
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Research Articles [CoCSE]

2021-05-04

Sensitivity and Uncertainty Analysis of

Variable-Volume Deterministic Model for

Endothermic Continuously Stirred Tank Reactor

Muhirwa, Jean Pierre

Journal of Mathematics and Informatics

https://dspace.nm-aist.ac.tz/handle/20.500.12479/1176

Provided with love  from The Nelson Mandela African Institution of Science and Technology



Journal of Mathematics and Informatics     
Vol. 20, 2021, 73-89 
ISSN: 2349-0632 (P), 2349-0640 (online)  
Published 4 May 2021 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/jmi.v20a08189 
 

73 
 

Sensitivity and Uncertainty Analysis of Variable-Volume 
Deterministic Model for Endothermic Continuously 

Stirred Tank Reactor 
Jean Pierre Muhirwa1,2,*, Isambi Sailon Mbalawata3 and Verdiana Grace Masanja1 

1Nelson Mandela African Institution of Science and Technology Tanzania 
School of Computational and Communication Science and Engineering 

Department of Applied Mathematics and Computational Science 
Arusha-Tanzania, 

2University of Rwanda-College of Science and Technology, School of Science 
Department of Mathematics, Kigali-Rwanda, 

3African Institute for Mathematical Sciences-Secretariat, Research Department, 
Kigali-Rwanda 

2E-mail: verdiana.masanja@nm-aist.ac.tz; 3E-mail: imbalawata@nexteinstein.org, 
*Corresponding author. Email: muhirwaj@nm-aist.ac.tz, 

Received 7 March 2021; accepted 29 April 2021 

Abstract. This paper deals with the formulation and the identifiability of the variable-
volume deterministic model for the endothermic continuously stirred tank reactor 
(CSTR). The identifiability of physical parameters of the formulated model is done by 
using the least squares and the delayed rejection adaptive algorithm version of the 
Markov chain Monte Carlo (MCMC) method. The least square estimates are used as prior 
information for the MCMC method. To measure the model output associated with the 
perturbed model parameters, we use global sensitivity analysis implemented in Latin 
Hypercube Sampling method. The obtained results from partial rank correlation 
coefficients show that six parameters are very sensitive and correlated with the model 
outputs. Finally, we show that the least square and the MCMC numerical results impart 
the model to be realistic, reliable and worthwhile to describe the dynamics of CSTR 
processes as physical parameters of the model are well identified and their uncertainties 
in the model response are analysed and quantified. 

Keywords: Variable-volume; Markov chain Monte Carlo; Endothermic; continuously 
stirred tank reactor 

AMS Mathematics Subject Classification (2010): 65C05, 78M31 

1. Introduction 
Continuously stirred tank reactors (CSTRs), as one of the chemical engineering reactors, 
are recently very useful in industrial production. Chemical engineering reactors are 
categorised in three main types whereby the first type is batch reactor, the second is semi-
batch rector and the last is CSTR. The reactors operate differently. For example, the 
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batch reactor is fed once and the product is removed once whereas for the semi-batch 
reactor, the reactants are supplied continuously until the product is formed and removed 
at an instant or vice-versa. On the contrary, CSTR operates in such a way that the 
reactants are fed continuously and the formed products are also removed continuously. 
Chemical products that may be produced from those reactors are food supplements, 
cosmetic products, alcohols, fertilisers, medicines and biogas among others.  
      CSTRs are very complex and exhibit non-linear operational behaviour which may 
lead to complex control techniques. For controlling CSTRs, it requires to control the 
disturbances in inlets and outlets at the same time. The inlets are composed of parameters 
and variables such as temperature profiles, reactants concentration, reactants density, 
heating or cooling system temperature, and reactants volume while the outlets are 
composed of the product concentration, product temperature, product volume, and 
product density, to name few. Scientists and engineers are interested in fully 
understanding the dynamics of these tanks through mathematical analysis [1, 2, 3]. Other 
researchers have carried out uncertainty quantification on CSTR models. For instance, 
uncertainty quantification of only kinetic parameters on model states of anaerobic 
digester, which is a kind of CSTR has been studied, analysed and quantified in [4]. 
Despite the accurate results obtained, it is better to quantify the influence of each and 
every uncertain parameter on model outputs for the model to be robust. 
        Many researchers also studied behaviour of the CSTRs with exothermic reactions 
which release heat energy [5, 6, 7]. However, from the chemical point of view, 
endothermic reactions which absorb heat energies are equally very important and 
considered in chemical industries. There are many examples of endothermic reactions 
that are frequently performed and are abundantly found in nature, in industries, and in our 
daily real life activities. Few of the known examples include a daily activity of 
transforming eggs into omelette. This is one of the real examples of endothermic 
reaction, for which the pan absorbs enough heat energy to cook eggs. Another typical 
example is plants photosynthesis process, which requires the plants to absorb the sun 
energy to transform minerals into food. More examples include water evaporation, 
melting ice cubes, baking breads, and dissolution of salt in water. In modelling the 
endothermic reaction, some existing researches vary the model parameters around their 
nominal values instead of sampling them from some distributions, and only consider 
reacting tank temperature and concentration as state variables or reacting tank 
temperature, cooling/heating jacket temperature and concentration with the treatment of 
the volume as a constant [8, 9, 10, 11]. It is with these reasons, there is a need to develop 
an endothermic CSTR model with varying volume and using advanced sampling 
technique to study and analyse the uncertainty quantification of model parameters. It is 
important to consider the volume as variable because CSTRs may expand and deform 
continuously.  
       This paper aims to consider a four state variables endothermic CSTR deterministic 
model and sampling and optimizing the CSTR’s model parameters by using the least 
squares and Markov Chain Monte Carlo methods with the motivation of looking at the 
influence of parameters variability on the system model response.  

The reminder of the paper is structured as follows. Section 2 describes the schematic 
diagrams that show the dynamics of CSTR, the model, assumptions, parameters, 
constants and variables involved in this research. Section 3 discuses methods and 
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materials used. In Section 4, the numerical analysis of the model and discussion of the 
results are carried out whilst Section 5 gives concluding remarks. 

2. Description of variable-volume deterministic model for endothermic CSTR 
2.1.  CSTR dynamics illustrations  
Figure 1 depicts the dynamics of the endothermic CSTR. On the left hand side, there are 
physical properties of the raw materials (inlets), and in the center, we have the CSTR 
under consideration that is covered by the heating jacket which supplies heat energy into 
CSTR. The collection of products (outlets) with its physical properties from CSTR is on 
the right hand side. To study the behaviour of the real system as a whole is complicated. 
That is why a conventional control volume drawn in Figure 2 is involved to represent the 
Reynold transport theorem (RTT) which governs flows in and out of the system. 
 
 

 

Figure 1: The dynamics of endothermic CSTR process 

 

Figure 2: The dynamics of endothermic CSTR using RTT 

2.2. Model assumptions 
Most of mathematical models are built based on assumptions. Therefore, from Figure 2, a 
variable-volume deterministic model for the endothermic CSTR can be formulated after 
taking into consideration of the following assumptions:   

1 :A  To avoid spatial gradients of velocity, temperature, concentration and other physical 

properties of the mixture inside the CSTR, there is a perfect mixing. 
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2 :A  Non-viscous fluid and static mixer for which the shaft work produced by the stirring 

process is negligible. 

3 :A  No pressure drop is taking place in the CSTRs. 

4 :A  Kinetic energy, potential energy and other forms of external energy are infinitesimal 

small compared to the heat exchange and the heat from the chemical reactions. 

5 :A  Wall temperature is negligible. Only the heat exchange is channelled through the 

designed area. 

6 :A  The volume is treated as a variable. 

7 :A  Densities (ρ ) and specific heat capacities (pc ) are constants. 

8 :A   There is negligible momentum on the system since there is also negligible external 

stress acting on the system. 
 
Based on the eight assumptions above, the system of Ordinary Differential Equations that 
governs the dynamics of the deterministic variable-volume model for endothermic CSTR 
is formulated and it is given by Equation (1); 
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where V  denotes the volume of the reactor, C denotes the concentration of the reactant, 
T denotes the temperature of the mixture inside the tank, HT denotes the temperature 

inside the covering heating jacket, inF  denotes the inlet volumetric flow rate, 

outF represents the outlet  volumetric flow rate, F is the overall volumetric flow rate of 

the mixture, inC  is the inlet concentration, 0k is the pre-Arrhenius frequency factor, E  is 

the activation energy, R  is the gas law constant, meanT  is the reference temperature, inT  

is the inlet temperature, *H  is the reaction enthalpy, ρ is the mixture density, pc is the 

heat capacity of the reactor, A  is the cross-sectional area between the reactor and the 
heating jacket to allow the heat energy flow, U  is the heat transfer coefficient, HF  is the 

volumetric flow rate of the heater, HV is the volume of the heating jacket, HinT is the 

heating temperature inlet, Hρ is the density of the heater, and 
Hpc is the heat capacity of 

the heating jacket. 
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3. Methods and materials  
3.1.  Least squares method 
The least squares method is among the classical optimization methods that aim to 
minimize the sum of squares of the model’s residuals [12]. The residual is defined as the 
deviation of the predicted model values from the observed model values or simply the 
model bias. Mathematically, given the model function ( ( ), ) ,y f x t rβ= +  then r  is the 

residual while ( ( ), )f x t β is the numerical solutions of the model (observed values), ( )x t  

is the vector of model dependent variables,  β  is the vector of model parameters, and y is 
the predictive dependent model. Thus, from Equation 1, we have 

'( ) [ ( ), ( ), ( ), ( )]Hx t V t C t T t T t=     

and * '
0[ , , , , , , , , , , , , , ] .o u t m ea n p H H H p HF F k E T H c U A F V cβ ρ ρ=  In order 

to use the least squares method, one needs to have experimental data but due to 
technology advancement and due to the development of computers, simulations become a 
very useful approach to experimentally describe the physical systems. In addition, 
various applied mathematics and engineering problems are enough complicated to be 
solved analytically and to be experimentally determined due to non-linearity behaviors as 
mentioned in [13]. For instance, in this paper, as we have the degree of freedom which is 
fourteen, we need to minimize the sum of squares of residuals by solving fourteen non-
linear systems of equations simultaneously. Analytically, this task seems to be complex. 
As a result, simulations simplify the task and minimize the cost and other unnecessary 
risks that may occur during statistical experimental studies. To obtain the statistical 
experimental data, we introduce the noise of standard deviation 0.05 to hundred 
numerical solutions (100 datasets) of the model Equation (1) which is equivalent to 
100x4 statistical experimental datasets. The obtained corrupted data points are then the 
statistical experimental measurements of the variable-volume deterministic model for the 
endothermic CSTR. 
 
3.2.  Markov chain Monte Carlo method 
Markov chain Monte Carlo (MCMC) method is among the recent advanced sampling 
techniques developed to tackle the estimation of parameters of complex systems such as 
biological, chemical and engineering systems. As an example, the method has been used 
to study the dark energy model with gravitational lens in [14]. It has been also used as an 
approximation method for branching process of signal processing in [15]. The ingredients 
of the MCMC method comprise of a distribution called the proposal distribution, initial 
covariance matrix, and prior information about model parameters. In this paper, initial 
parameter values are optimized by using least squares method and treated as the prior 
information about model parameters for the MCMC method. The suitable proposal 
distribution used for this case is chosen to be Gaussian and the turned initial covariance 

matrix is 
0

0.00001
,d dI

d
××Σ = where d represents the number of parameters to be 

identified, and d dI ×  is the d d×  identity square matrix. We generate 500,000 samples 

for each one of the 14 parameters. Finally, statistical inference and graphical analysis, 
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which are trace, scatter, autocorrelation, histograms and marginal density distributions 
are performed to study the convergence and the identifiability of the model parameters. 
The delayed-rejection adaptive metropolis (DRAM) as one of the types of the MCMC 
algorithms which combines two concepts of delayed-rejection (DR) and adaptive 
metropolis (AM) is used to efficiently and accurately enhance the sampling of posterior 
distributions, especially for complex and non-linear models which sometimes have a slow 
startup sampling. This method overcomes the MCMC routines of the burn-in and 
thinning of some posterior samples during sampling period. The DRAM algorithm used 
in this paper, is also found in [16, 17, 18, 19], and it is presented as follow: 
 
Step 1: Initialization of the algorithm: Get the initial 0β  from the initial proposal      

distribution 0( )p β and set the initial non-adaptive period0N  and the initial covariance 

matrix 0.Σ  

 
Step 2: Implementation of the algorithm: For 1,2...j =  do the following: 

(i) Sample a current point ofβ  from the current proposal distribution 

1( / )jq β β − ,  

(ii)  Compute the acceptance probability α  with probability p  as 

 1 2 1
1

1 1 2 1

( / , ,..., ) ( / )
( , ) min{1, }

( / , ,..., ) ( / )
n j

j
j n j

p X X X q

p X X X q

β β β
α β β

β β β
−

−
− −

= ,  

      Accept jβ β=  if  1( , ),jv α β β−<  where (0,1)v U� , 

      Otherwise reject the drawn sample point and keep 1jβ β− = . 

(iii)  After each iteration, update the covariance matrix with the 
formula 0 1( , ,..., ) ,j j p pCov Iβ β β ξ ×Σ = +  where ξ is a small non-negative 

number that avoids the covariance matrix to be singular, 
(iv) 1.j j← +  

4. Numerical analysis of the model 
The numerical solutions for the deterministic variable-volume endothermic CSTR model 
(1) are performed by using the fourth order Runge-Kutta method which is an ode45solver 
software package available in MatlabR2016b. 
 
4.1. Numerical simulations 
The simulation of model (1) requires parameters and initial values. Table 1 shows 
parameters and initial values used to obtain the numerical solutions of the model, and the 
graphical presentation of the state variables’ solutions are shown in Figure 3. Also, the 
samples are generated and analysed graphically using trace, scatter, autocorrelation, 
histogram and marginal density distribution plots. 
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Table 1: parameter values, constants and variables. 

Parameter Symbol (unit) Physical 
Meaning 

Literature 
Value 

Reference 

3
( )
minin

kmol
C

m
 

Feeding 
Concentration 

316.8 
 

         [20] 
 
 

0C
3

( )
min

kmol

m
 

Initial 
Concentration 

316.8          [20] 

C
3

( )
min

kmol

m
 

Mixture 
Concentration 

State Variable Simulated 

inT ( )K  Feeding 
Temperature 

298.35           [20] 

0T ( )K  Initial 
Temperature 

298.35           [20] 

T ( )K  Mixture 
Temperature 

State Variable Simulated 

*H ( )
kcal

kmol
  

Reaction 
Enthalpy 

31004.3 10×            [20] 

0HT ( )K   Initial Heating 
Temperature 

288.15           [20] 

HinT ( )K   Feeding 
Heating 
Temperature 

293           [21] 

HT ( )K     Heating 
Temperature 

State Variable         Simulated 

R ( )
kJ

kmol
 

Gas Law 
Constant 

8.314           [20] 

0V 3( )m  Initial Volume 100           [22] 

V 3( )m  Reactor 
Volume 

State Variable        Simulated 

0k
1

( )
min

  
Pre-Arrhenius 
Frequency 

0.9          [20] 

E ( )
kJ

kmol
 

Activation 
Energy 

0.5          [20] 

meanT ( )K   Reference                
Temperature         

298.15           [20] 

inF F=
3

( )
min

m
 

Volumetric 
Flow Rate 

2130 10−×            [20] 

ρ 3
( )
kg

m
 

Density of the 
Mixture 

1000           [22] 
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pc ( )
kcal

kgK
 

Specific Heat 
Capacity 

4186           [20] 

U
2

( )
min

kJ

m K
  

Heat Transfer 
Coefficient 

100000      Assumed 

A 2( )m   
 

Cross-sectional 
Area 

0.015           [20] 

HF
3

( )
min

m
  

Volumetric 
Flow of the 
Heater 

646.5 10−×            [20] 

HV 3( )m   Heating 
Reactor 
Volume 

650 10−×            [20] 

Hρ
3

( )
kg

m
  

 Heater Density 1000         [22] 

pHc ( )
kcal

kgK
 

Heater Specific 
Heat 

4186          [20] 

outF
3

( )
min

m
 

Outlet 
Volumetric 
Flow rate 

6130 10−×         [20] 

 

 

Figure 3: Numerical results of the model 

From Figure 3, we can see that the concentration of the reactants is decreasing inside the 
tank from 316.8 and approaching zero. When the reactants are fed continuously into the 
tank they are consumed and this is an indication of having a complete conversion of 
reactant's concentration into product's concentration. The temperature of the system is 
observed to increase exponentially from 298.35oK to 360oK, however there is a covering 
heating process to boost the reactor's temperature. Consequently, the temperature of the 
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heating tank decreases slightly from 288.15oK to almost zero after 5 minutes. From sub-
plot 1 of Figure 3, we can further observe that the volume of the reacting tank increases 
with time as the feeding rates become more and greater than the removal rates. This has a 
significance in designing the reacting tank which may deform continuously to increase 
the production conversion rate from 100 m3 to approximately 126 m3. 
 
4.2. Least squares results 
To apply the least squares, we initialize the model parameter values as  

*
0 0

6 2 3

6 6

[ , , , , , , , , , , , , , ]'

[130 10 ,130 10 ,0.9,0.5,298.15,1004.3 10 ,1000,

4186,100000,0.015,46.5 10 ,50 10 ,1000,4186]'.

out mean p H H H pHF F k E T H c U A F V cβ ρ ρ
− −

− −

=

= × × ×
× ×

  

We also initialize the state variables of the system as 0 [100,316.8,298.35,288.15]'.x =   
From Figure 4, we can observe that the distance between the predictive solutions and the 
exact model solutions seems to be minimized. Hence the system model is fitting the 
measurements very well, simply because red and blue colors are nearly coincident. 
 

 
Figure 4: The fitted model. The real data are experimental data after introducing noise. 

4.3.  MCMC results and uncertainty analysis 
The identifiability of the model parameters in MCMC is mainly based on the 
convergence diagnostic tests and the uncertainty analysis of posterior distributions. 
Various diagnostic tests for MCMC convergence and uncertainty analysis include 
observatory tests, statistical tests, and graphical tests [23, 24, 25, 26, 27, 28, 29, 30, 31]. 
In this paper, the MCMC graphical diagnostic tests used are trace (time-series), scatter 
(pairs), histograms of the posterior distributions and autocorrelation plots. The statistical 
tests are performed to check, examine and quantify some statistical quantities of the 
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posteriors distributions. The statistical tests used are posterior means, medians, standard 
deviations, MCMC errors, tau, geweke, kurtosis and skewness. 
 
4.3.1. Trace plots 
The generated time series for parameters is plotted with the target of diagnosing whether 
the posterior parameter distributions are stationary. If the chain gets stuck somewhere 
during sampling period, then the chain does not move straightforward from one side to 
another. So, the MCMC algorithm produces a poor mixing. The poor mixing indicates 
that the parameters are not identifiable. Therefore, further task of changing the 
ingredients of the algorithm should be done to efficiently and effectively identify the 
parameters. 

 

Figure 5: Trace plots of sampled posteriors 

Trace plots that are shown in Figure 5 indicate that there are no high trends in sampled 
parameters since the chain is stationary and moves from one side to another. We may 
explore that DRAM does not stuck in any place during sampling, which represents the 
good mixing of the chain. 
 
4.3.2. Scatter plots 
The scatter plots check the correlation index between pairs of samples. High correlation 
index among many pairs of samples can lead to poor identifiability of the model 
parameters. As a consequence, the model cannot be reliably applicable. Low correlation 
index among pairs is preferably to be observed for a good mixing. 
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Figure 6: Scatter plots (pairs) 

As there are fourteen parameters to be identified from the data points, then there are as 
many as combinations as possible for each of the chosen pairs from the fourteen 
parameters and this is equivalent to ninety one scatter plots. However, we only present 
the scatter plots of the first ten parameter samples which is equivalent to forty five scatter 
plots. Figure 6 shows that none of the parameters are strongly correlated with each other. 
If one observes strong correlation among sampled parameters, then it is the indication 
that the algorithm mixes badly. 
 
4.3.3. Histograms for posteriors 
The histograms for sampled posterior parameters for a converging Markov chain must 
fairly follow the normal distribution curve. It is therefore a good practice to plot the 
histograms for all sampled parameters to make sure that all of them have bell shapes. 

 
Figure 7: Histograms for the posterior samples distribution 

So, from Figure 7, we see that almost all sampled parameters agree with the normal 
distributions, except for the parameters outF and E which are slightly skewed to the right 

side. As a result, the DRAM method identified well the parameters of the model (1). 
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4.3.4. Autocorrelation plots 
The autocorrelation plots show how independent is the sampling process. If the 
coefficients of the autocorrelation functions (x-axis) for some of the posteriors do not 
decay toward zero as the number of lags (y-axis) increases, then it is the sign of having 
parameters dependence in sampling which causes the MCMC method not to converge to 
the target distribution. Thus, a decay of autocorrelation functions coefficients provides 
the accuracy and the certainty of obtaining a converging posterior distribution of 
parameters. 

From Figure 8, we can see that all coefficients of autocorrelation functions are 
exponentially decaying as the number of lags increases. Therefore, the consecutive 
parameters are independently sampled during the run-time of the DRAM algorithm, and 
this determines the convergence of the method. 

 

 
Figure 8: Autocorrelation functions for all 14 identified parameters 

The results in Table 2 show that all posterior means are within their credible 
intervals. The MCMC method converges as the MCMC deviations (MCerr) are 
minimized. Some curves for posterior means have shown skewness and deviate from 
normal curves for exampleoutF . This has been justified by the kurtosis and the skewness 

values of outF that are far from 3 and 0 respectively, as it can be expected from Gaussian 

distribution. This indicates that most of all parameters follow Gaussian distribution. The 
geweke numbers for posterior distributions also check the convergence of the MCMC 
method and by default assuming that the posterior means for two windows which are the 
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start of sampling (10%) and the end of sampling (50%) are identical. When samples are 
drawn from stationary distribution then geweke diagnostic statistical test approaches 
standard normal distribution and its values are expected to be at most near unity for 
converging chain.  While tau values indicate the autocorrelation times and so the decrease 
in tau values implies the better mixing in sampling a certain posterior parameter 
distribution. Based on that, the geweke and tau values obtained in Table 2 show that there 
were better mixing and independence in sampling posteriors from stationary distribution 
as geweke values for all parameters are at most nearly unity and tau values are small. 

 
Table 2: Estimated parameters and their statistical inferences 

 
 
4.4. Partial rank correlation coefficients  for the model parameters 
Sensitivity analysis interpreted via partial rank correlation coefficients (PRCCs), is a 
technique that quantifies the uncertainty in the responsive model from the uncertainties of 
input initial conditions and parameters. Thus, to study the influence of uncertainties on 
the proposed model (1), we performed the global sensitivity analysis of the model which 
is a necessary and important tool to quantify the effects of uncertainties of the parameters 
on the responsive variables of the model. Based on the nature of the model, various 
methods for the sensitivity analysis have been proposed. For example, for non-linear 
models, methods that are based on decomposition of the output variance of the model like 
sobol method are used to quantify the model uncertainty but this is applicable for non-
monotonic models. For the case of nonlinear and monotonic models, spearman rank 
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correlation coefficients, standardized rank regression coefficients and the PRCCs are 
preferably to be used, but the PRCCs are the most accurate and adequate to measure and 
quantify the uncertainty in the outputs of the model [32]. The PRCCs vary in the range of 
± 1 with significant correlation for the values approaching -1 or +1 and low correlation 
for the values that are far from -1 or +1. In this paper, the model (1) is nonlinear and 
monotonic, so the Latin Hypercube Sampling ((LHS) method with the PRCCs are 
implemented to qualitatively and quantitatively performing the sensitivity analysis. The 
obtained results are presented in Figure 10 and Table 3. 
 

 
Figure 9: PRCCs plots 

Figure 9, subplots 1-4 displays the PRCCs for the volume, the concentration, the 
temperature and the heater temperature respectively. This figure shows that the first 
parameter ( outF ) is strongly and negatively correlated with the volume means that the 

increase in the values of outF  decreases the values of the volume in the reacting tank. 

Likewise, the second parameter ( )F   is positively correlated with the concentration 

whilst the third one 0( )k is significantly and negatively correlated with the concentration, 

and consequently, the increase in the values of F  will increase the values of the 
concentration in the model and the increase of 0k will decrease the concentration of the 

model as can be seen from subplot 2. From subplot 3, we can explore that the increase of 

sixth parameter *( )H values will increase the temperature of the tank whereas the 

increase of the seventh ( )ρ  and the eighth ( )pc parameters values will automatically 

decrease the temperature values in the presented model. Subplot 4 shows that only sixth 
parameter is negatively correlated with the heater temperature which explains that the 
increase in the enthalpy values will directly inhibit the increase of the heater temperature 

values. As a result, *
0, , , ,outF F k H ρ and pc parameters are identified to be very 
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sensitive to the model and hence much attention has to be quantitatively and qualitatively 
accorded to them. 
 

Table 3: PRCCs values for each responsive model variable. 
Parameters Variables 

 V  C  T  HT  

outF  -0.9890(*) 0.4067 -0.0263 -0.0126 

F  0.1793 0.7850(*) 0.1599 -0.2350 

0k  0.0645 -0.9678(*) 0.2452 -0.1453 

E  0.1209 -0.1126 0.1999 -0.1934 

meanT  0.0730 0.0739 0.0048 -0.0053 
*H  0.1246 -0.0532 0.5897(*) -0.5029(*) 

ρ  0.1777 -0.0739 -0.5858(*) 0.3995 

pc  0.1076 -0.1335 -0.6017(*) 0.3773 

U  -0.0473 0.0001 0.0060 -0.2588 
A  -0.0664 0.1083 -0.0800 -0.2929 

HF  0.0918 0.0950 -0.1923 0.3310 

HV  0.1325 -0.0212 -0.0447 -0.1234 

Hρ  0.0846 -0.1467 0.0563 0.3318 

pHc  0.2289 -0.0405 -0.1175 0.2282 

Note: value (*) means significant PRCCs values for the model variables. 

5. Conclusion  
In this paper, we formulated and numerically solved and analysed the variable-volume 
deterministic model for the endothermic continuously stirred tank reactor by using the 
least squares and the MCMC methods. The MCMC results have been graphically and 
statistically analysed to not only study the convergence of the method and the robustness 
of the model but to also examine the reliability of the model by identifying its physical 
parameters. We also performed the global sensitivity analysis to quantify the effect of 
uncertainty in the model from the uncertainty of estimated parameters by using LHS 
method, in order to obtain the PRCCs and their sensitivity significances for each variable 
of the model. Six parameters among fourteen identified parameters were shown to be 
correlated with the model variables and are very sensitive to the model responses 
(output). In the meantime, the numerical results have revealed that the model can be very 
beneficial to qualitatively, quantitatively and experimentally describe the dynamics of the 
variable-volume CSTR systems which require the heating process.  
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