using deep machine

learning techniques that in the future was integrated on a mobile phone. Convolution network

model architectures were retrained and finally, ResNet 50 and InceptionV3 were selected for the

model development. Hence authors were able to train DTL to create a model that can make

correct predictions.

A deep learning mobile based on plant disease diagnostic was proposed using CNN after

training five CNN models on tomato leaf images. The study ended up with ResNet 50 as the

10

accurate prediction model and it was employed in the mobile application for tomato diseases

classification and identification (Verma et al., 2019).

According to Shriram et al. (2019), a deep learning mechanism integrated with a mobile phone

as a means of early diagnosis of leaf diseases was developed. A convolutional neural network

that uses leaf images as input, analyses, and categories was employed. The sole purpose was to

detect plant diseases in early stages through leaf images that are captured by a farmer's mobile

phone camera.

Another study conducted by Gajanan et al. (2018) developed an intelligent system that can be

used for the diagnosis of disease from the plant at an early stage. The system used images of the

plant captured with visible infrared light. The system was able to recognize the diseases from

plants using symptoms such as lesion or spots in a different part of a plant.

Moreover, Owomugisha and Mwebaze (2016) and Owomugisha et al. (2019) proposed an

automated platform to detect the occurrence of black sigatoka and Fusarium wilt. Various

Computer vision techniques were used to diagnose these diseases. The randomized trees method

achieved an accuracy of 0.96 for BBS and 0.91 for Fusarium wilt. The performance of the

selected classifier was assessed from the covered area under the curve. They conclude mobile

deployment process remains as future work.

2.4 Deep Learning

 In machine learning deep learning is a method used to train a single ANN and it performs a task

by frequently testing its performance of the task and altering internal parameters within the

network between each test (Voulodimos et al., 2018). The DCNN has been used in several areas

example in computer vision, faces recognition, natural language processing and speech

recognition. Though in computer vision, DL was found more effective for self-driving cars,

image recognition, robotic, object recognition and image segmentation tasks (Liu et al., 2017).

Its architecture is inspired by how the neurons in the human brain work. Each neuron in the

Convolutional Neural Networks will either activate or deactivate when observing a certain

object. Each layer will focus on different features. In a computer vision task for example, the 1
st

layers may focus on lines and edges, and while we progress towards the last layers the focus will

change to e.g. colours. Putting all the neurons together and the network is able to recognize even

small details in an image shown on Fig. 1.

11

Figure 1: CNN architecture for a computer vision task (Voulodimos et al., 2018)

The architecture of CNN consists of different layers and each layer will focus on different work

the first layer is called Convolutional Layers. This layer uses various kernels to train the image

and its internal feature maps and creates various feature maps. Because of its advantages, the

convolution method is used for many works (Voulodimos et al., 2018). The second layer is

called Pooling layer, the aim of using this layer is to reduce the spatial dimensions (width ×

height) of the input size for the next convolutional and make it strong to variations for

previously learned features. However, this technique works out in computing the maximum

value in each area at different positions (Bayar & Stamm, 2016).

The next layer after the pooling layer is called a fully connected layer. This layer is involved in

making a high-level of reasoning in the neural. All Neurons in a fully connected layer have a

complete connection to all activation in the previous layer, as their name implies (Krizhevsky,

Sutskever & Hinton, 2012). Their method is calculated with a matrix calculation followed by a

bias offset. The layer can transform the 2D feature maps into a 1D feature vector. The created

vector either could be fed onward into a certain number of classes for classification or could be

used as a feature vector for extra processing (Girshick, Donahue, Darrell, Berkeley & Malik,

2012).

2.5 Deep Learning Network Architectures

This section will explain the deep learning network architectures used in training our datasets

2.5.1 VGG16

The first architectures trained are VGG16 is a convolutional neural network. VGG16 model has

the capability of training about 140 million images from the Image Net database. The VGG16

consists of 16 layers deep shown in Fig. 2. The network is capable of classifying images into

1000 object classes, such as house, car, mouse, keyboard, bottle of water and animals

12

(Simonyan & Zisserman, 2014). VGG16 has many features used for representing a large group

of images. This network takes an image input size of 224 x 224 and it is considered state-of-the-

art. The implementation of VGG16 architectures in JAVA contains 13 layers, 5 Max pooling

layers and 3 fully-connected layers, to make a total of 21 layers. To implement in python 3 x 3

filter sizes are used with a stride of 1 pixel for all convolutional and Max-pooling layers are

executed with a 2 x 2 filter with a stride of 2 pixels. The ReLU activation is used in every

convolutional, the AGD optimization algorithm is used for the implementation process and

fully-connected layer in the network. The AGD uses a probability of 0.5 along with the dropout

regularization method to reduce the overfitting occurrence in two of the three fully-connected

layers. The Softmax layer is used as a final layer and a negative log-likelihood loss function.

Figure 2: VGG16 (Andersen, 2019)

2.5.2 Residual Network (ResNet)

It is a convolutional neural network work by shortcutting with identity functions (He, Zhang,

Ren & Sun, 2015). The network allows more features to be reused directly also it improves the

training efficiency of the model. This network is motivated by checking that its neural network

works to acquire higher training error when the depth increases to big values. However, residual

network shows to improve the training speed very well (Szegedy, Ioffe, Vanhoucke & Alemi,

2016) the network has different versions such as ResNet18, ResNet50, ResNet152.

13

2.5.3 InceptionV3

It is a deep convolutional network, in recent years the network show higher performance in

image recognition. Also, the Inception architecture has achieved very good performance with a

low computational cost (Szegedy, Ioffe, Vanhoucke & Alemi, 2017) when compared to other

deep convolutional networks. However, the introduction of residual connection together with

traditional architecture has shown the best performance and become the winner of the ILSVRC

2015 challenge. To reduce the computation cost from residual learning, InceptionV3 uses a 1 ×

1 convolution method illustrated in Fig. 3.

Figure 3: Residual (inception) connections (He et al., 2015)

A residual (inception) connection from Fig. 3 left sides is the first residual connection. While

from the right side is an improved one that decreases the computational cost with the use of a 1

× 1 convolution called InceptionV3 (Szegedy et al., 2017) and InceptionV3 is among the

transfer Learning examples shown in Fig. 4.

Figure 4: InceptionV3 architecture

14

The transfer learning technique is used to speed up the process of classifying Image by using

InceptionV3 as a starting point for transferring modules (Medium.com, 2019). Also, deep

convolution neural network can be implemented by using python as a programming language;

also TensorFlow platform is used for handling machine learning algorithms.

2.6 The Research Gap

The literature indicates that a lot of deep learning models used to detect and identify diseases

from the plant were not deployed to reach stakeholders mainly farmers and extension officers.

Model deployment is mainly recommended as an area of future work.

A Mobile-Based Deep Learning Model for Cassava Disease Diagnosis that exits in Tanzania

was used to detect a disease from cassava. The app uses the cassava leaf dataset collected from

IITA in Bagamoyo District, Tanzania. Authors suggest that the developed mobile app needs to

be evaluated in real environment conditions for plant disease diagnostic. Based on the result

they recommend that mobile Convolutional Neural Network models be used on the collected

cassava data set.

Hence still smallholder banana farmers are not able to use the developed app to detect banana

disease occurrence. Smallholder farmers in the selected regions still use historical methods to

identify disease occurrence.

The few mobile apps that were developed to detect diseases on crops use a single crop

(Ramcharan et al., 2019) in Tanzania. The use of a dataset downloaded from the internet makes

the models fail to detect the disease in a real-world environment. Also, the use of segmentation

techniques reduces the performance of the image captured since the background was removed

during images pre-processing. However, different studies have reported different cases of crop

loss as a result of the failure of early disease detection (Jagan et al., 2016; Lokesh et al., 2017;

Martinelli et al., 2015). Hence, early detection and classification of diseases from crops using

Leaves image is still a big challenge to many smallholder farmers as well as extension officers

(Dyrmann et al., 2016; Patil & Pawar, 2017; Ramcharan et al., 2017), due to lack of necessary

tools that will help to prevent the possible outbreak of pests and diseases on real-time (Jagan et

al., 2016; Rumpf et al., 2010).

There are many benefits of detecting diseases from the crop by using automatic methods at its

initial stage to facilitate the control and management of the diseases at early stages (Mishra et

al., 2016; Ramcharan et al., 2019). Due to the challenges mentioned in research gaps, there is a

15

need for developing an early detection tool which is a smartphone-based app by using Machine

learning techniques and Computer vision to support farmers in disease detection (Jagan et al.,

2016; Ramcharan et al., 2017). In order to achieve the detection of banana disease at an early

stage, we need to have a supportive tool which is a smartphone-based app which is less

expensive, real-time, automatic, user friendly and fast for the detection of banana diseases by

using image datasets (Al Hiary et al., 2011).

The literature review revealed that the availability of tools for early detection of banana diseases

is a challenge for smallholder farmers and extension officers and as a result, its impact is low

productivity and low yields of banana.

Therefore, this research will take the advantage of DCNN and transfer learning technique from

machine learning techniques and computer vision to develop a tool which is a smartphone-based

app in addressing this problem. The developed tool aims to support farmers to detect and

recognize the disease occurrence from the banana plants at an early stage. Also, the tool will

reduce the work of the extension officers to disseminate information to farmers regarding the

fungi disease occurrence.

16

CHAPTER THREE

MATERIALS AND METHODS

3.1 Study Area

This study was conducted in Rungwe District in Mbeya and Arumeru District in Arusha region,

Tanzania from November 2018 to February 2019. Rungwe District which involves two wards

Tukuyu (that include Ikama, Katumba, Itagata and Ilinga villages) and Itete wards located at

Latitude in 9° 15' 00" S, Longitude in 33° 40' 00" E, and altitude of 2 981m. In Arumeru

District, two wards with six villages were visited; Akheri (that includes Patandi, Akheri,

Nguruma and Ngyani villages) and Nkoaranga (which has Nshupu and Nkoaranga villages)

located at Latitude: -3° 07' 60.00" S, Longitude: 36° 51' 59.99" E and altitude of 1724 m. These

regions were selected due to the high cultivation of banana crops. During data collection, we

used the Open Data Kit (ODK) tool installed on Tecno wx3 mobile phone camera to capture

banana leaves images shown in Fig. 5 under different conditions depending on the seasons and

time (i.e. temperature and humidity) Table 1 with the percentage of images in each category.

 (a)Black Sigatoka at late stage (b) Fusarium wilt race 1 at late stage (C) Healthy leaf

17

(d) Black Sigatoka at early stage (e) Fusarium wilt race 1 at earlystage

Figure 5: Banana leaves images

The possible spreading of banana Fusarium wilt 1 and black Sigatoka disease in Tanzania are

shown in Appendix 4. Circles with bolded dashes are major regions producing banana crops

(Kilimanjaro and Mbeya in Tanzania); dotted circles without bold show the areas with average

banana production (Shimwela et al., 2016).

Table 1: Banana leaves images captured under different condition

Banana

Classes

Early stage

images/ %

Mid stage

images/ %

Late stage

images/%

Lighting

stage

images

/%

Black

Sigatoka
343/15.37 793/34.99 980/43.24 150/6.619

Fusarium

wilt race1
259/15.35 530/31.41 758/48.93 140/8.299

Healthy - - - 2400/100

The dataset was collected with the help of two banana specialists from Arusha region and one

expert from Mbeya region from IITA, Tanzania.

18

3.2 Research Framework

Figure 6: Conceptual Framework

The research framework above indicates the different activities on this research were conducted

from data collection (section 3.1), data analysis and pre-processing, model selection, and finally

how the developed system was validated to detect banana diseases illustrated on Fig. 6. All

activities done from this research framework was indicated in Section 3.3 to Section 3.10 and

Fig. 7.

3.3 Data Analysis and Preprocessing

3.3.1 Labeling

The collected dataset was labeled manually with the help of three agricultural banana experts

IITA by naming the folder containing images with their respective class. Then the labeled

images were processed by using transfer learning techniques. The process of labeling the dataset

helped the model to classify well each image during training.

3.3.2 Resizing Images

Data analysis was performed to understand the statistical and general properties of the collected

images. The collected images were RGB in jpeg format with a height of 1920 pixels and a width

of 2560 pixels.VGG16 were used to fix image size 224 x 224 pixel RGB to the cov1 layer

during training. ResNet18, ResNet50, ResNet152 were used for an image size of 224 x 224

19

pixel RGB on training while InceptionV3 was used on an image of size 299 X 299 pixel as an

input.

3.3.3 Reducing Overfitting

To increase the size of our dataset for training the selected models and reducing the overfitting

problem data augmentation technique was used by adding slight variations of changes to the

existing data (image) to generate more image datasets for the model well for generalization. The

augmentation technique for image data generator was l rotating-left-bottom, horizontal flipping,

rotating –right-bottom, shear of 0.1 ranges, zoom of 0.2 ranges, cropping, and rescaling ration of

1/255 factor for each image was done. Augmentation process each class contain 3000 leaves

images was conducted to make a total of 9000 datasets.

Figure 7: Data analysis and preprocessing steps

3.4 Experimental Setup

The experiments for this research were carried out using a desktop computer installed with

Ubuntu 18.04 with the specifications summarized in Table 2. The programming language used

during training was Python. Keras library was used as a baseline during implementation with

Tensor Flow on the backend to enable models to have high performance for numerical

computation during training. The software library used to train the selected models was the

Google collab machine with runtime type as Python3, Notebook size of 20Mb and hardware

accelerator as GPU.

20

Table 2: Experimental setup specifications

Device name Description

Memory 251.8GiB

Processor Intel xeon(R)CPU E5-26200@2.00GHz*12

Graphics NVD9

GNOME 3.32.1

OS type 64-bit

Disk 1.0TB

3.5 Retraining Selected Models

In this research, five pre-trained (re-used) models were trained using the transfer learning

technique. These models were ResNet18, ResNet50, ResNet152, VGG16 and InceptionV3.

From deep convolutional neural networks, we assess the applicability of these techniques for the

classification problem described in this research. The selected five models are among the DCNN

and they are foremost state-of-art in computer vision tasks. Instead of using traditional ways of

training a classifier to train feature extraction by using the hand-designed method, the

Convolutional neural network (CNN) “learns feature hierarchy from pixels to classier and train

layers jointly up to the final output” (Szegedy et al., 2016). However, as a result of its density,

CNN takes even more time for complete model training with millions of image samples. To

overcome this challenge, The selected five models was used for model development (Tan et al.,

2018). Studies revealed that the “ transfer learning technique is effective for many applications

and reduces training time than training or learning from scratch” (Karpathy et al., 2014; Shijie,

Peiyi, Siping & Haibo, 2017).

In comparison to mobile-friendly architectures such as MobileNet, the InceptionV3 is optimized

for correctness when making predictions (Woff, 2017). MobileNet architecture is optimized for

speed (Gavai, Jakhade, Tribhuvan & Bhattad, 2017). The MobileNet model utilizes depth-wise

separable convolutions, which is similar to InceptionV3 architecture (Bankar & Gavai, 2018).

Since the study focused on the detection of banana diseases, the accuracy (correctness) on

prediction is more important than speed. Hence the deployment of the model was on

InceptionV3.

3.5.1 Training Procedures

To get the best hyper-parameter that would give better performance these parameters were

selected with consideration of batch size, optimizer, momentum, learning rate and weight decay.

mailto:E5-26200@2.00GHz*12

21

To train the models, the dataset was split into two ratios. To avoid bias in the re-used models,

the datasets was randomly arranged before splitting. Banana leaves image dataset was divided in

the following ratio 70:20:10 and 85:10:5 for training, validation, and testing respectively. The

70% and 85% contained a training dataset, and our model was validated on the 20% and 10%

validation dataset to ensure that the training process was the correct way and made it easier to

detect over fitting problems. While the test set with 10% and 5% test dataset was used to assess

the performance (performance verification stage) of the selected model. All hyper-parameter

searches were done on the validation set to avoid overfitting and degradation problem. The

selected model was trained with a new dataset by taking only the last layer of the re-used

(transfer learning) model and exchanged it with the new untrained model as illustrated in Fig 8.

The last two layers called Softmax was trained by using the early weight of the model, for

recognizing and classifying the new images. The retrained final layer was used because the old

information was needed to differentiate between the earlier 1000 classes and the new object

trained.

Figure 8: Transfer learning techniques (Jonsson & Jonsson, 2018)

3.6 Evaluation of the Classifier

Each model was evaluated after every 5 iterations by checking the classification accuracy and

loss during the training process. To evaluate the model's performance, confusion-matrix metrics

and accuracy were used. During training, the model parameters were updated, and at the same

time tuning the hyper parameters for the models to generalize well.

22

3.6.1 Confusion Matrix

The confusion matrix is the table that shows how the model confuses during training and it

explaining the performance of a model from its classification. It gives a better idea of what your

model is getting right and what types of errors the models make during the classification

process. Hence to visualize our pre-trained models' confusion matrix was used shown in Fig. 25

to Fig. 29. During training, the validation set contained 309 images for Black Sigatoka, 309

images for Fusarium Wilt race 1, and 309 images for Healthy, and the test set contains 150

images for Black Sigatoka, 150 images for Fusarium Wilt race 1, and 150 images for Healthy.

Both validation set and test set were considered to evaluate model performance, predicting

unseen data, and visualize the predicted result by using the confusion matrix.

3.6.2 Accuracy

Accuracy is the rate at which the model is capable to predict the correct value for a given data

idea or observation defined in equation 1.

Equation 1: Accuracy equation

 Accuracy =

Where TP =True positive showed the number of leaf images with Black Sigatoka and it

classifies as Black Sigatoka as well as for Fusarium Wilt race 1 and Healthy class. FN = False

Negative showed the number of leaf images with Fusarium Wilt race 1 but classified as Healthy

class, TN=True Negative showed the number of leaf images with Black Sigatoka and classified

as Fusarium wilt while FP = False Positive showed the number of leaf images with Black

Sigatoka and classified as Healthy.

3.7 Development of a Mobile Application

After testing the model's performance we found that Resnet152 was able to meet our objective

since it was able to detect a disease from the trained dataset and archived an accuracy of 99.2%.

Mobile deployment on Resnet152 is complex and it has a high computational cost and requires

large memory space. Hence, we selected inceptionV3 model for mobile application deployment

due to its low computational cost and it has low memory requirements.

An early detection tool which is a smartphone-based application to support smallholder farmers

and extension officers to detect diseases occurrence on real-time was developed. Tensor flow is

23

an open-source deep learning framework that offers Applications Program Interfaces for mobile

deployment in IOS-based smartphones and Android. This framework was used to train the

InceptionV3 model for banana disease detection. Also, Extensible Markup Language and JAVA

was used as programming language in the Android application. The tool makes use of the leaf

image capture using a mobile phone. It processes the captured image and gives feedback

according to the leaf captured if it has diseases of it is a healthy one.

During software development, a user requirement of the entire system was considered and the

software engineering approach was followed during the development of the tool. The Software

development life cycle (SDLC) was selected as our way to the development of the tool which is

a smartphone-based app. The flow of activities and progress of each task is presented using

SDLC.

3.7.1 System Analysis

This is the first layer of SDLC. User needs are considered in this phase for developing new

software also problems in the current system are identified. In this research the system study

phase was done through these steps:

Existing system: explained in the research gap section 2.6.

Proposed system: FUSI SCANNER is an android based mobile app. It is a smartphone-based

app used to support smallholder farmers and extension officers in the early detection of disease

from the banana plant. The app was developed to work offline so that farmers can reduce the

cost of buying internet bandwidth when visiting their farms, also the developed app is user-

friendly and it can detect the disease on real time.

The major activities performed by FUSI SCANNER app in banana diseases detection are

 The app provides basic information about the disease detected with percent

confidence.

 The app uses a camera as a user interface for disease detection.

3.7.2 Feasibility Analysis

Feasibility is defined as the level to which a project can be done successfully. The strengths and

weaknesses of the proposed research were analyzed in this phase. To estimate feasibility, a

feasibility study is implemented, to decide whether the solution considered is practical and

24

feasible in the software. The feasibility study is aimed to establish the motives for developing

the software that will satisfy users, conformable and flexible to change to established standards.

Technical feasibility, economic feasibility and operational feasibility was considered in the

development of FUSI SCANNER.

3.7.3 Technology and System Feasibility

In this phase, we check if our research is within the boundaries of current technology and does

the technology exist at all, or if it is obtainable within given resource constraints (i.e., budget,

schedule). The developed tool on a smartphone is using Android which is stable and recognized

technology.

3.7.4 Operational Feasibility

This phase was used to measure if the proposed tool will solve the problem, and takes advantage

of the opportunities recognized during scope definition and if it uses the requirements

recognized in the requirements analysis phase of system development. The user interface of

FUSI SCANNER is in English language.

3.7.5 Economic Feasibility

The developed app will improve the economic conditions of smallholder farmers and extension

officers by detecting the disease occurrence from banana plants on real time also the app is

developed to operate offline.

3.7.6 Requirement Analysis

This phase is used to define the user needs and the whole planned framework for client use

recognized system characteristics and environments to determine requirements for system

functions. Requirements were analysed, restructured, refining the mission statement and

environment to uphold the system definition explained in section 4.1 chapter 4.

Fix System Boundaries

The scope of the proposed tool was decided. As the developed tool was able to detect disease

from banana plants and its scope is to support farmers in Tanzania.

25

To Identify the Customers

From requirements analysis, another step is to identify users of the developed software. This

tool is designed for smallholder farmers and extension officers so it can support them in early

detection disease from banana plants hence control and management can be done properly.

Requirement Gathering

At this stage, the requirement for the tool to be developed was banana leaves images. They have

been collected from Arusha and Mbeya region in Tanzania by using a smartphone camera

installed with an ODK kit.

 Requirement Analysis Process

Structure analysis and modelling of the requirement gathered was done at this stage.

Requirement Specification

This is an initial point for software design. It includes the function of the developed system,

performance, user interface, and operational constraints that will assist in system development.

Hence the design phase was done and the tool was developed.

3.7.7 Functional Requirements

A functional requirement is defined as the core functions of the system it includes data

manipulation, calculations or components of the system. It defines what a system can

accomplish. The following are the functional requirements of FUSI SCANNER: the sample size

of the dataset used was 9000 images.

 Capturing images.

 Uploading images.

 Performing inference of captured or uploaded images to a deep transfer

learning model embedded within the application for classification of the

disease.

 Displaying results (Healthy leaves, Fusarium wilt race 1 and Black

Sigatoka disease) with the percentage of confidence as shown in Fig. 31

and appendix 7 and appendix 8 respectively.

26

3.7.8 Non-Functional Requirements of the System

 Reliability: The system intended to function under a certain state without

failure.

 Flexibility: Possibility of the system to adapt future changes in its

requirements.

 Performance: Response time, throughput and memory usage.

 Availability: In software engineering, availability is the ratio of time a

system is required or expected to function.

3.7.9 Use Case Diagrams

Use case methodology is used in system analysis to clarify, identify, as well as to organizing the

system requirements. Figure 9 shows the use-case for the FUSI SCANNER application.

Figure 9: Use case

Above is the use case of the FUSI SCANNER which is a mobile application it shows how the

actors interact with the application. This mobile application has two actors which are

smallholder farmers and Extension officers.

From the above use case diagram Actor performs the following task in disease detection; FUSI

SCANNER application through a developed model and analyzed algorithm will give a detection

of banana disease using leaf images depending on the types of leaf image were captured

/uploaded by the user.

Take Photo

 Primary actors

27

Farmers/Extension officer: take photo/capture banana leaf and upload it to the

application.

Upload Photo

 Farmers/Extension officer selected banana leaf images stored in the galley

and uploading to the application.

Receive Feedback

 Farmers: receive feedback from a mobile application.

 The extension officer receives feedback from a mobile application and

provides suggestions to farmers.

3.8 System Design

System design is a process of defining the elements of a system like architecture, modules,

components and different interfaces for a system to satisfy the defined requirement. The system

design on this research is based on two types from the design phase, the first design is logical

design with entity relationship diagrams and the second is a data flow diagram and activity

diagram.

3.8.1 Data Flow Diagrams (DFDs)

The data flow diagram in Fig. 10 and Fig. 11 respectively shows the data stored, external entities

and processes in the system. It explains where information comes from and where it ends also it

shows how part of the system transforms inputs into output. The Fig.10 demonstrate the entire

idea of how smallholder farmers/extension officers captured image and undergo the process as

per system model to results.

28

Figure 10: Data flow diagram of the FUSI Scanner mobile application

The data flow diagram in Fig. 11 presents the overall idea of how Extension officers and

smallholder farmers they will interact with the application. The function of both users is to open

the app then from the home page, the user selected the option to use e.g. camera

option/uploading option then capture /upload the image to the application the app processing the

input and return the result finally the user view the feedback.

Figure 11: Data flow diagram 2 level of the FUSI Scanner mobile application

29

3.8.2 Activity Diagram

Figure 12 shows the activity diagram of the users (farmer/extension officers) in disease

detection.

Figure 12: Activity diagram of users in disease detection

3.9 System Implementation

The developed tool smartphone-based application will enable access to information and support

farmers for the detection of banana fungal diseases on real time. Figure 13 shows the conceptual

design of the mobile application and illustrates how the data moves within the mobile

application to the users (smallholder farmers and extension officers). InceptionV3 model was

used during the deployment of this system due to its low computation cost and less memory

requirement when deployed in mobile devices as compared to four remained trained models.

InceptionV3 model was integrated with a mobile phone to facilitate access and detect diseases in

real-time for easy control and management of the disease to improve the banana yield.

30

Figure 13: Conceptual design of FUSI SCANNER application

In the development of this smartphone-based application, Python programming language has

been used to create the deep learning model. Also, Extensible Markup Language (XML) and

Java in the android studio (explained in Chapter 2) was used to create an application interface

that gives an easy interactive observation. The application was developed to work in the

Android operating system, the globally most popular and open-source operating system

developed and owned by Google Company.

3.10 System Interface

The system interface is defined as the whole presentation of the developed system or a means of

interaction among the application and user. Figure 29 in section 4.5.1 demonstrates the default

interfaces of a smartphone-based application called FUSI SCANNER. Chapter 4 presents the

result obtained when testing the developed tool.

31

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Data Collection Results

In this research, the collected dataset contains images with two categories of banana disease

namely Fusarium wilt race 1 and Black Sigatoka diseases and one category of healthy banana

leaves collected by an expects as shown in Fig. 5 and explained in section 3.1. Table 3 below

indicates the total number of images collected from Arusha and Mbeya regions in Tanzania.

The requirement of this research was images of banana leaves, which were collected using

mobile phone camera Tecno WX3 installed with ODK kit with the help of three experts from the

international institute of tropical agriculture (IITA). All datasets were collected from Arusha and

Mbeya regions in Tanzania and stored in a Goggle drive. The sample size of the collected data

set was 6353.

Table 3: Images collected from Arusha and Mbeya regions in Tanzania

Images collected Mbeya region Arusha region

Black sigatoka 1048 1218

Healthy leaves 1300 1100

Fusarium wilt race 1 1050 637

Total images 3398 2955

According to the nature of the study, the dataset was collected from the banana leaf plants and

not the soil. Currently, smallholder farmers still use the traditional method in detecting disease

occurrence in their fields. Smallholder farmers, have to make timely decisions for the control

and management of their crops. Monitor the field situation is done at least once in a week by

checking (plants, weather factors, pests, natural enemies, soil, water etc.). Once the farmers

observe the occurrence of the disease in their field farmers they take direct action that is needed

such as, remove infested plants, and remove infected banana leaves and collecting egg masses.

4.2 Augmented Dataset Results

From section 3.3.3 our dataset collected from both regions was augmented and we get a total of

9000 datasets. Figure 14 shows the distribution image from each class to different set of

training, validation and testing.

32

Figure 14: Dataset division before and after splitting

4.3 Models Results

4.3.1 Training VGG16 Model on 85:10:5 Dataset Results

Hyper-parameters summarized in Table 4 were selected and used to train VGG16 model. The

first parameters set were 20 epochs and a batch size of 16. Dataset was divided into this ratio for

training 85%, for validation10% and test set 5%. During training, we found that 8121 images

belong to 3 classes and 927 images belonging to 3 classes.

Table 4: Hyper-parameter used in training VGG16 model
Parameter Value

Optimizer Adam

Batch-size 16

Epoch 20

Metrics Accuracy

Model Architecture VGG16

Images size 244*244 pixel

4.3.2 Accuracy Graph Results 1 from VGG16 Model

VGG16 model was trained with these hype-parameters 20 epochs and a batch size of 16.

However, during the training process at Epoch 15 the validation accuracy was 94.40% and train

accuracy was 90.72% and loss values are shown in Fig. 15 and Fig. 16 respectively. However, at

20 epochs we have found that the validation accuracy decreased to 93.85% and train accuracy

increased to 92.15%. Due to these results, our model was not able to generalize well during

training due to a large gap between train and validation dataset.

0

500

1000

1500

2000

2500

3000

Fusarium wilt race1 Black sigatoka Heathly leaves

N
u

m
b

e
r

o
f

im
ag

e
s

dataset train validation test

33

 Figure 15: Model accuracy results for VGG16

 Figure 16: Model loss results for VGG16

4.3.3 Accuracy Graph Results 2 for VGG16 Model

Then we adjust our hyper-parameter to 35 epochs and a batch size of 16. However during the

training process at Epoch 25 the validation accuracy was 97.37% and train accuracy was 93.95%

34

and loss values are shown in Fig. 17 and Fig. 18 respectively. However, at 35 epochs we have

found that the validation accuracy decreased to 96.05% and train accuracy increased to 95.56%.

Due to these results, our model was not able to generalize well during training due to a large gap

between train and validation dataset.

Figure 17: Model accuracy results for VGG16

Figure 18: Model loss results for VGG16

4.3.4 Accuracy Graph Results 3 for VGG16 Model

Finally, we adjust our hyper-parameters with 30 epochs and a batch size of 15. However, during

the training process at Epoch 23 the validation accuracy was 95.39% and train accuracy was

35

92.63% and loss values are shown in Fig. 19 and Fig. 20 respectively. However, at 30 epochs

we have found that the validation accuracy continued to increase to 97.26% and train accuracy

increased to 94.82%. Due to these results, our model was able to generalize well during training

hence there is no gap between training and validation datasets.

Figure 19: Model accuracy results for VGG16

 Figure 20: Model loss results for VGG16

4.3.5 Training ResNet Models on 85:10:5 Dataset Results

The hyper-parameters used to train Resnet models are summarized in Table 5. Since the

problem at hand is multi-class classification, the first parameter to set was 50 epochs and batch

size of 4, However, Resnet models succeeded to maintain the accuracy performance and loss

value at epoch 50 was 0.0842 and accuracy was 98.4 for Resnet18, Resnet50 achieved an

36

accuracy of 98.8%, Resnet152 achieved an accuracy of 99.2%. The objective of the Resnet

models was to increase true positives and decrease false negatives. The objective function used

was Cross-Entropy Loss as defined in equation 2 whose value rises as the predicted probability

deviates from the real label.

Equation 2: Cross-Entropy Loss

 () ∑ ()()

Where: M represents the number of classes (Black Sigatoka, Fusarium wilt, healthy leaves), y

represents the true label and p represents the predicted probability for the observed image used

in confusion matrix results.

Table 5: Hyper-parameter used in training Resnet models
Parameter Value

No-epoch 50, 100, 1500

Optimizer SGD

Batch-size 4

Learning rate 1e-3

Weight Decay 1e-9

Model Architecture Resnet 18,50,152

Momentum 0.9

Images size 244*244 pixel

To optimize the above objective function, stochastic gradient descent (SGD) optimizer was used

after searching for the best optimizer from amongst many optimization techniques. In each

experiment for Resnet models, training was done for changing the number of epochs and saving

the best model only. The input image was normalized using z-score normalization with standard

deviation = [0:229; 0:224; 0:225] and mean = [0:485; 0:456; 0:406].

4.3.6 Training InceptionV3 Model on 85:10:5 Dataset Results

Hyper-parameters used to train InceptionV3 model are summarized on Table 6. The training

phase for TensorFlow with InceptionV3 was the shortest method as illustrated in Fig. 8. The

best accuracy for InceptionV3 model was 96.61%. Tensor Board was used as another way of

checking the training history, during and after training. Tensor Board made it possible to see

visually with graphs how the training history was gone as shown in Fig. 21 to Fig. 23.

37

Table 6: Hyper -parameter used in training inception V3 model

Parameter Value

No-epoch 500,1000,1500

Smoothing 0.6 and 0.75

Model Architecture InceptionV3

Images size 299*299 pixel

4.3.7 InceptionV3 model Results 1

InceptionV3 model was trained with epoch 500; however, during the training process at Epoch

390 the validation accuracy was 96.61% and train accuracy was 92.72% as shown in Fig. 21.

Figure 21: InceptionV3 training and validation accuracy results 1

At epoch 500 the validation accuracy was 92.92% and train accuracy was 96.32%. This means

that the model will start to degrade by having higher training error as well as testing error. While

loss value obtained during training was 0.1957 for validation results.

4.3.8 InceptionV3 Model Results 2

Parameters were adjusted to epoch 1500 from Fig. 22 InceptionV3 achieve an accuracy of

95.41% for the validation set and accuracy of 95.541% for the training set. This indicates that

38

InceptionV3 model generalized well during training and even loss value has decreased as shown

from Fig. 23.

 Figure 22: InceptionV3 training and validation accuracy results 2

 Figure 23: InceptionV3 training and validation loss results 3

4.4 Models Performance Results

The objective/ the evaluation of the models were accomplished by conducting performance

analysis and the results are presented in Table 7. The five CNN architecture presented in section

39

2.5 were trained and models results are presented in section 4.3. Datasets collected were trained

with the selected convolutional neural network models and allow them to extract and learn

features from the input data. With the validation set, we were able to evaluate the training

process and determine how well it will fit the new data by using tensor board. Validation set and

Testing set results was used to assess the models for disease detection and results were plotted

by using confusion matrix presented in section 4.4.2. Also, classification accuracy was defined

in Equation 1 and confusion matrix explained in section 3.6.1 was used.

4.4.1 Classification Accuracy Results

Five models were selected and trained are VGG16, Resnet18, Resnet50, Resnet152 and

InceptionV3 deep learning architectures. After the training process was done the model was

tested with on test set images. Results for the first set of 70:20:10 was Resnet152 achieved an

accuracy of 92.6%, Resnet50 achieved an accuracy of 89.7%, VGG16 achieved an accuracy of

86.7%, InceptionV3 achieved an accuracy of 89.9% and Resnet18 achieved an accuracy of

87.9%.

Moreover, after observing the result from the first set we decided to add more training samples

to the training dataset and reduce data from the validation and test set to check if our models can

give the best results (generalize well) compared to the first results. After training the second set

of 85:10:5 the results was Resnet152 attained an accuracy of 99.2%, Resnet50 attained an

accuracy of 98.8%, VGG16 attained an accuracy of 97.26%, Resnet18 attained an accuracy of

98.4%, and InceptionV3 attained an accuracy of 95.41%. Finally, we saved only models that

succeeded to generalize. To achieve greater classification accuracy, from the five models trained

the complexity of the models was considered as a significant factor in selecting the best model

architecture from the training datasets. Since to bring out more features from the trained leaf

images, it is associated with the complexity of the model, Resnet152 meets this objective as it

achieved an accuracy of 99.2% as presented in Table 7.

Table 7: Performance of the model's architectures

Models
Validation

accuracy%
Test accuracy% Epoch Time (s/epoch) Loss

VGG16 98.4 98.7 35 30minsec13 0.197

Resnet18 98.8 98.8 50 08min sec 35 0.256

Resnet50 98.8 98.9 50 08min sec 35 O.180

Resnet152 99.2 99.8 50 08min sec 35 0.0539

Inception v3 95.41 95.5 1500 02min sec 39 0.1351

40

4.4.2 Confusion Matrix Results

In the field of Deep learning, another method used to check the statistical classification of the

trained modes is called confusion matrix (CM). The method was used to control the problem of

statistical classification also it is called error matrix. CM is in form of a table that shows the

visualization of the performance of the model. Metric used was: False Negative=FN, False

Positive=FP, True Positive=TP, True Negative=TN. These values were defined in Eqn 2 depend

on the results from validation and test set datasets, confusion matric was generated for all

models. A confusion matrix was created for the validation set with 309 images for Black

Sigatoka, 309 images for Fusarium Wilt race 1 and 309 images for Healthy and test set the

confusion matrix contain 150 images for Black Sigatoka, 150 images for Fusarium Wilt race 1

and 150 images for Healthy. Both validation and test set results were considered while

evaluating model's performance, predicting unseen data and visualize the predicted results by

using confusion matrix. Each confusion matrix shows the accuracy per disease by using true

label and the predicted label representation of the class where the model is confused or

misclassified. Confusion matrix plot result for VGG16 indicated that the model was capable to

detect diseases of the class from test data with great accuracy while on validation the model

confuses more between black sigatoka and healthy leaves show on Fig. 24.

Figure 24: (a) Validation confusion matrix for VGG16 (b) Test confusion matrix for

VGG16

Confusion matrix plot result for Resnet18 show that the model succeeded to detect

diseases of the class from test data with great accuracy while on the validation set the

model confuses more with 11 images between black sigatoka and healthy leaves show on

Fig. 25.

41

Figure 25: (a) Validation confusion matrix for Resnet18 (b) Test confusion matrix for

Resnet18

Confusion matrix plot result for Resnet50 show that the model succeeded to detect diseases of

the class from the test set with great accuracy and validation set. The model confuses only with

few images between the classes shown on Fig. 26.

Figure 26: (a) Validation confusion matrix for Resnet50 (b) Test confusion matrix

Resnet50

Confusion matrix plot result for Resnet152 show that the model succeeded to detect diseases of

the class from the test set with great accuracy. While on validation set the model confuses only

with few images between the classes shown on Fig. 27.

42

Figure 27: (a) Validation confusion matrix for Resnet152 (b) Test confusion matrix

Resnet152

Confusion matrix plot result for InceptionV3 show that the model succeeded to detect diseases

of the class from test data with great accuracy. While on validation set the model confuses only

with few images between the classes shown on Fig. 28.

Figure 28: (a) Validation confusion matrix for InceptionV3 (b) Test confusion matrix

for InceptionV3

43

4.5 Mobile Deployment Results

Objective 3 was accomplished by developing a mobile system and the results are presented in

the section below.

4.5.1 Activities of the user Mobile Application Results

This part explains how the developed smartphone-based application was working in disease

detection. The interface of the application is user-friendly to allow interaction between

smallholder farmers/extension officers. Figure 29 shows home page interfaces of the FUSI

SCANNER app for Farmer and extension to interact with the application. The interface consists

of two buttons the first button is the camera option, this camera will allow the farmer to take

picture of the banana leaf and upload it to the application, the application will process the

uploaded image and return feedback to the farmer. The second button is the uploading option

this option is used to upload images to the application stored in the gallery, then the app will

process them and return feedback to the farmer as well.

The first step is for the farmer to open the app from his/her smartphone then clicks the

application and the application is opened, the farmer takes a photo of the leaf upload it to the

application, then the App will process the uploaded picture and give feedback if the captured

leaf has a disease or it is healthy. This process takes at least three minutes to give results shown

on Fig. 30. The developed application was designed to operate offline. This method will reduce

the cost of buying the internet because some of the smallholder farmers/extension officers may

not afford to buy the internet whenever they visit their farmer to check for banana diseases

occurrence.

44

Figure 29: FUSI SCANNER APP disease detection interface

The tool was verified to check if it is working as expected by smallholder farmers and extension

officers who live in Arusha and Mbeya region, Tanzania.

Figure 30: Implementation of FUSI SCANNER app and its results

45

4.5.2 Disease Detection and Disease Details Interface Results

Figure 31 shows the disease detection and details interface results. Disease detection and

information interface provide disease details (the type of disease detected and it’s percentage).

In this mobile app, the detected disease is predicted with a percentage confidence of more than

70%. The confidence measure was included to provide the best results during the detection

process, if the result is below the target e.g. 50% the voice message will be prompt to alert for a

clear picture.

Figure 31: Screenshots result of the FUSI SCANNER app for healthy banana leaves

captured from the real environment

4.5.3 Source Code Screenshot Taken in an Android Studio for Mobile Deployment

Figure 32 shows the output results of InceptionV3 model that was deployed into Android

smartphone. The private static final output is the final result from the InceptionV3 model with

46

the graph and label called graph.pb and labes.txt respectively. The graph file contained a trained

dataset while the labels file contains labels of the dataset trained.

Figure 32: Screenshots result source code for the main activity in Android studio

Figure 33 illustrates the Android source code for the output results that were displayed by the

FUSI SCANNER for detecting banana disease. The code in green color indicates the text and

voice displayed in the app. However, if the input image is unrecognizable then the application

responds with the voice, "That image seems unrecognizable maybe; I have to update my

database". If the application understands the input image the result indicates the level of

confidence of the disease detected.

47

Figure 33: Screenshots result source code for Result Activity in Android studio

4.6 User Acceptance Testing Results

A survey was conducted with extension officers and smallholder farmers in Mbeya and Arusha

region, Tanzania to test the tool. Participants completed the survey by giving comments from

the provided questionnaire. Through the questionnaire, evaluation data were collected and the

developed tool were given to Extension officers and Smallholder banana farmers they were able

to open the app and test to detect the banana disease and were able to get the result of the

captured image and understand the results returned by the tool. Hence the mentioned user

strongly agrees that the application is interactive and user-friendly with an overall 76.47% and

63.89% respectively they like the application. Table 8 and Table 10 respectively represent

usability testing results for extension officers and Smallholder banana farmers after testing the

app.

As well as for acceptance testing Extension officers and Smallholder banana farmers accepted

that the tool is useful and it will help in detecting black sigatoka and Fusarium wilt race1

diseases with 88.24% and91.67%. Table 9 and Table 11 respectively represent acceptance

testing results for extension officers and Smallholder banana farmers after accepting the app.

Smallholder banana farmers and extension officers strongly agree with the usefulness of the

developed smartphone-based app called FUSI SCANNER.

48

4.6.1 Agricultural Extension Officers Results

From the study conducted on the testing of this tool smartphone-based app, we found that the

majority of the extension officers agreed that the system is useful and of great help towards the

detection of the two commonly banana fungal diseases namely black Sigatoka and Fusarium

wilt race 1. Seventeen (17) extension officers (8 in Arusha and 7 in Mbeya) responded to the

questionnaire, their responses are dissipated in Table 8 and Table 9.

4.6.2 Farmers Results

Thirty-six (36) farmers (from both regions) responded to the questionnaire for usability testing

and acceptance testing. Their results are summarized in Table 10 and Table 11 in the

appendices.

4.7 Discussion

In this research, we have discovered that the majority of smallholder farmers and extension

officers rely on traditional methods to identify and detect disease from banana plants. The

production of bananas crop has declined since the 1970s, and now yields a fraction of its

potential due to diseases (Ssali et al., 2017). Banana is a cash crop and staple food for people

who live in Arusha and Mbeya region. However, disease occurrence in these plants results in

banana production losses which significantly cause a reduction in household food security and

incomes (Nkuba et al., 2015). Early detection, identification, and control of diseases from plant

leaf is a big challenge to many smallholder farmers as well as extension officers (Dyrmann et

al., 2016; Patil & Pawar, 2017; Ramcharan et al., 2017), due to lack of necessary tools that will

help to prevent the possible outbreak of pests and diseases on real-time (Jagan et al., 2016;

Rumpf et al., 2010). However, recent growth of deep learning and transfer learning techniques

has shown a possible way to detect diseases on plants. Computer vision systems in agriculture

provide useful information in real-time and it offers substantial information about nature,

reduces costs and attributes of the product (Amara et al., 2017). Moreover, deep learning

technology has shown a successful way for smartphones to assist in disease detection based on

leaf image(Eli-chukwu, 2019; Ramcharan et al., 2019).

The literature review indicated that research on crop disease detection mainly ends up on model

development and not end-user tools for farmers. Another shortcoming we have found that a lot

of researchers used dataset collected from Plant village while others used the dataset

49

downloaded from the internet. This research work focused on the real-life dataset and developed

a tool for end-users i.e. smallholder banana farmers and extension officers. The developed

system works in real-world conditions.

The performance of the five models tested in this research was compared using the accuracy and

confusion matrix. From the two data set that we have first set of 70:20:10 and the second set of

85: 10: 5, the data set with 85: 10: 5 shows that our models succeeded to generalize well in

disease detection. However, Resnet152 was able to meet our objective as it was able to detect

disease from the trained dataset and archived an accuracy of 99.2% but for mobile deployment,

Resnet152 is a complex model and it has a higher computational cost and requires large memory

space. Hence due to this reason, we decide to use the InceptionV3 model (Szegedy et al., 2016,

2017) because of its low computation cost and it takes less memory (Meng, Sun, Yang, Qiu &

Gu, 2017) when deployed to a mobile application. However, it is always a competition between

simple architecture and complex especially when thinking about mobile app.

50

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

A study conducted by Ramadhani (2017), reveals that almost 94% of banana farmers in

Tanzanian specifically at the Arumeru district in the Arusha region responded on the presence of

banana fungal diseases in their plantations. Also in Mbeya, it was observed to 80% of

respondents had a similar response. Diseases detection has been a challenge to both farmers as

most of them still rely on traditional knowledge to detect those diseases.

Studies reveal several efforts that have been made (Ramadhani et al., 2017; Shimwela et al.,

2016). With their contributions, still, the impact is not that much in terms of increasing yields

and economy of farms and country in general. In our study area, a study by Ramadhani (2017)

proposed a tool that is much based on weather to predict results. This had some challenges,

especially when considering the internet and weather data that sometimes are difficult to be

access in rural areas. Thus, to address this challenge and others, deep learning and transfer

learning from machine learning technique was proposed and applied on mobile phones to

develop a smartphone-based application called FUSI SCANNER. The developed tool depends

on the datasets (leaf image that is captured by the farmer/extension officer). The tool

smartphone-based app uses a camera to capture leaf image that once captured it processes with

the algorithm trained and return the result as per image that was captured with percentage

confidence. So, this application has provided an easy way to support smallholder farmers and

extension officers in the detection of banana fungal diseases.

Chapter two explains different literature reviews that describe several issues concerning banana

fungal disease management and machine learning techniques, their implementations, and how

they provide a reasonable solution. In chapter three the formulation and training of the model

were done. With several formulas and several data sets, stable values were obtained that were

used in mobile development. Chapter four presents results, for the dataset collected, models

selected to train the dataset, models results, a full design, and implementation of the tool (FUSI).

Finally, in chapter five conclusions, limitations, and future work are presented, these conclude

according to this study and the current situation that banana farmers are facing in the early

detection of the two banana fungal diseases namely black Sigatoka and Fusarium wilt race 1.

Hence, findings explained in this dissertation might be limited to the environment and

participants. Further studies are needed to address other issues that came short in this study.

51

Computer vision approaches have reported being used for automatic crop disease detection and

classification, but still, the exploration of real-time detection and classification is lagging

behind. In this research deep convolution neural network and transfer learning technology was

used to automatically detect diseases from banana plants by using leaf images captured from the

real field. The developed tool provides practical and applicable ways for detection of the

diseases from the captured leaf with the class of the diseases and percentage confidence, which

represents a big difference from other tools developed for banana diseases detection. The

developed smartphone-based application was able to detect diseases from banana leaf and give

feedback on real-time according to the disease detected. The developed smartphone-based

application archived an accuracy of 99% confidence of the captures leaf from the real

environment.

In this research we conclude that early detection and recognition of the diseases is very

important, hence the control and management of banana fungal diseases to be done early for the

improvement of banana yields. FUSI SCANNER was being tested in Arusha and Mbeya region

in Tanzania and smallholder farmers and extensions officers agreed that the tool is very useful in

the detection of black Sigatoka and Fusarium wilt race 1 diseases. With a critical investigation

of the requirements survey, datasets collected, literature review, direct observation, and

agricultural expert opinions from the international institute of Tropical Agriculture (IITA) a

mobile application (FUSI SCANNER) with android technology to detect the presence of two

mainly banana fungal diseases was developed. Now, with reference to previously banana

management tools, the functionality of the proposed detection smartphone-based application

(FUSI SCANNER), the tool is thought to be able to support the banana grower to better control

and manage banana fungi diseases incidents easily. The developed tool smartphone-based

application from this research can be easily transferred to other mandatory crops.

5.2 Limitation

This research develops an early detection tool which is a smartphone-based application for

banana disease and the tool is limited to detect disease for banana leaf only.

5.3 Future Work

The addition of content on the mobile application to educate farmers on the control and

management of banana diseases is recommended. This could be used to provide awareness to

farmers and extension officers and people who are involved in banana cultivation. Furthermore,

52

dissemination on the usage of the tool by training farmers and extension officers in the detection

of diseases from banana crops.

This research study can be extended to other crops such as potato, bean, tomato cassava, sweet

potato and maize, for which diseases can be detected using leaf images. The work will have a

valuable impact on food security in the developing country.

Moreover, suggestions that different initiatives targeting farmers and extension officers on how

to increase yield and control several diseases have to be put in place. Also, awareness of the

impact of ICT in agriculture and the need to adapt it for both farmers and extension officers for

more production and disease management should be infer sized. Awareness information among

banana smallholder farmer’s communities with respect to different banana diseases (not only

Fusarium wilt race 1 and black Sigatoka) should be given the highest priority. Last but not least

we encourage farmers and extension officers to be active players in matters regarding those

projects/initiatives as it is there to benefit them. The study recommended encouraging farmers

in stabilizing and expanding their banana crop production.

53

REFERENCES

Al Hiary, H., Bani Ahmad, S., Reyalat, M., Braik, M., & AlRahamneh, Z. (2011). Fast and Accurate

Detection and Classification of Plant Diseases. International Journal of Computer

Applications, 17(1), 31–38. https://doi.org/10.5120/2183-2754

Amara, J., Bouaziz, B., & Algergawy, A. (2017). A Deep Learning-based Approach for Banana Leaf

Diseases Classification. In BTW (Workshops), 79–88.

Andersen, C. (2019). Dermoscopy Images Using Deep Learning. (June).

Bankar, J., & Gavai, N. R. (2018). Convolutional Neural Network based Inception v3 Model for Animal

Classification. 142–146. https://doi.org/10.17148/IJARCCE.2018.7529

Bayar, B., & Stamm, M. C. (2016). A Deep Learning Approach To Universal Image

Manipulation Detection Using A New Convolutional Layer. 5–10.

Brahimi, M., Arsenovic, M., Laraba, S., & Sladojevic, S. (2018). Deep Learning for Plant

Diseases : Detection and Saliency Map Visualisation Deep Learning For Plant

Diseases : Detection and Saliency map Visualization. (June).

Deltour, P., França, S. C., Liparini Pereira, O., Cardoso, I., De Neve, S., Debode, J., & Höfte,

M. (2017). Disease suppressiveness to Fusarium wilt of banana in an agroforestry

system: Influence of soil characteristics and plant community. Agriculture, Ecosystems

and Environment, 239, 173–181. https://doi.org/10.1016/j.agee.2017.01.018

Deng, Y. (2019). Deep learning on mobile devices: a review. (April), 11.

https://doi.org/10.1117/12.2518469

Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep

convolutional neural network. Biosystems Engineering, 151.

https://doi.org/10.1016/j.biosystemseng.2016.08.024

Eli-chukwu, N. C. (2019). Applications of Artificial Intelligence in Agriculture : A Review. 9(4),

4377–4383.

Etebu, E., & Young-harry, W. (2014). Control of black Sigatoka disease : Challenges and

prospects Control of black Sigatoka disease : Challenges and prospects. (June).

Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector

54

for real-time tomato plant diseases and pests recognition. Sensors (Switzerland), 17(9).

https://doi.org/10.3390/s17092022

Region. (2017). Banana Pests and Diseases Field Guide for Disease Diagnostics and Data

Collection Great Lakes Region of Africa.

Gajanan, D. E., Shankar, G. G., & Keshav, G. V. (2018). Android Based Plant Disease

Identification System Using Feature Extraction Technique. 861–864.

Gallez, A., Runyoro, G., Mbehoma, C. B., Van den Houwe, I., & Swennen, R. (2004). Rapid

mass propagation and diffusion of new banana varieties among small-scale farmers in

north Western Tanzania. African Crop Science Journal, 12, 7–17.

Ganry, J., Fouré, E., De Lapeyre de Bellaire, L., & Lescot, T. (2012). An integrated approach to

control the Black leaf streak disease (BLSD) of bananas, while reducing fungicide use

and environmental impact. Dhanasekaran, D. Thajuddin, N. Panneerselvam, A.

Fungicides for Plant and Animal Diseases, 193–226.

Gavai, N. R., Jakhade, Y. A., Tribhuvan, S. A., & Bhattad, R. (2017). MobileNets for Flower

Classification using TensorFlow. 154–158.

Girshick, R., Donahue, J., Darrell, T., Berkeley, U. C., & Malik, J. (2012). Rich feature

hierarchies for accurate object detection and semantic segmentation. 2–9.

Gutierrez-Monsalve, J. A., Mosquera, S., González-Jaramillo, L. M., Mira, J. J., & Villegas-

Escobar, V. (2015). Effective control of black Sigatoka disease using a microbial

fungicide based on Bacillus subtilis EA-CB0015 culture. Biological Control, 87, 39–

46. https://doi.org/10.1016/j.biocontrol.2015.04.012

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.

Retrieved from http://arxiv.org/abs/1512.03385

Hwan, Y., Joon, S., Hyeon, Y., Hee, J., & Han, D. (2014). Crop Pests Prediction Method Using

Regression and Machine Learning Technology : Survey Crop Pests Prediction Method

using Regression and Machine Learning Technology : Survey. IERI Procedia,

6(December), 52–56. https://doi.org/10.1016/j.ieri.2014.03.009

Jagan, K., Balasubramanian, M., & Palanivel, S. (2016). Detection and Recognition of Diseases

55

from Paddy Plant Leaf Images. International Journal of Computer Applications,

144(12), 34–41. https://doi.org/10.5120/ijca2016910505

Jonsson, N., & Jonsson, N. (2018). Ways to use Machine Learning approaches for software

development.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Li, F. F. (2014). Large-scale

video classification with convolutional neural networks. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 1725–

1732. https://doi.org/10.1109/CVPR.2014.223

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). AlexNet. Advances In Neural

Information Processing Systems, 1–9.

https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007

Kumar, V., Dave, V., Nagrani, R., Chaudhary, S., & Bhise, M. (n.d.). Crop Cultivation

Information System on Mobile Devices.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). NNs Archtectures review.

1–31.

Lokesh, S., Naveenkumar, D., Rajesh, K., Kamath, G. A. R., & Rathnam, M. J. (2017). Leaf

Disease Detection and Grading using. 6(3), 279–287.

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., … Dandekar, A. M.

(2015). Advanced methods of plant disease detection. A review. Agronomy for

Sustainable Development, Vol. 35. https://doi.org/10.1007/s13593-014-0246-1

Medium.com. (2019). An Introduction to Transfer Learning in Machine Learning. Retrieved

from https:// medium. com/ kansas-city-machine-learning-artificial-intelligen/an-

introduction-to-transfer-learning-in-machine-learning-7efd104b6026

Meng, C., Sun, M., Yang, J., Qiu, M., & Gu, Y. (2017). Training Deeper Models by GPU

Memory Optimization on TensorFlow. (Nips), 1–8.

Mg, A., Hanson, J., Joy, A., & Francis, J. (2017). Plant Leaf Disease Detection using Deep

Learning and Convolutional Neural Network. International Journal of Engineering

Science and Computing, 7(3). Retrieved from http://ijesc.org/

56

Mgonja, D. M., Temu, G. E., Lyantagaye, S. L., Makaranga, A., Joseph, C., & Luambano, N.

D. (2020). Plant parasitic nematodes occurrence and genetic diversity of banana

cultivars grown in Tanzania. 13(01), 21–29. https://doi.org/10.21475/POJ.13.01.20.p2085

Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of Machine Learning Techniques

in Agricultural Crop Production : A Review Paper. 9(October).

https://doi.org/10.17485/ijst/2016/v9i38/95032

Mohanty, S P, Hughes, D. P., & Salathe, M. (2016). Using Deep Learning for Image-Based

Plant Disease Detection. Frontiers in Plant Science, 7, 10.

https://doi.org/10.3389/fpls.2016.01419

Mohanty, Sharada P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-

Based Plant Disease Detection. Frontiers in Plant Science, 7(September), 1–10.

https://doi.org/10.3389/fpls.2016.01419

Ng’wanakilala, F. (2019). Tanzania’s mobile phone subscriptions rise to nearly 44 million.

Retrieved from https://www.reuters.com/article/tanzania-telecoms/tanzanias-mobile-

phone-subscriptions-rise-to-nearly-44-million-idUSL3N26G26H

Nkuba, J., Tinzaara, W., Night, G., Niko, N., Jogo, W., Ndyetabula, I., … Box, P. O. (2015).

Adverse impact of Banana Xanthomonas Wilt on farmers ’ livelihoods in Eastern and

Central Africa. 9(July), 279–286. https://doi.org/10.5897/AJPS2015.1292

Ordonez, N., Seidl, M. F., Waalwijk, C., Drenth, A., & Kilian, A. (2015). Worse Comes to

Worst : Bananas and Panama Disease — When Plant and Pathogen Clones Meet. 1–7.

https://doi.org/10.1371/journal.ppat.1005197

Owomugisha, G., & Mwebaze, E. (2016). Machine Learning for Plant Disease Incidence and

Severity Measurements from Leaf Images. https://doi.org/10.1109/ICMLA.2016.126

Owomugisha, G., Quinn, J. A., & Mwebaze, E. (2019). Automated Vision-Based Diagnosis of

Banana Bacterial Wilt Disease and Black Sigatoka Disease. (June).

Patil, M. A. N., & Pawar, M. V. (2017). Detection and Classification of Plant Leaf Disease.

Iarjset, 4(4), 72–75. https://doi.org/10.17148/iarjset/nciarcse.2017.20

Prabha, D. S., & Kumar, J. S. (2014). Study on Banana Leaf Disease Identification Using

57

Image Processing Methods. Ijrcsit, 2(2(A)). https://doi.org/ISSN 2319-5010

Ramadhani, K., Machuve, D., & Jomanga, K. (2017). Identification and analysis of factors in

management of banana fungal diseases : Case of Sigatoka (Mycosphaerella fijiensis .

Mulder) and Fusarium (Fusarium oxysporum f . sp . cubense (Foc) diseases in

Arumeru District. 11(1), 69–75.

Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., & Hughes, D. (2017).

Using Transfer Learning for Image-Based Cassava Disease Detection. 8(October), 1–7.

https://doi.org/10.3389/fpls.2017.01852

Ramcharan, A., McCloskey, P., Baranowski, K., Mbilinyi, N., Mrisho, L., Ndalahwa, M., …

Hughes, D. P. (2019). A Mobile-Based Deep Learning Model for Cassava Disease

Diagnosis. Frontiers in Plant Science, 10(March), 1–8.

https://doi.org/10.3389/fpls.2019.00272

Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., & Plümer, L. (2010).

Early detection and classification of plant diseases with Support Vector Machines based

on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1), 91–99.

https://doi.org/10.1016/j.compag.2010.06.009

Shijie, J., Peiyi, J., Siping, H., & Haibo, Sl. (2017). Automatic detection of tomato diseases

and pests based on leaf images. Proceedings - 2017 Chinese Automation Congress, CAC

2017, 2017-Janua, 3507–3510. https://doi.org/10.1109/CAC.2017.8243388

Shimwela, M. M., Blackburn, J. K., Jones, J. B., Nkuba, J., Narouei-khandan, H. A., Ploetz, R.

C., … Bruggen, A. H. C. Van. (2016). Local and regional spread of banana xanthomonas

wilt (BXW) in space and time in Kagera, Tanzania. 1–12.

https://doi.org/10.1111/ppa.12637

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale

Image Recognition. 1–14. Retrieved from http://arxiv.org/abs/1409.1556

Singh, V., & Misra, A. K. (2016). Detection of Plant Leaf Diseases Using Image Segmentation

and Soft Computing Techniques. Information Processing in Agriculture.

https://doi.org/10.1016/j.inpa.2016.10.005

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep Neural

58

Networks Based Recognition of Plant Diseases by Leaf Image Classification.

Computational Intelligence and Neuroscience, 2016.

https://doi.org/10.1155/2016/3289801

Ssali, R., Potato, I., & Agriculture, T. (2017). Field Guide for Diagnostics and Data

Collection.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, Inception-ResNet

and the Impact of Residual Connections on Learning. Retrieved from

http://arxiv.org/abs/1602.07261

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). the Impact of Residual

Connections on Learning. 4278–4284.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer

learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 11141 LNCS, 270–279.

https://doi.org/10.1007/978-3-030-01424-7_27

Thangavelu, R., & Mustaffa, M. M. (2014). Current Advances in the Fusarium Wilt Disease

Management in Banana with Emphasis on Biological Control. (April 2012).

https://doi.org/10.13140/2.1.1941.0723

Verma, S. (2019). Deep Learning-Based Mobile Application for Plant Disease Diagnosis : A

Proof of Concept With a Case Study on Tomato Plant. 2–5. https://doi.org/10.4018/978-1-

5225-8027-0.ch010

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for

Computer Vision : A Brief Review. 2018.

Woff, C. (n.d.). Comparing Image-Classification Systems: Custom Vision Service vs.

Inception. Retrieved from https://devblogs.microsoft.com/cse/2017/12/05/comparing-

transfer-learning-systems-custom-vision-service-vs-inception-vs-mobilenet/

Yang, X., & Guo, T. (2017). Machine learning in plant disease research. (August), 6–9.

https://doi.org/10.18088/ejbmr.3.1.2017.pp6-9

59

APPENDICES

Appendix 1: Smalholder farmer’s questions during data collection

1. Sex

 Female

 Male

2. How older are you?

 18-30

 31-56

 >56

3. What is your education level?

 Primary school

 Secondary education

 University

 Never been to school

4. Is agriculture your main activity?

 Yes

 No

5. Which crop did you cultivate?

 Maize

 Rice

 Banana

 Tomatoes

 Vegetables

 None

6. If you cultivate banana what varieties did you plant?

 Kisukari

 Uganda

 Mshale

 Ngómbe

 Other

If other please specify……………………………

7. How long have you been staying here?

 5years

 10 years

 20 years

 More than 40 years

8. Apart from cultivating banana do you have another work?

60

 Yes

 No

9. If yes, then what do you do apart from cultivating banana

………………………………………………………….

10. Do you have any information of banana fungal diseases?

 Yes

 No

11. What reasons do you think are affecting these diseases?

 Low rainfall

 High humidity

 High Temperature

Other please specify…………………

12. Have you heard about any tool used to detect banana diseases?

 Yes

 No

If yes please mention it………………………

13. Do you have a mobile phone?

 Yes

 No

14. If yes from question 14 above, which kind of mobile do you own?

 feature phone

 Smartphone

15. Which network operator do you use?

 Halotel

 Vodacom

 Tigo

 Airtel

 TTCL

16. Which method did you use to detect the banana diseases?

 Using experience

 Using a traditional method

 None

17. if using a traditional method from question 16 please specify

…………………………………………………………………..

18. Is there any traditional approach that exists to notify smallholder farmers about the

occurrence of banana diseases? Put Tick for your answer

61

 Extension officer

 Radio

 Farmers groups

 Forums

 Mobile phone

19. From question 18 which approach do you think the best and easy for you to get

information about disease detection and management?

 Farmers groups

 Social media

 Extension officer

 Radio

 Forums

 Mobile phone

20. If the new system has been developed for banana disease detection will you be able to

use it?

 Yes

 No

21. If No from question 20 explain why?

……………………………………………………………..

22. If yes do you think the tool will help you to detect banana diseases at an early stage so

that you can take action for management procedure?

………………………………………………………………

62

Appendix 2: Extension officer’s questions during data collection

1. Sex

 Female

 Male

2. How older are you?

 18-30

 31-56

 >56

3. What is your education level?

 Primary school

 Secondary education

 University

 Never been to school

4. What is your occupation?

 Agricultural district officer

 Extension officer

 Researcher

5. How many smallholder farmers do you save?

 5-20 farmers

 20-40 farmers

 40 farmers

 >40 farmers

6. How many numbers of villages did you visit this year?

 4 village

 10 village

 >10

 none

7. How long have you been staying here?

 5years

 10 years

 20 years

 More than 40 years

8. Do you have any knowledge of banana diseases?

 Yes

 No

9. Have you heard about any tool used to detect banana diseases?

 Yes

63

 No

10. If yes please mention it………………………

11. Do you have a mobile phone?

 Yes

 No

12. If yes from question 14 above, which kind of mobile do you own?

 feature phone

 Smartphone

13. Which network operator do you use?

 Halotel

 Vodacom

 Tigo

 Airtel

 TTCL

14. Which method did you use to inform smallholder farmers about banana disease

occurrence?

 Mobile phone

 Visiting on their farm

 Radio

 Farmers groups

 Exhibitions

 none

15. What help do you deliver to farmers in your area?

 Training

 Advice

 Consultation

 Other, response ………………………….

64

Appendix 3: Questionnaire for the evaluation of FUSI application

I am Sophia Leonard Sanga a student pursuing a Master’s Degree in Information and

Communication Science and Engineering at The Nelson Mandela African Institute of Science

and Technology. My research based on the development of an early detection tool for banana

diseases which will help smallholder farmers /extension officers in the detection of banana

fungal diseases at an early stage by using mobile application .our study has coved two areas for

this research these areas were Rungwe district located in Mbeya region and Arusha region,

Tanzania.

The purpose of these questions is for validation and testing of the developed tool called “FUSI

(FUSARIUM SIGATOKA) SCANNER” to receive feedback from users by filling these

questions.

Your name ………………………………………………..

Title/Occupation ……………………………………………………………………..

Note: Tick to the box relevant to your views

Please choose the best answer from the table below for the testing of the FUSI SCANNER

Questions Strongly

agree

Agree Disagree Neutral

Application is easy to use?

Application interactive and user-

friendly

Functionalities of the application
(Contents and features) are useful

Did you get any difficulty while
using a system?

The application will help in the
early detection of banana diseases

Overall, did you like the
application?

65

66

Appendix 4: The geographical distribution of banana Fusarium wilt disease in Tanzania

(Shimwela et al., 2016)

67

Appendix 5: An expert collecting data from the field in Arusha region

68

Appendix 6: Verification of FUSI SCANNER App in the real word environment

69

Appendix 7: Screenshots result of FUSI SCANNER app for uploaded image and

captured from real environment respectively

70

Appendix 8: Screen shoots result of FUSI SCANNER app for Fusarium wilt race 1

captured from the real environment

Table 8: Usability testing results for extension officers

Questions Strongly

agree

Agree Disagree Neutral

 % % % %

The application is interactive and

user-friendly

76.47 23.53 0 0

Functionalities of the application
(Contents and features) are useful

41.18 52.94 0 5.88

Did you get any difficulty while
using your phone with the
application?

0 5.88 94.12 0

Before using this application, first I
need to learn about it.

0 5.88 94.12 0

Did you like the application? 58.82 41.18 0 0

Table 9: Acceptance testing results for the evaluation of tool by extension officers

Questions Strongly

agree

Agree Disagree Neutral

 % % % %

I found the system useful

70.59 23.53 5.88 0

The system will help in detecting
Sigatoka and Fusarium diseases

76.47 23.53 0 0

The application address the key
problem that we are facing

88.24 11.76 0 0

I found too much inconsistency in this
system

5.88 5.88 76.47 11.76

Overall, I like this application

88.24 11.76 0 0

71

Table 10: Farmers usability testing results

Questions Strongly

agree

Agree Disagree Neutral

 % % % %

The application interactive and
user-friendly

63.89 27.78 0 8.33

Functionalities of the application
(Contents and features) are useful

72.22 22.22 0 5.56

Did you get any difficulty while
using your phone with the
application?

5.56 11.11 83.33 -

Before using this application, first
I need to learn about it.

11.11 5.56 80.56 2.78

Did you like the application? 83.33 2.78 2.78 11.11

Table 11: Farmers acceptance testing results

Questions Strongly

agree

Agree Disagree Neutral

 % % % %

I found the system useful

58.33 13 0 5.56

The system will help in detecting
Sigatoka and Fusarium diseases

83.33 16.67 0 0

The application address the key
problem that we are facing

86.11 11.11 0 5.56

I found too much inconsistency in this

system

0 0 91.67 8.33

Overall, I like this application 91.67 2.78 5.56 0

72

Appendix 9: Source code for mobile deployment in Adroid

<?xml version="1.0" encoding="UTF-8"?>

<module type="JAVA_MODULE" version="4">

 <component name="NewModuleRootManager" inherit-compiler-output="true">

 <exclude-output />

 <content url="file://$MODULE_DIR$" />

 <orderEntry type="inheritedJdk" />

 <orderEntry type="sourceFolder" forTests="false" />

 </component>

</module>

Main Activity source code
package com.sofiaSanga.fusiscanner;

import android.content.Intent;

import android.os.Bundle;

import android.speech.tts.TextToSpeech;

import android.support.v7.app.AppCompatActivity;

import android.util.Log;

import java.util.Locale;

public class MainActivity extends AppCompatActivity {

 static Classifier classifier;

 // static final int INPUT_SIZE = 224;

 static final int INPUT_SIZE = 299;

 private static final int IMAGE_MEAN = 128;

 //private static final float IMAGE_STD = 128.0f;

 private static final float IMAGE_STD = 128.0f;

 // private static final String INPUT_NAME = "Mul";

 // private static final String INPUT_NAME = "input";

 private static final String INPUT_NAME = "Mul";

 private static final String OUTPUT_NAME = "final_result";

 private static final String MODEL_FILE =

"file:///android_asset/optimized_graph.pb";

 private static final String LABEL_FILE = "file:///android_asset/labels.txt";

 private TextToSpeech tts;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 initializeTTS();

 initializeModel();

 }

 private void initializeModel() {

 new Thread(new Runnable() {

 @Override

 public void run() {

 try {

 classifier = TensorFlowImageClassifier.create(

 getAssets(),

 MODEL_FILE,

 LABEL_FILE,

 INPUT_SIZE,

 IMAGE_MEAN,

 IMAGE_STD,

 INPUT_NAME,

 OUTPUT_NAME);

 startCameraActivity();

 } catch (final Exception e) {

 throw new RuntimeException("Error initializing TensorFlow

Model!", e);

 }

 }

 }).start();

73

 }

 // Start the camera

 private void startCameraActivity() {

 new Thread(new Runnable() {

 @Override

 public void run() {

 Intent intent = new Intent(getApplicationContext(),

CameraActivity.class);

 startActivity(intent);

 }

 }).start();

 }

//Make the app speak

 protected void initializeTTS() {

 new Thread(new Runnable(){

 @Override

 public void run() {

 tts = new TextToSpeech(getApplicationContext(), new

TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 if (status == TextToSpeech.SUCCESS) {

 int result = tts.setLanguage(Locale.US);

 if (result == TextToSpeech.LANG_MISSING_DATA || result

== TextToSpeech.LANG_NOT_SUPPORTED) {

 Log.e("error", "Language not supported.");

 } else {

 String text = "This is Fusi scanner, the banana

disease identification app.";

 tts.speak(text, TextToSpeech.QUEUE_FLUSH, null);

 }

 } else {

 Log.e("error", "Initilization failed.");

 }

 }

 });

 }

 }).start();

 }

// close all

 @Override

 protected void onDestroy() {

 if(tts != null) {

 tts.stop();

 tts.shutdown();

 }

 finish();

 super.onDestroy();

 }

 @Override

 public void onBackPressed() {

 finish();

 }

}

camera activity source code

package com.sofiaSanga.fusiscanner;

import android.app.Activity;

import android.app.Fragment;

import android.app.FragmentManager;

import android.app.FragmentTransaction;

import android.graphics.Bitmap;

import android.os.Bundle;

74

import android.support.v7.app.AppCompatActivity;

import java.util.ArrayList;

import java.util.List;

public class CameraActivity extends AppCompatActivity {

 static Bitmap bitmap;

 static boolean resultsShown;

 static List<Classifier.Recognition> results;

 private static Fragment resultFragment;

 private static Fragment cameraFragment;

 private FragmentManager fragmentManager;

 int IMAGE_PICKER_SELECT = 1;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_camera);

// classes initialization to perform camera activities.

 results = new ArrayList<>();

 cameraFragment = new CameraFragment();

 resultFragment = new ResultFragment();

 fragmentManager = getFragmentManager();

 FragmentTransaction fragmentTransaction =

fragmentManager.beginTransaction();

 fragmentTransaction.add(R.id.fragment_wrapper, cameraFragment);

 fragmentTransaction.commit();

 }

// return the results from the camera

 public static void showResultFragment(Activity activity) {

 FragmentTransaction fragmentTransaction =

activity.getFragmentManager().beginTransaction();

 fragmentTransaction.setCustomAnimations(android.R.animator.fade_in,

android.R.animator.fade_out);

 fragmentTransaction.replace(R.id.fragment_wrapper, resultFragment);

 fragmentTransaction.addToBackStack(null);

 fragmentTransaction.commit();

 resultsShown = true;

 }

 @Override

 public void onResume() {

 super.onResume();

 }

// go back to previous activities on back press

 @Override

 public void onBackPressed() {

 if(fragmentManager.getBackStackEntryCount() != 0) {

 fragmentManager.popBackStack();

 if(resultsShown) {

 resultsShown = false;

 }

 else {

 finish();

 }

 }

 else {

 finish();

 }

 }

}

Camera fagment source code

75

package com.sofiaSanga.fusiscanner;

import android.app.Fragment;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.Bundle;

import android.speech.tts.TextToSpeech;

import android.util.DisplayMetrics;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ImageButton;

import android.widget.RelativeLayout;

import com.flurgle.camerakit.CameraKit;

import com.flurgle.camerakit.CameraListener;

import com.flurgle.camerakit.CameraView;

import java.util.List;

import java.util.Locale;

public class CameraFragment extends Fragment {

 private ImageButton openGallery;

 private CameraView cameraView;

 private ImageButton btnToggleCamera;

 private ImageButton btnToggleFlash;

 private ImageButton btnDetectObject;

 private TextToSpeech tts;

 private boolean flashStatus = false;

 public static boolean FROM_GALLERY = false;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_camera, container, false);

 }

 @Override

 public void onActivityCreated(Bundle savedInstanceType) {

 super.onActivityCreated(savedInstanceType);

 cameraView = getFragmentManager()

 .findFragmentById(R.id.fragment_wrapper)

 .getView()

 .findViewById(R.id.live_camera);

 cameraView.setFocus(CameraKit.Constants.FOCUS_TAP);

 cameraView.setCameraListener(new CameraListener() {

 @Override

 public void onPictureTaken(byte[] picture) {

 super.onPictureTaken(picture);

 processImage(picture);

 }

 });

 btnToggleCamera = getFragmentManager()

 .findFragmentById(R.id.fragment_wrapper)

 .getView()

 .findViewById(R.id.btnToggleCamera);

 btnToggleFlash = getFragmentManager()

76

 .findFragmentById(R.id.fragment_wrapper)

 .getView()

 .findViewById(R.id.btnToggleFlash);

// camera settings

 btnToggleFlash.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if(flashStatus) {

 btnToggleFlash.setImageResource(R.drawable.flashoff);

 cameraView.setFlash(CameraKit.Constants.FLASH_OFF);

 flashStatus = false;

 }

 else {

 btnToggleFlash.setImageResource(R.drawable.flashon);

 cameraView.setFlash(CameraKit.Constants.FLASH_ON);

 flashStatus = true;

 }

 }

 });

 btnToggleCamera.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 cameraView.toggleFacing();

 }

 });

 btnDetectObject = getFragmentManager()

 .findFragmentById(R.id.fragment_wrapper)

 .getView()

 .findViewById(R.id.btnDetectObject);

 btnDetectObject.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 initializeTTS();

 cameraView.captureImage();

 }

 });

 openGallery =

getFragmentManager().findFragmentById(R.id.fragment_wrapper).getView().findViewById(

R.id.open_gallery);

 openGallery.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent intent = new Intent(getActivity(), GalleryActivity.class);

 startActivity(intent);

 }

 });

 fixLayoutSize();

 cameraView.start();

 }

// Image processing

 public void processImage(byte[] picture) {

 Log.i("activity", "PROCESS");

 CameraActivity.bitmap = BitmapFactory.decodeByteArray(

 picture,

 0,

 picture.length);

 CameraActivity.bitmap = Bitmap.createScaledBitmap(

 CameraActivity.bitmap,

 MainActivity.INPUT_SIZE,

 MainActivity.INPUT_SIZE,

 false);

 CameraActivity.bitmap = ImageHelper.getRotatedImage(CameraActivity.bitmap,

90);

 CameraActivity.results =

77

MainActivity.classifier.recognizeImage(CameraActivity.bitmap);

 CameraActivity.showResultFragment(getActivity());

 }

 @Override

 public void onPause() {

 super.onPause();

 cameraView.stop();

 }

// recognize an image captured

 @Override

 public void onResume() {

 super.onResume();

 if(FROM_GALLERY) {

 List<Classifier.Recognition> results =

MainActivity.classifier.recognizeImage(CameraActivity.bitmap);

 if(results.isEmpty()) return;

 CameraActivity.showResultFragment(getActivity());

 FROM_GALLERY = false;

 }

 else {

 if(flashStatus) {

 btnToggleFlash.setImageResource(R.drawable.flashon);

 cameraView.setFlash(CameraKit.Constants.FLASH_ON);

 }

 else {

 btnToggleFlash.setImageResource(R.drawable.flashoff);

 cameraView.setFlash(CameraKit.Constants.FLASH_OFF);

 }

 cameraView.start();

 }

 }

 public void fixLayoutSize() {

 DisplayMetrics displayMetrics = new DisplayMetrics();

getActivity().getWindowManager().getDefaultDisplay().getMetrics(displayMetrics);

 int screenHeight = displayMetrics.heightPixels;

 int screenWidth = displayMetrics.widthPixels;

 RelativeLayout captureButtonWrapper = getFragmentManager()

 .findFragmentById(R.id.fragment_wrapper)

 .getView()

 .findViewById(R.id.capture_button_wrapper);

 ViewGroup.LayoutParams cameraViewParams = cameraView.getLayoutParams();

 cameraViewParams.height = screenWidth;

 cameraViewParams.width = screenWidth;

 cameraView.setLayoutParams(cameraViewParams);

 int captureWrapperHeight = screenHeight - (screenWidth + 50 + 30);

 ViewGroup.LayoutParams captureButtonWrapperParams =

captureButtonWrapper.getLayoutParams();

 captureButtonWrapperParams.height = captureWrapperHeight;

 captureButtonWrapper.setLayoutParams(captureButtonWrapperParams);

 }

 protected void initializeTTS() {

 new Thread(new Runnable(){

 @Override

 public void run() {

 tts = new TextToSpeech(getActivity(), new

TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 if (status == TextToSpeech.SUCCESS) {

 int result = tts.setLanguage(Locale.US);

 if (result == TextToSpeech.LANG_MISSING_DATA || result

78

== TextToSpeech.LANG_NOT_SUPPORTED) {

 Log.e("error", "Language not supported.");

 } else {

 String text = "Hold on, This might take a while.";

 tts.speak(text, TextToSpeech.QUEUE_FLUSH, null);

 }

 } else {

 Log.e("error", "Initilization failed.");

 }

 }

 });

 }

 }).start();

 }

 @Override

 public void onDestroy() {

 if(tts != null) {

 tts.stop();

 tts.shutdown();

 }

 super.onDestroy();

 }

}

Gallery activity source code
package com.sofiaSanga.fusiscanner;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.net.Uri;

import android.os.Bundle;

import android.provider.MediaStore;

import android.speech.tts.TextToSpeech;

import android.support.v7.app.AppCompatActivity;

import android.util.Log;

import java.io.ByteArrayOutputStream;

import java.util.Locale;

public class GalleryActivity extends AppCompatActivity {

 private static int PICK_IMAGE_REQUEST = 1;

 private TextToSpeech tts;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_gallery);

 Intent intent = new Intent();

 intent.setType("image/*");

 intent.setAction(Intent.ACTION_GET_CONTENT);

 startActivityForResult(Intent.createChooser(intent, "Select Picture"),

PICK_IMAGE_REQUEST);

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == PICK_IMAGE_REQUEST && resultCode == RESULT_OK && data !=

null && data.getData() != null) {

 initializeTTS();

 Uri returnUri = data.getData();

 try {

 Bitmap image =

MediaStore.Images.Media.getBitmap(getContentResolver(), returnUri);

 ByteArrayOutputStream stream = new ByteArrayOutputStream();

79

 image.compress(Bitmap.CompressFormat.PNG, 100, stream);

 byte[] picture = stream.toByteArray();

 CameraFragment.FROM_GALLERY = true;

 CameraActivity.bitmap = BitmapFactory.decodeByteArray(

 picture,

 0,

 picture.length);

 CameraActivity.bitmap = Bitmap.createScaledBitmap(

 CameraActivity.bitmap,

 MainActivity.INPUT_SIZE,

 MainActivity.INPUT_SIZE,

 false);

 CameraActivity.results =

MainActivity.classifier.recognizeImage(CameraActivity.bitmap);

 finish();

 } catch(Exception e) {

 Log.e("error", "Error loading image from gallery.");

 }

 }

 }

 @Override

 public void onResume() {

 super.onResume();

 }

 protected void initializeTTS() {

 new Thread(new Runnable(){

 @Override

 public void run() {

 tts = new TextToSpeech(getApplicationContext(), new

TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 if (status == TextToSpeech.SUCCESS) {

 int result = tts.setLanguage(Locale.US);

 if (result == TextToSpeech.LANG_MISSING_DATA || result

== TextToSpeech.LANG_NOT_SUPPORTED) {

 Log.e("error", "Language not supported.");

 } else {

 String text = "Hold on, This might take a while.";

 tts.speak(text, TextToSpeech.QUEUE_FLUSH, null);

 }

 } else {

 Log.e("error", "Initilization failed.");

 }

 }

 });

 }

 }).start();

 }

 @Override

 public void onDestroy() {

 if(tts != null) {

 tts.stop();

 tts.shutdown();

 }

 super.onDestroy();

 }

}

Result activity source code
package com.sofiaSanga.fusiscanner;

80

import android.app.Fragment;

import android.graphics.Typeface;

import android.os.Bundle;

import android.speech.tts.TextToSpeech;

import android.util.DisplayMetrics;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.LinearLayout;

import java.util.List;

import java.util.Locale;

public class ResultFragment extends Fragment {

 private TextToSpeech tts;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle

savedInstanceState) {

 return inflater.inflate(R.layout.fragment_result, container, false);

 }

 @Override

 public void onActivityCreated(Bundle savedInstanceType) {

 super.onActivityCreated(savedInstanceType);

 fixLayoutSize();

 renderResult();

 }

 public void fixLayoutSize() {

 DisplayMetrics displayMetrics = new DisplayMetrics();

getActivity().getWindowManager().getDefaultDisplay().getMetrics(displayMetrics);

 int screenHeight = displayMetrics.heightPixels;

 int screenWidth = displayMetrics.widthPixels;

 ImageView preview = getFragmentManager().

 findFragmentById(R.id.fragment_wrapper).

 getView().

 findViewById(R.id.image_captured_preview);

 preview.setImageBitmap(ImageHelper.getRoundedImage(CameraActivity.bitmap,

1000));

 }

 public void renderResult() {

 final List<Classifier.Recognition> results = CameraActivity.results;

 initializeTTS(results.get(0).getTitle(),

Math.round(results.get(0).getConfidence() * 100));

 DisplayMetrics displayMetrics = new DisplayMetrics();

getActivity().getWindowManager().getDefaultDisplay().getMetrics(displayMetrics);

 int screenHeight = displayMetrics.heightPixels;

 int screenWidth = displayMetrics.widthPixels;

 LinearLayout resultWrapper = getFragmentManager().

 findFragmentById(R.id.fragment_wrapper).

81

 getView().

 findViewById(R.id.results_wrapper);

 int[] id = new int[3];

 id[0] = R.id.guess_1;

 id[1] = R.id.guess_2;

 id[2] = R.id.guess_3;

 Typeface bebas = Typeface.createFromAsset(getActivity().getAssets(),

"font/bebas.otf");

 int resultsCount = CameraActivity.results.size();

 for(int i=0; i<resultsCount; i++) {

 final Classifier.Recognition label = results.get(i);

 Button result = getFragmentManager().

 findFragmentById(R.id.fragment_wrapper).

 getView().

 findViewById(id[i]);

 /* result.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 openInsectWiki(label.getTitle());

 }

 }); */

 result.getLayoutParams().width = (int) (screenWidth * 0.6);

 int confidence = Math.round(label.getConfidence() * 100);

 result.setText(label.getTitle() + " (" + confidence + "%)");

 result.setTypeface(bebas);

 }

 }

 protected void initializeTTS(final String name, final int confidence) {

 tts = new TextToSpeech(getActivity(), new TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 if(status == TextToSpeech.SUCCESS){

 int result = tts.setLanguage(Locale.US);

 if(result == TextToSpeech.LANG_MISSING_DATA ||

 result == TextToSpeech.LANG_NOT_SUPPORTED){

 Log.e("error", "This Language is not supported");

 } else {

 String text;

 if(confidence < 60) {

 text = "That image seems unrecognizable. Maybe I have to

update my database.";

 }

 else if(confidence < 70) {

 text = "Try to get a clearer image next time, but I have

a guess that that is a " + name + "!";

 } else {

 text = "I am " + confidence + " percent sure that that

is a " + name + "!";

 }

 tts.speak(text, TextToSpeech.QUEUE_ADD, null);

 }

 }

 else {

 Log.e("error", "Initilization Failed!");

 }

 }

 });

 }

 @Override

 public void onDestroy() {

82

 if(tts != null) {

 tts.stop();

 tts.shutdown();

 }

 super.onDestroy();

 }

}

Image help source code
package com.sofiaSanga.fusiscanner;

import android.graphics.Bitmap;

import android.graphics.Canvas;

import android.graphics.Matrix;

import android.graphics.Paint;

import android.graphics.PorterDuff;

import android.graphics.PorterDuffXfermode;

import android.graphics.Rect;

import android.graphics.RectF;

public class ImageHelper {

 public static Bitmap getRoundedImage(Bitmap bitmap, int pixels) {

 Bitmap output = Bitmap.createBitmap(bitmap.getWidth(), bitmap

 .getHeight(), Bitmap.Config.ARGB_8888);

 Canvas canvas = new Canvas(output);

 final int color = 0xff424242;

 final Paint paint = new Paint();

 final Rect rect = new Rect(0, 0, bitmap.getWidth(), bitmap.getHeight());

 final RectF rectF = new RectF(rect);

 final float roundPx = pixels;

 paint.setAntiAlias(true);

 canvas.drawARGB(0, 0, 0, 0);

 paint.setColor(color);

 canvas.drawRoundRect(rectF, roundPx, roundPx, paint);

 paint.setXfermode(new PorterDuffXfermode(PorterDuff.Mode.SRC_IN));

 canvas.drawBitmap(bitmap, rect, rect, paint);

 return output;

 }

 public static Bitmap getRotatedImage(Bitmap source, float angle) {

 Matrix matrix = new Matrix();

 matrix.postRotate(angle);

 return Bitmap.createBitmap(source, 0, 0, source.getWidth(),

source.getHeight(),

 matrix, true);

 }

}

Classifier source code
package com.sofiaSanga.fusiscanner;

import android.graphics.Bitmap;

import android.graphics.RectF;

import java.util.List;

public interface Classifier {

 /**

 * An immutable result returned by a Classifier describing what was recognized.

83

 */

 class Recognition {

 /**

 * A unique identifier for what has been recognized. Specific to the class,

not the instance of

 * the object.

 */

 private final String id;

 /**

 * Display name for the recognition.

 */

 private final String title;

 /**

 * A sortable score for how good the recognition is relative to others.

Higher should be better.

 */

 private final Float confidence;

 /**

 * Optional location within the source image for the location of the

recognized object.

 */

 private RectF location;

 public Recognition(

 final String id, final String title, final Float confidence, final

RectF location) {

 this.id = id;

 this.title = title;

 this.confidence = confidence;

 this.location = location;

 }

 public String getId() {

 return id;

 }

 public String getTitle() {

 return title;

 }

 public Float getConfidence() {

 return confidence;

 }

 public RectF getLocation() {

 return new RectF(location);

 }

 public void setLocation(RectF location) {

 this.location = location;

 }

 @Override

 public String toString() {

 String resultString = "";

 if (id != null) {

 resultString += "[" + id + "] ";

 }

 if (title != null) {

 resultString += title + " ";

 }

 if (confidence != null) {

 resultString += String.format("(%.1f%%) ", confidence * 100.0f);

 }

84

 if (location != null) {

 resultString += location + " ";

 }

 return resultString.trim();

 }

 }

 List<Recognition> recognizeImage(Bitmap bitmap);

 void enableStatLogging(final boolean debug);

 String getStatString();

 void close();

}

TensorFlow image classifier source code
package com.sofiaSanga.fusiscanner;

import android.annotation.SuppressLint;

import android.content.res.AssetManager;

import android.graphics.Bitmap;

import android.os.Build;

import android.os.Trace;

import android.support.annotation.RequiresApi;

import android.util.Log;

import org.tensorflow.contrib.android.TensorFlowInferenceInterface;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.ArrayList;

import java.util.Comparator;

import java.util.List;

import java.util.PriorityQueue;

import java.util.Vector;

public class TensorFlowImageClassifier implements Classifier {

 private static final String TAG = "TensorFlowImageClassifier";

 // Only return this many results with at least this confidence.

 private static final int MAX_RESULTS = 3;

 private static final float THRESHOLD = 0.0f;

 // Config values.

 private String inputName;

 private String outputName;

 private int inputSize;

 private int imageMean;

 private float imageStd;

 // Pre-allocated buffers.

 private Vector<String> labels = new Vector<String>();

 private int[] intValues;

 private float[] floatValues;

 private float[] outputs;

 private String[] outputNames;

 private TensorFlowInferenceInterface inferenceInterface;

 private TensorFlowImageClassifier() {

 }

85

 /**

 * Initializes a native TensorFlow session for classifying images.

 *

 * @param assetManager The asset manager to be used to load assets.

 * @param modelFilename The filepath of the model GraphDef protocol buffer.

 * @param labelFilename The filepath of label file for classes.

 * @param inputSize The input size. A square image of inputSize x inputSize

is assumed.

 * @param imageMean The assumed mean of the image values.

 * @param imageStd The assumed std of the image values.

 * @param inputName The label of the image input node.

 * @param outputName The label of the output node.

 * @throws IOException

 */

 @SuppressLint("LongLogTag")

 static Classifier create(

 AssetManager assetManager,

 String modelFilename,

 String labelFilename,

 int inputSize,

 int imageMean,

 float imageStd,

 String inputName,

 String outputName)

 throws IOException {

 TensorFlowImageClassifier c = new TensorFlowImageClassifier();

 c.inputName = inputName;

 c.outputName = outputName;

 // Read the label names into memory.

 // TODO(andrewharp): make this handle non-assets.

 String actualFilename = labelFilename.split("file:///android_asset/")[1];

 Log.i(TAG, "Reading labels from: " + actualFilename);

 BufferedReader br = null;

 br = new BufferedReader(new

InputStreamReader(assetManager.open(actualFilename)));

 String line;

 while ((line = br.readLine()) != null) {

 c.labels.add(line);

 }

 br.close();

 c.inferenceInterface = new TensorFlowInferenceInterface();

 if (c.inferenceInterface.initializeTensorFlow(assetManager, modelFilename)

!= 0) {

 throw new RuntimeException("TF initialization failed");

 }

 // The shape of the output is [N, NUM_CLASSES], where N is the batch size.

 int numClasses =

 (int)

c.inferenceInterface.graph().operation(outputName).output(0).shape().size(1);

 Log.i(TAG, "Read " + c.labels.size() + " labels, output layer size is " +

numClasses);

 // Ideally, inputSize could have been retrieved from the shape of the input

operation. Alas,

 // the placeholder node for input in the graphdef typically used does not

specify a shape, so it

 // must be passed in as a parameter.

 c.inputSize = inputSize;

 c.imageMean = imageMean;

 c.imageStd = imageStd;

 // Pre-allocate buffers.

 c.outputNames = new String[]{outputName};

 c.intValues = new int[inputSize * inputSize];

 c.floatValues = new float[inputSize * inputSize * 3];

 c.outputs = new float[numClasses];

86

 return c;

 }

 @RequiresApi(api = Build.VERSION_CODES.JELLY_BEAN_MR2)

 @Override

 public List<Recognition> recognizeImage(final Bitmap bitmap) {

 // Log this method so that it can be analyzed with systrace.

 Trace.beginSection("recognizeImage");

 Trace.beginSection("preprocessBitmap");

 // Preprocess the image data from 0-255 int to normalized float based

 // on the provided parameters.

 bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(),

bitmap.getHeight());

 for (int i = 0; i < intValues.length; ++i) {

 final int val = intValues[i];

 floatValues[i * 3 + 0] = (((val >> 16) & 0xFF) - imageMean) / imageStd;

 floatValues[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd;

 floatValues[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd;

 }

 Trace.endSection();

 // Copy the input data into TensorFlow.

 Trace.beginSection("fillNodeFloat");

 inferenceInterface.fillNodeFloat(

 inputName, new int[]{1, inputSize, inputSize, 3}, floatValues);

 Trace.endSection();

 // Run the inference call.

 Trace.beginSection("runInference");

 inferenceInterface.runInference(outputNames);

 Trace.endSection();

 // Copy the output Tensor back into the output array.

 Trace.beginSection("readNodeFloat");

 inferenceInterface.readNodeFloat(outputName, outputs);

 Trace.endSection();

 // Find the best classifications.

 PriorityQueue<Recognition> pq =

 new PriorityQueue<Recognition>(

 3,

 new Comparator<Recognition>() {

 @Override

 public int compare(Recognition lhs, Recognition rhs) {

 // Intentionally reversed to put high confidence at

the head of the queue.

 return Float.compare(rhs.getConfidence(),

lhs.getConfidence());

 }

 });

 for (int i = 0; i < outputs.length; ++i) {

 if (outputs[i] > THRESHOLD) {

 pq.add(

 new Recognition(

 "" + i, labels.size() > i ? labels.get(i) :

"unknown", outputs[i], null));

 }

 }

 final ArrayList<Recognition> recognitions = new ArrayList<Recognition>();

 int recognitionsSize = Math.min(pq.size(), MAX_RESULTS);

 for (int i = 0; i < recognitionsSize; ++i) {

 recognitions.add(pq.poll());

 }

 Trace.endSection(); // "recognizeImage"

 return recognitions;

 }

 @Override

87

 public void enableStatLogging(boolean debug) {

 inferenceInterface.enableStatLogging(debug);

 }

 @Override

 public String getStatString() {

 return inferenceInterface.getStatString();

 }

 @Override

 public void close() {

 inferenceInterface.close();

 }

}

88

RESEARCH OUTPUT

1. Research article “Mobile-based Deep Learning Modes for Banana Disease Detection”,

published in the Journal of Engineering, Technology & Applied Science Research.

2. Poster Presentation “Banana Disease Detection using Deep Learning”.

