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ABSTRACT 

Energy is an important element in realizing the interrelated socio-economic development of 

countries. In an attempt to develop long term energy demand and supply patterns that would enable 

the country meet her growing energy demand sustainably using the current and future available 

energy resources, a study of its own kind was carried out. The analysis of the influential indicators 

in the determination of energy demand based on the selected socio-economic and environment 

indicators preceded the study. Artificial neural network-multilayer perceptron (ANN-MLP), 

multiple linear regression (MLR), and support vector machine for regression (SVR) techniques 

were employed in the analysis. The findings depicts a strong relationship between energy 

indicators and energy demand for Tanzania. The energy indicators model showed greater accuracy 

in the prediction of energy demand as compared to economic and environment indicators models. 

ANN-MLP, MLR and SVR techniques reached satisfactory prediction results though ANN-MLP 

produced the most accurate predictions.  

The long-term energy demand simulation for a study period 2010-2040 was done using the Model 

for Analysis of Energy Demand (MAED). The simulation involved case study scenarios to mimic 

possible future long-term energy demand based on socio-economic and technological 

development. Simulated results suggest an exponential growth of the total final energy demand 

with electricity demand shift from household dominance towards industry and service sectors 

describing changes in the lifestyles. Nevertheless, the electricity demand growth rate has been 

shown to be greater than that of energy demand describing more mechanisation in the industry and 

service sectors. Final energy demands per capita shows an increasing tendency while there is a 

decrease in energy intensity suggesting energy efficient measures. 

Long-term energisation plan was achieved through a bottom-up modelling approach using Model 

for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE). 

Least-cost results showed dominance of hydro, coal, geothermal and natural gas as possible supply 

options for future electricity generation. Though these energy resources are locally available and 

give least-cost advantages, their combinations is heavily skewed to the non-environmental friendly 

resources. Optimised results indicate, without interventions in promoting renewable energy, its 

influence in power generation will remain insignificant and therefore recommends policies 
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formulations to ensure significant contribution. Finally, the results have established that it is 

feasible to have a sustainable and economical supply of energy for Tanzania that will meet her 

energy demand and ensure an optimized option for short, medium and long term energisation plans 

using currently available energy resources.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Energy is an essential input for sustainable development of nations. Exponential increases in 

energy demand has been witnessed in the past decades following the start of industrial 

development and globalization (Suganthi and Samuel, 2012). In developed and developing 

countries, energy plays an important role in socio-economic advances despite its subsequent 

impacts on global sustainability (Seow and Rahimifard, 2011; Van Ruijven et al., 2008). 

Significant number of studies have established the existence of the relationship between energy 

and economic development such as that of Akinlo (2008), Ozturk (2010) and Sadorsky (2010). 

Linkage between energy and economic growth has been equaled to other factors of production 

such as land and capital in Chontanawat et al. (2008) and Ikeme and Ebohon (2005). Energy 

unlocks access to improved social services and thus boosts expansion of economic sectors such as 

industries, service, transport, households and agriculture. Van Beeck (1999) Describes economic 

growth as a reason for a rise in activities requiring energy; whereas any society growth path is 

determined by energy accessibility (Martin, 1992).  The expansion of economic sectors as a result 

of energy accessibility describes a strong feed-back between energy and economy as stated by 

Iwayemi (1998). In most cases, insufficient energy tends to hold back economic growth and 

development, thus leading to negative changes in consumption pattern (Blum and Legey, 2012).  

Energy models main purposes are to predict the future of energy demand and/or supply of a 

particular nation or a region. Energy models work by assuming a certain number of boundary 

conditions, for instance the growth in the demographic and economic activities, or projected 

increases in energy prices on the international markets among many others (Herbst et al., 2012). 

The models are in the same way applicable to simulate policy and technology options that may 

possibly influence future energy demand and supply, and henceforth investments in energy 

systems as well as energy policies. Since their inception in the early 1950s, models have been in 

use as tools to improve and optimize energy systems and energy infrastructure across industrialized 

countries. Energy modeling is considered useful because it is an efficient, feasible and necessary 

means of understanding complex energy systems. It also provides a basis for the discussion of the 
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nature of the problem, and if the model assumptions are expressed in an understandable form, 

comparisons between different approaches can be made (Luukkanen, 1994). The rise of 

macroeconomic energy models in the 1950s, was largely influenced by the needs and ambitions to 

develop the industrial economy in industrialized countries (Karjalainen et al., 2014). However, 

detailed techno-economic models sometimes referred as end-use models, were first developed as 

an alternate approach to explain and predict energy demand/supply following the first oil crisis in 

the early 1970s (Akins, 1973; Herbst et al., 2012). Acceptably, energy models have conventionally 

modeled the technical features of the energy systems in relation to the world economy. Neo-

classical economics and the modernization theory dominated energy modeling assumptions in the 

20th century (Luukkanen, 1994). 

A review of energy models suggests existence of a large variety of classification approaches since 

its development back in 1950’s. A widely held classification is as suggested in Grubb et al. (1993) 

and Hourcade et al. (1996) for which energy models are distinguished by the use of analytical 

approach top-down against bottom-up (end-use). Grubb et al. (1993) Describes a bottom-up 

analytical approach as associated with an “optimistic” engineering paradigm.  Bottom-up approach 

provides an explanation of needs at a localized level such as household and more detailed analysis 

from an engineering perspective (ibid.). On the contrary, top-down analytical approach is 

associated with a pessimistic economic paradigm. Hourcade et al. (1996) describes top-down 

analytical approach as useful “if historical development patterns and relationships among key 

undelaying variables hold constant for the projection period”. Top-down models surpass in 

providing an aggregate perspective and an economic-oriented view. Hybrid energy models mix 

the bottom-up and the top-down approaches, and could improve understanding about and attempt 

to overcome limitations of both approaches (Karjalainen et al., 2014). Another un-popular form of 

energy model classification is that proposed by Hourcade et al. (1996) in which three dimensions 

namely model’s purpose (i.e. prediction, scenario analysis, back-casting), structure and input 

assumptions are used to distinguish the models. A summarized general distinction between top-

down and bottom-up analytical approaches as derived from various studies including Van Beeck 

(1999), Herbst et al. (2012), Catenazzi (2009), Grubb et al. (1993), Bhattacharyya and Timilsina 

(2009), McFarland et al. (2004) and Hourcade et al. (1996) is depicted in Table 1.1.  

 



 

3 

 

 

Table 1.1: Bottom-Up models vs. Top-Down models 

Bottom-Up Models Top-down Models 

Engineering approach Economic approach 

Incorporate high degree  of technological details Lacks technological details 

Deliver detailed information of energy demand/supply Deliver generalized information of energy demand/supply  

Independent of observed market behavior Based on observed market behavior 

Does not tend to favor monetary related policies only Tend to favor monetary related policies 

Use disaggregated data for exploring purposes Use aggregated data for forecasting purposes 

Considers discontinuities in historical trends No discontinuities in historical trends 

Considers potential for efficiency improvement (regards 
technically most efficient technologies) 

Underestimate potential for efficiency improvement  
(dis-regards technically most efficient technologies) 

 

A further review of energy models based on top-down and bottom-up classification suggests the 

existence of a large variety of approaches in use. Figure 1.1 shows a summarized distinction of 

energy models based on a simple approach as derived from Craig et al. (2002), Armstrong (2001), 

Brown et al. (2001) and Bhattacharyya and Timilsina (2009).  A summarized distinction of energy 

models based on sophisticated approach as derived from Catenazzi (2009), Nathani et al. (2006), 

Tintner (1953), de Vries et al. (1999), Kemp-Benedict et al. (2002), (Mundaca and Neij, 2009) 

and Herbst et al. (2012) and Merven et al. (2013) is shown in Figure 1.2.  

 

 

 

 

 

 

Figure 1.1: Distinction of energy demand models based on simple approach 
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Figure 1.2: Distinction of energy models based on sophisticated approach 
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Energy demand growth depends much on economic development, which in turn influences factors 

such as industrial development, demographic and life-style changes, technology advances and 

others. Figure 1.3 portrays the relationship between economic development and energy demand in 

consuming sectors. Population growth and other demographic issues, for instance employment 

level and income growth, influences energy demand and thus have an impact on energy intensity. 

When the population becomes well-off, energy demand and therefore energy intensity may well 

rise due to the increased energy-consuming equipment and appliances. Advances in technology 

also influence energy demand and therefore energy intensity as new technologies improve 

efficiency attracting more penetration thus increasing energy demand.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Economic development and energy demand relationship 
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The relationship between energy and socio-economic development indicators has been the subject 

of interest to energy analysts. The energy-indicators relationship and their varied levels of 

influences in determination of future energy demand have been shown to exist in a number of 

studies. The results from these studies have shown varied results across methodologies as detailed 

in Soytas and Sari (2003) and Mozumder and Marathe (2007) studies.  The relationship between 

energy and influential indicators were used to determine the accurate predictions tools using 

different approaches including machine learning such as in Yu et al. (2012) and AbuAl-Foul 

(2012). Likewise, a number of studies have applied different modeling approaches in 

understanding of future energy demand and supply modeling. Modelling approaches have 

previously successfully assisted in the design of enhanced sustainable utilization of limited energy 

resources with the considerations of the possible effects to environmental quality in a number of 

countries. These approaches have been adopted by many countries spurred by its previously 

success in realizing the expected output such as in Hainoun et al. (2010) and Ryabchenko et al. 

(2013).  

Long-term energy demand customarily has an upward trend owing to the economic and 

demographic growth as shown in a number of studies including Ekonomou (2010); IEA (2013b) 

to name a few.  The expected energy demand increase in Tanzania is also attributed to population 

growth mostly in urban areas and economic expansion (UN, 2013; UNDP-WHO, 2009) as a result 

of investments coming into the economic sectors such as oil and gas, service, agriculture, and 

mining. Volatile energy markets and supply challenges makes modeling of energy demand and 

supply patterns in Tanzania a very important issue in meeting expected increases. Meeting energy 

needs is essential in sustaining population growth and economic expansion with the competing 

demand over energy resources considerations. Presently, the country’s energy status is in an 

unbalanced state accompanied by recurrent energy shortages such as electricity (MEM, 2013b; 

Mwampamba, 2007). Other forms of energy services such as biomass are constrained (Malimbwi 

and Zahabu, 2005). Previous experience in meeting energy needs for accelerating economic 

growth through the use of biomass have caused climatic challenges such as deforestation (Felix 

and Gheewala, 2011; Mwampamba, 2007). It is a well-known fact that deforestation reduces the 

amount of evapotranspiration (Costa and Foley, 2000; Li et al., 2007) which is the recycling of 

moisture back into the atmosphere through plantation leaves. Evapotranspiration causes the air 

that normally travels over deforested areas to be less humid leading to lower rainfall such as that 
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observed in Loisulie (2010) resulting in rivalry over resources such as water for agricultural 

activities (Casmiri, 2009).  

Tanzania, being a Sub-Saharan African country, has enough energy resources to sustainably meet 

its total needs but remains with the challenge of unequal dissemination and under-development 

(IEA, 2014b). The challenge is resolvable and the benefits of success are huge through efficient 

energy planning and management. Analysis and modeling of energy demand and supply patterns 

is an approach towards energy planning and management. Effective energy planning and 

management is vital for providing a stage for optimal energy supply with guaranteed reduction of 

environmental impacts. The need to identify the relationship between energy demand and its 

influential indicators coupled with the application of a bottom-up modeling approach in 

understanding future energy demand and supply is overwhelming in the quest to achieve 

sustainable development.  

1.2 Research problem and justification 

The expected worldwide increases in energy demand with the rising competing demand over 

energy resources makes it necessary for Tanzania to address short to long term energy demand and 

supply patterns for sustainable exploitation of resources. Inappropriate supplies policies and 

investment decisions as is the case in most developing countries (Bhattacharyya and Timilsina, 

2009) contributes to the lack of balance between energy demand and supply (Mohamed and 

Yashiro, 2013). As suggested in Suganthi and Samuel (2012), energy planning through 

understanding of the possible future trends is essential for economic prosperity and environment 

security. In lieu of that, understanding of future energy demand and supply pattern in Tanzanian 

economic sectors is essential because of multi-dimensional necessities. First, the sustainable 

economic development of the country depends on adequate, affordable and secure energy services 

for its quest to become a middle income country through implementation of Vision 2025 goals 

(URT, 1999). Second, the country endowed with natural gas and coal potential and other energy 

resources that could be harnessed to solve energy challenges resulting from experience with 

limited energy resources dependence. 
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The review of relevant literature about energy in Tanzania resulted in observed gap in studies that 

examined and used the relationship between energy and the corresponding influential indicators 

to determine the prediction tools. Previous studies which tried to link energy and influential 

indicators in the economy of Tanzania were the Granger causality test and Autoregressive 

Distributed Lag (ARDL) bounds testing (Ebohon, 1996; Odhiambo, 2009). In Ebohon (1996) 

causal directions between energy consumption and economic growth proxied by GDP and GNP 

was established. In a similar study, Odhiambo (2009) used ARDL bounds testing to examine the 

linkage between energy consumption and economic growth. Likewise, Nyoni (2013) adopted the 

Cobb-Douglas function to analyse the correlation between economic growth and energy 

consumption. The Granger- causality test in Nyoni (2013), showed the more energy consumption 

the more the economy develops. Generally, these studies established the relationship between 

economic growth and energy, which was shown to exist. The limitation with these studies is that 

they did not attempt to determine prediction tools for energy demand out of the relationship they 

established.  

Further review of relevant literature showed non-existence of studies that applied bottom-up or 

top-down modeling approaches to examine and propose possible future energy demand and supply 

patterns for Tanzania. The existing literatures on energy issues such as Msaki (2006), attempted 

to demonstrate the need for nuclear energy inclusion into electricity generation. The study was 

limited to electricity specifically installed capacity and did not consider thorough analysis in 

diversification of energy resources coupled with economic growth trend for electricity generation. 

Moreover, enormous discoveries of natural gas and coal were unknown by then and were not 

incorporated into the study as alternative energy sources.  Mohamed and Yashiro (2013) used a 

combination of land-use characteristics, satellite image and household energy surveys to give a 

generic overview of trends behind energy demand at household level.  

The Power System Master Plan (PSMP) which was first released in 2008 (the latest update is the 

2012 version) is another source of energy information with regards to Tanzania (MEM, 2012). 

PSMP preparations used a combination of econometric and trend line approaches and is the only 

Tanzanian official energy plan addressing the issues of electricity. PSMP has been in use to re-

assesses the short-term, mid-term and long-term generation and transmission plan requirements. 

PSMP energy mix is composed of an enormous application of hydro and thermal generation using 



 

9 

 

 

predominantly heavy fuel oil (HFO), coal and natural gas. The limitation with PSMP is first, it 

does not fully utilize several alternatives that are becoming progressively attractive to energy 

planners worldwide (IRENA, 2012). Amongst these alternatives are the greater usage of non-hydro 

renewable energy such as solar thermal, wind, solar PV, geothermal and biomass, which have been 

increasing in significance worldwide. Second, PSMP does not show clearly how its demand are 

met through modelling against assumptions such as environmental constraints, life styles changes, 

technological options and how it curbs hydropower uncertainties. A similar case is also observed 

in the Msaki (2006) study in which the largest composition is thermal generation without 

consideration of non-hydro renewable energies.  

In the pursuit to conduct this study, two important conclusions were drawn from the review of 

relevant literature about energy in Tanzania. First, previous analysis of energy and influential 

indicators to the economy of the country have been limited to the use of traditional statistical 

methods without any indication of extension to the use of machine learning approaches such as 

ANN, MLR and SVR. In lieu of that, it is therefore significant to carry out an extended analysis 

using machine learning to find the level of influence of selected indicators that are closely linked 

in the determination of energy demand. The level of influence of the selected indicators will enable 

the determination of an accurate energy demand prediction tool.  

Second, there is no substantiation of the use of bottom-up modelling approach for the management 

and planning of energy demand and supply pattern in Tanzania specifically IAEA tools (MAED 

and MESSAGE). MAED and MESSAGE are simulation and optimisation energy systems 

modelling platforms categorized as bottom-up models. These models have successfully been 

applied in the planning and management of energy demand and supply patterns. Following the 

literature review, it is therefore important to take on studies with the use of bottom-up models as 

the succeeding part of the dissertation objectives is to determine energy demand and its supply 

pattern for successful medium to long-term energisation plan of the country. The choice of a 

bottom-up modelling approach is based on the fact that the country is experiencing a rapid 

economic growth with constantly changing circumstances. Bottom-up models are suitable as they 

allow for scenarios and sensitivity analyses to cover-up such circumstances. Besides, the bottom-

up modelling approach allows for detailed description of the available energy conversion 

technologies for both renewable and non-renewable resources. Moreover, the choice of MAED 
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and MESSAGE was spurred by their ability to allow for environmental impact assessment, and 

the incorporation of a high degree of technologies details, among many other advantages, to give 

a clear overview of different options and their consequences. 

1.3 Objectives 

1.3.1 General objective 

The general objective of this research is to develop long-term energy demand and supply patterns 

for Tanzania that would enable the country to meet her growing energy demand sustainably using 

the current and future available energy resources.  

1.3.2 Specific objective 

In the course of the research, for the accomplishment of the general objective, fulfillment of the 

following set of specific objectives were required: 

i) To perform analysis of the influence of social, economic and environment indicators in the 

energy demand of Tanzania; 

ii) To compare the performances of machine learning approaches in the analysis and prediction 

of energy demand using social, economic and environment indicators;  

iii)  To simulate future energy demands under various scenarios and analyze the influence of each 

scenario to energy demand; 

iv) To model the energy resource mix to meet short, medium and long-term energisation plans for 

Tanzania. 

1.4 Research questions 

To meet the objectives of the study, the following were the questions this research sought to 

answer: 

i) What are the likely influences of social, economic and environment indicators to energy 

demand for Tanzania? 

ii) What are the possible future energy demands trends under various scenarios?  

iii)   Is it feasible to have a sustainable and economical supply of energy to Tanzania that will meet 

her energy demand and ensure for short, medium and long-term energisation plans using 

currently available energy resources? 
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1.5 Scope of the study 

The study examines and compares the relationship between energy demand and influential 

indicators in the prediction of futuristic demand using machine learning approach specifically 

ANN, MLR and SVR. It further compares the performances of ANN, MLR and SVR for 

predictions of energy demand. The study finally applies MAED to predict future energy demand 

and then applies MESSAGE to model supply options for electricity generation.  

1.6 Significance of the research 

From the aforementioned background information, it is obvious that significance of the research 

benefits a number of interested parties in the field of energy. This study is expected to bring the 

following positive outcomes:  

 
(i) The research findings add a body of knowledge to researcher and scholars that exists in the 

analysis of the influence of socio-economic and environment indicators in the energy demand of 

Tanzania. The research findings will further provide effective and accurate tools that can be 

applied to predict long-term energy demand of the country using machine learning approach. From 

a policy perspective, the use of machine learning approach will enable the relationship between 

energy demand and the economic development to be identified so that energy conservation 

measures may be taken appropriately. 

 
(ii) The research findings provide a platform for more comparative studies with similar or 

different algorithms in determining the level of influence of socio-economic indicators and energy 

usage in Tanzania.  

 
(iii) The research finding provides vital information to policy analysts and decision makers on 

possible future energy demand trends under various scenarios representing economic development 

paths and the influence of each. The outputs from this research are anticipated to provide more 

understanding of the relationship between energy and economic growth coherent with sustainable 

development goals and objectives. Besides, the research finding provides a platform for the re-

assessment of energy systems in the country with a view toward planning energy programmes and 

policies in the Tanzanian and global contexts. 
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(iv) The research finding provides vital information to policy analysts and decision makers into 

energy resource utilization options that ensure access to adequate, affordable and secure energy 

services considering vulnerability that may cause energy insecurity. Furthermore, the research 

finding provides a platform for environmentalists to advocate the effective use of environmentally 

friendly energy resources in reducing the impact of greenhouse gas (GHG) emissions and other 

associated challenges in energy use.  

1.7 Dissertation Organization 

The organisation of this PhD dissertation is built on the papers which constitute the main modelling 

parts. The dissertation modelling of energy demand and supply patterns in Tanzania follows a 

framework as illustrated in Figure 1.4 and organized into seven chapters as follows.  

i) Chapter One: The chapter covers the introduction of the study, which includes the 

background information, research problem and justification of the study, the objectives of the 

study, research questions and scope of study and significance of the research. 

 

ii) Chapter Two: The analysis of the relationship of economic, energy and environmental 

indicators on the prediction of energy demand by the use of machine learning is the primary 

focus of this Chapter. The content of this chapter forms a paper that uses artificial neural 

network (ANN) and multiple linear regression (MLR) techniques to analyse and determine 

the relationship of economic, energy and environmental indicators on the prediction of energy 

demand. 

 
iii)  Chapter Three: The chapter analyses the relationship upon which economic, energy and 

environmental indicators have on the prediction of energy demand. The content of this 

chapter forms a paper that uses support vector machine for regression (SVR) technique to 

analyse and determine the relationship of economic, energy and environmental indicators on 

the prediction of energy demand. 
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iv) Chapter Four: The content of this chapter forms a paper that uses bottom-up modeling 

approach to model medium to long-term energy demand in the main economic activities 

sectors using the Model for Analysis of Energy Demand (MAED). 

 
v) Chapter Five: The chapter presents analysis through bottom-up modeling, energy supply 

options for electricity generation using MESSAGE model. 

 

vi) Chapter Six: The chapter analyses through bottom-up modeling approach the prediction of 

the contribution of renewable energy sources into electricity generation in Tanzania. 

  
vii) Chapter Seven: The chapter covers discussions of the main findings resulting from papers as 

presented in chapters two, three, four, five and six. 

 
viii)  Chapter Eight: The chapter covers general conclusion and recommendations. 
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Figure 1.4: Dissertation framework
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CHAPTER TWO 

ANALYSIS OF TANZANIAN ENERGY DEMAND USING ARTIFICIAL NEURAL 

NETWORK AND MULTIPLE LINEAR REGRESSION1 

 

2.1 Abstract 

Analysis of energy demand is of a vital concern to energy systems analysts and planners in any 

nation. This paper presents artificial neural network-multilayer perceptron (ANN-MLP) and 

multiple linear regression (MLR) techniques for the analysis of energy demand in Tanzania. The 

techniques were employed to analyze the influence of economic, energy and environment 

indicators models in predicting the energy demand in Tanzania. Statistical performance indices 

were used to evaluate the prediction ability of economic, energy and environment indicators 

models using ANN-MLP and MLR techniques. Predicted response values of ANN-MLP and MLR 

techniques were then compared to determine their closeness with actual data values for 

determining the best performing technique. The results from ANN-MLP and MLR techniques 

showed the best model for predicting the energy demand in Tanzania were from energy indicators 

as opposed to economic and environmental indicators. The ANN-MLP prediction values had a 

correlation coefficient (CC) of 0.9995 and mean absolute percentage error (MAPE) of 0.67%; 

outperforming the MLR technique whose CC and MAPE values were 0.9993 and 0.83% 

respectively. ANN-MLP technique graphical presentation of actual against predicted values 

showed close relationship between actual and predicted values as opposed to the MLR technique 

whose predicted values deviated much from actual values. Analyses of results from both 

techniques conclude that ANN-MLP outperforms the MLR technique in predicting energy demand 

in Tanzania.  

2.2 Introduction 

Analysis and prediction of energy demand is a subject of present extensive interest among analysts 

of challenges in energy production and consumption. Studies have shown energy demand to be 

influenced by a number of indicators such as population growth, economic performance and 

                                                 
1 International Journal of Computer Applications  (IJCA), Volume 108 – Issue No. 2 (2014), pp. 13-20 
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technological developments (Apergis and Payne, 2009; Reister, 1987). Indicator relationships to 

energy and their effects on future energy demand have shown varied and conflicting results not 

only across countries but also across methodologies for the same country and have been detailed 

in Soytas and Sari (2003) and Mozumder and Marathe (2007) studies. The conflicting results calls 

for scholars to analytically determine the influence of key energy indicators in the future energy 

demand of their countries. There exist few studies for Tanzania, which attempted to examine the 

relationship between energy indicators (variables) and energy demand. These studies were limited 

to the Granger causality test and autoregressive distributed lag (ARDL)-bounds testing approaches 

(Ebohon, 1996; Odhiambo, 2009). The inter-temporal causal relationship between energy 

consumption and economic growth were examined by Odhiambo (2009) and found economic 

growth is being spurred by energy consumption. Ebohon (1996) investigated energy consumption 

and economic growth causal directions proxied by GDP and GNP in which a simultaneous causal 

relationship was shown to exist. Not all these studies attempted to predict energy demand but rather 

the link between energy consumption and economic growth.   

 

Developing countries such as Tanzania are in the stage of improving economically where various 

economic policy reformations and formulations are implemented. Economic improvement will 

unquestionably require a proper energy demand prediction tool as energy is an important aspect in 

realizing sustainable development (Vera and Langlois, 2007).   The goal of this study is based on 

the absence of sufficient studies for the energy prediction and analysis tools to the influence of the 

energy key indicators in Tanzania. The objective was to analyze the influence of economic, energy 

and environmental indicators on the prediction of energy demand by the use of artificial neural 

network (ANN) and multiple linear regression (MLR) techniques. This is because the ANN and 

MLR demonstrated strong computational abilities to handle complex non-linear functions which 

are the characteristics possessed by energy demand indicators (Mellit et al., 2009; Mubiru and 

Banda, 2008). In the last few years, many studies have applied ANNs to energy and to mention a 

few are solar resource potential forecasting (Sözen et al., 2005), predicting global radiation 

(Azadeh et al., 2009) predictive and adaptive heating control system (Morel et al., 2001), modeling 

and control of combustion processes (Kalogirou, 2003) and mapping of wind speed profile for 

energy (Fadare, 2010). The study results will present policy makers with an effective and accurate 

tool that can predict long-term energy demand. 
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2.3 Predictors 

2.3.1 Artificial Neural Networks (ANNs)   

Over the past three decades, much advancement has been made in developing intelligent systems 

that can solve problems that cannot be programmed by conventional programming approaches. 

This includes the artificial neural network (ANN).  In fact many researchers from different 

scientific disciplines designed ANNs to solve a variety of problems (Jain et al., 1996). This 

approach has been widely applied in solving a variety of problems in pattern recognition, 

prediction, optimization, associative memory, and control (Jain et al., 1996). It provides an ideal 

environment in which the smart world can benefit by solving unpredictable and uncontrollable 

problems with a subtle range of influencing parameters.  

In fact ANN can be defined as a highly connected array of elementary processors called neurons 

(Park et al., 1991). They are a network of simple processing neurons operating on their local data 

and communicate with other neurons (Svozil et al., 1997). The term ‘neural network’ has its origins 

in attempts to find the mathematical representations of information processing in biological 

systems  (McCulloch and Pitts, 1943; Rosenblatt, 1961). Indeed, the plausibility models 

resemblance to biological system is true with regard to the mechanism of interconnectivity of the 

units and their firing when a predefined threshold limit is reached; more often termed as synaptic 

strength in physiology. Each neuron in the network is able to receive input signals from its 

preceding unit, to process them and to send an output signal to the neurons after it. There are many 

types of neural network but this study is confined to a specific type titled multilayer perceptron 

feed-forward network (MLP).  

An MLP feed-forward neural network is the most widely studied type of neural network (Bishop, 

2006) and comprises of neurons (the processing units) that are ordered into layers. The layers can 

be put in three different types, namely input layers which receives a signal from the input variables, 

hidden layers which process the input fed from the predecessor layers or the input variable and the 

output layer which provides the desired or target output signal. Its output layer of neurons are 

successively connected (fully or locally) in a feed-forward fashion with no connections between 

units in the same layer and no feedback connections between layers (Jain et al., 1996).  Each neuron 

in a particular layer is connected with all neurons in the succeeding layer (Figure 1 depicts this).  
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Figure 2.2 shows the connection between the ithand jthneuron as characterized by the weight 

coefficient wij and the ith neuron by the threshold coefficient ϑi. The weight coefficient reflects the 

degree of importance of the given connection in the neural network. The output value of the 

ithneuron xi is determined by equations (2.1) and (2.2). 

𝑋𝑖 = 𝑓(𝜏𝑖)                                                                                      (2.1) 

𝜏𝑖 = 𝜗𝑖 + ∑ 𝜔𝑖𝑗𝑗 𝑥𝑗                                                                                  (2.2) 

Where j consists of all predecessors of the given neuron i and f(τi) is a transfer (activation) 

function which may be sigmoid, tangent or step function. 

 

 

Figure 2.1: A multilayer feed forward neural network consisting of four layers 
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Figure 2.2: Connection between neurons 

For the case of this research the sigmoid function of the form given in equation (2.3) was adopted 

and the summation in equation (2.2) is carried out over all the neurons j of the preceding layer 

connected to the neuron i of the current layer. 

           f(τ) =
1

1+exp(−τ)
                                                                                      (2.3) 

With the supervised learning process, the threshold coefficients also known as bias ϑi in equation 

(2.2) and weight coefficients ωij are changed to minimize the sum of the squared error between 

the computed and desired output values. This is done using the training data fed into the system 

on every neuron as information passes. The equation (2.4a) shows the actual minimization where 

x and y are the computed and desired vector for the output neurons and the summation runs over 

all output neurons. 

             E =
1

2
(x − y)2                                                                                                           (2.4a) 

             J(E) =
1

2
∑ (hE(xi) − yi)n

i=1
2
                                                                         (2.4b) 
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The widely used training algorithm for the MLP is the back propagation algorithm using the 

gradient descent applied to a sum-of-squares error function (Bishop, 2006). The intuition is to find 

how close is estimation x to the required or target y as shown in equation (2.4a) and update all 

other neurons. This can be reformulated into a cost function in equation (2.4b) and the network is 

initialized with randomly chosen weights, which is the initial guess value of 𝐸. The gradient of the 

error function is computed and used to correct the initial weights, this is repeatedly changed to 

minimize J(E) until it converges to the value that minimizes the Error E so that the input and output 

are as close as possible. With the back propagation, the information update when the weight value 

is changed is propagated backward. 

 

2.3.2 Multi Linear Regression (MLR) 

Multiple linear regression (MLR) is a multivariate statistical technique that examines the 

relationship between a dependent variable and two or more independent variables by fitting a linear 

equation to observed data (Campbell, 2001; Tranmer and Elliot, 2008). MLR is an extension of 

simple linear regression analysis capable of predicting the single dependent variable using a set of 

known independent variables. In MLR there are p independent variables whereas the relationship 

amongst dependent and independent variables is given in equation (2.5) (Tranmer and Elliot, 

2008).  

yi = β0 +  β1x1i +  β2x2i + ⋯ βpxpi +  ei                                    (2.5) 

where β0  is a constant term and β1  to βp represents the coefficient that relates the p independent 

variables. If the value of p is equaled to 1, then the equation 2.5 will represent a simple linear 

regression. MLR models have been effectively employed in the forecasting of the consumption of 

various commodities like electricity, coal, gas and petroleum products (Bianco et al., 2009; Sharma 

et al., 2002). Regression analysis according to Yee (1998) has been and still is the most popular 

modeling technique in predicting energy demand. 
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2.4 Methodology 

2.4.1 Data collection and preprocessing 

The data collection included historical data over the period from 1990 to 2011. The data sources 

were from the National Bureau of Statistics (NBS), World Development Indicators, International 

Energy Agency (IEA), Bank of Tanzania (BoT) and Tanzania Electric Supply Company Limited 

(TANESCO). The annual dataset used in this study for all variables included population, GDP, per 

capita energy use, total primary energy supply, gross national income per capita, electricity 

generation and greenhouse gas emissions (CHG). Pre-processing of the data to fit in the proposed 

models was done. The three proposed models based on the indicators of study were economic, 

energy and environment indicator models. The models were proposed with the objective of 

determining the influence of indicators in the prediction of energy demand. 

2.4.2 Experimental setup 

In the experiment, two predictors were used for the study. They included the artificial neural 

networks (ANN) with the multilayer perceptron (MLP) architecture and the multiple linear 

regression (MLR). The artificial neural networks (ANN) with the multilayer perceptron (MLP) 

architecture are as abbreviated as ANN-MLP throughout the study. The cross-validation with k-

folds was also adopted for training. The training set was thus split into k chunks with k − 1 chunks 

used for training and the remaining chunk for the validation process aimed at evaluating the model 

performance. In fact each of the chunk in the k splits was eventually used as a validation against 

the rest. The performance measure reported by k-fold cross-validation was then the average of the 

values computed in the loop.  

The software used for this study was Weka which is a suite of machine learning software written 

in Java applicable for data mining tasks (Hall et al., 2009). Weka is composed of tools for pre-

processing of data, classification, regression, clustering, association rules, and visualization (Hall 

et al., 2009; Witten et al., 1999). Weka is designed to bring a range of machine learning techniques 

under a common interface due to the fact that the various implementations in existence requires 

the data to be presented in their own format, and their own way of specifying parameters and 

output (Garner, 1995). In fact Weka has smoothed the differences of the implementations and 

offers a consistent method for input format, simulations and results analysis. Weka interface has 
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made it easy enough that users need only to concern themselves with the selection of features in 

the data for analysis and what the output means, rather than how to use a machine learning scheme 

(package). 

2.4.3 Performance evaluation 

The models’ performances in both approaches were evaluated by using the following statistical 

parameters: correlation coefficient (CC), root mean squared error (RMSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE) (Azadeh et al., 2007), root relative squared error 

(RRSE) and relative absolute error (RAE) (Chattefuee and Hadi, 2006; Lee and Nicewander, 

1988). The values of statistical indices were derived from the statistical calculation of observation 

in the models output predictions and are given in equations 2.6, 2.7, 2.8 and 2.9 (Armstrong and 

Collopy, 1992; Makridakis and Hibon, 1995). Selection of the best model for estimating energy 

demand was done considering higher correlation coefficient with the lowest root mean square 

error, mean absolute error and relative absolute error. 

RMSE = √
1

n
∑(Pi − ai )2

n

i=1

                                                                          (2.6) 

RAE =  
∑ |Pi − ai|

n
i=1

∑ |a ̅ − ai|
n
i=1

⁄                                               (2.7) 

MAE =
1

n
 ∑|Pi − ai|

n

i=1

                                                                      (2.8) 

 MAPE (%) =
100

n
  ∑

Pi − ai

Pi 

n

t=1

                                                      (2.9) 

Where Pi  is the actual values of Pt+1  with  i = 1, 2, 3, 4,… , n years observations; Pi
′  is the average 

of Pt+1 ; ai is the predicted Pt+1 values and n   is the total observations. 
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2.5 Results and discussions 

2.5.1 Training and validation 

A cross-validation technique with 10 folds was experimentally chosen for the analysis of energy 

demand. The data set was broken into 10 different sets of size n/10 also known as chunks and the 

training was carried out on 9 sets and testing was done on the remaining one.  For each 10 

experiments carried out, 9 folds were used for the training and the remaining fold for evaluation. 

The rotation was kept changing the evaluation fold for each iteration until each of the folds has 

been used for evaluation against the rest.  For this case, the true error was estimated by taking a 

mean accuracy. 

 

2.5.2 Architecture identification 

The most appropriate ANN-MLP architecture was selected by considering performance indices to 

represent the best generalizing ability among the architectures. The first ranking experimental 

results for the economic indicators model were from the architecture with two neurons in hidden 

layer (3-2-1) and CC value of 0.9983. The second and third ranking architectures for economic 

indicators model had CC values of 0.9983 and 0.9982 but were characterized with the highest 

MAE, RMSE, RAE and RRSE values as compared to the best architecture. ANN-MLP 

experimental results for the energy indicators model with architectures (4-4-1) showed the best 

accuracy as compared to other architectures that were examined. The CC values of the second and 

third ranking architectures had the same values as the first ranking architecture but their MAE, 

RMSE, RAE and RRSE values were the highest. The best results for the environment indicators 

model were from the architecture that doubled the number of hidden neurons relative to the number 

of input neurons (3-6-1). The second and third ranking architectures for the environment indicators 

model had both CC value of 0.9986 which was less than the first ranking architecture value 

accompanied with the highest MAE, RMSE, RAE and RRSE. Results for the first ranking 

architecture involving economic, energy and environment indicators model are summarized in 

Table 2.1. 
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Table 2.1: ANN-MLP models performance comparison 

 Economic 
indicators model 

Energy indicators 
model 

Environment 
indicators model 

CC 0.9983 0.9995 0.9987 

MAE 0.1331 0.0873 0.1586 

RMSE 0.2108 0.1155 0.2009 

RAE 3.92% 2.57% 4.67% 

RRSE 5.56% 3.04% 5.29% 

Architecture 4 – 2 - 1 4 – 4 – 1 3 – 6 - 1 

 

2.5.3 ANN-MLP results 

The economic, energy and environment indicators models’ results are presented in this section to 

show the comparison of the predicted values against actual values for the purpose of determining 

the best indicators for the prediction of energy demand in Tanzania based on the ANN-MLP 

technique. The results as presented in Table 2.1 are the statistical parameters for performance 

evaluation of the models. As illustrated in Table 2.1, the CC based on the energy indicators model 

is 0.9995 whereas the economic and environment indicators models had 0.9983 and 0.9987 

respectively. The CC value of the energy indicators model depicts a higher degree of correlation 

to energy demand as compared to the economic and environment indicators model using ANN-

MLP technique.   

The magnitude of differences between the CC values among the models is very small to determine 

the supremacy of the energy indicators model. Statistical performance evaluation parameters are 

further compared to determine the first ranking model among the three. In terms of RMSE, RAE, 

MAE and RRSE values, the energy indicators model values were less in comparison to the 

economic and environment indicators model respectively. Though the results of ANN-MLP 

techniques are numerically close in terms of CC values, the statistical performance evaluation 

parameters on energy indicators model ranks the first in prediction accuracy as compared to its 

counterparts. 

The graphical presentation of absolute errors deviations for economic, energy and environment 

indicators models using ANN-MLP technique are illustrated in Figure 2.3. The upper absolute 

errors deviation of predicted against actual values for energy indicators model is 0.214 while in 



 

25 

 

 

economic and environment indicators models are 0.455 and 0.536 respectively. These values again 

confirm the energy indicators model as the best as compared to environment and economic 

indicators. The patterns exhibited by economic and environment indicators models have high 

deviations values between actual and predicted values. The absolute error deviations of predicted 

values against actual values in the energy indicators model are minimal as compared to the other 

models.  Concerning absolute error deviation curves, a conclusion is drawn that for better 

prediction, the energy indicators model is better in comparison to its counterparts. 

 

Figure 2.3: Absolute error values comparison among models - ANN-MLP technique 

The computation of absolute percentage error (APE) values using data in Table 2.2 and equation 

(2.10) for the energy indicators model show fluctuations between 0.01% and 2.03% while in the 

economic indicators and environment indicators model they fluctuate between 0% and 4.04% and 

0.27% and 4.75% respectively. The computed mean absolute percentage error (MAPE) using 

equation (2.9) for economic and environment indicators models are 0.93% and 1.19% respectively 

whereas in the energy indicators model it is 0.67%.  As can be observed, the MAPE between actual 

and predicted values for energy indicators model are within acceptable accuracy outpacing the 

economic and environment indicators models. The statistical performance evaluation parameters 
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are in favor of the energy indicators model. This is because the energy indicators perform better in 

comparison to its counterparts when using the ANN-MLP technique. 

 

APE (%) = |
 Actual Values − Predicted Values

Actual Values
 | ∗ 100                             (2.10) 
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Table 2.2: ANN-MLP technique models output comparison 

 

 

 

 

Eco no mic  

Indica to rs  

mo del

Energy 

Indica to rs  

mo del

Enviro nment

Indica to rs  

mo del

Eco no mic  

Indica to rs  

mo del

Energy 

Indica to rs  

mo del

Enviro nment

Indica to rs  

mo del

1990 9.73 9.73 9.898 9.631 2001 14.2 14.171 14.267 14.039

1991 9.93 9.875 9.918 9.709 2002 14.92 14.653 14.944 14.548

1992 10.06 10.05 10.112 10.138 2003 15.49 15.464 15.347 15.408

1993 10.33 10.372 10.397 10.377 2004 16.2 16.286 16.202 16.332

1994 10.52 10.432 10.306 10.366 2005 17.14 17.069 17.17 16.968

1995 11.02 10.582 10.914 10.748 2006 17.81 17.883 17.803 17.858

1996 11.16 11.229 11.308 11.247 2007 18.31 18.491 18.42 18.376

1997 11.27 11.725 11.458 11.806 2008 19.1 19.134 19.029 19.019

1998 11.93 11.909 12.007 11.993 2009 19.35 19.627 19.378 19.269

1999 12.75 12.733 12.756 12.649 2010 20.04 20.095 20.05 19.961

2000 13.39 13.353 13.282 13.201 2011 20.75 20.154 20.465 20.384

P REDICTED VALUES (MTOE)P REDICTED VALUES (MTOE)

YEAR

ACTUAL 

VALUES 

(MTOE)

YEAR

ACTUAL 

VALUES 

(MTOE)
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2.5.4 Multiple Linear Regression (MLR) results 

A summary of the MLR statistical performance results is shown in Table 2.3 for economic, energy 

and environment indicators models. The results show that the CC value for the energy indicators 

model has a higher value as compared to economic and environment indicators models. The greater 

CC for energy indicators model indicates a higher correlation in predicting energy demand as 

opposed to the economic and environment indicators using the MLR technique. This implies that 

the prediction of energy demand using energy indicators model is more accurate than that of its 

counterparts.  The second and third are as shown in Table 2.3. 

Table 2.3: Performance evaluation of models – MLR technique 

 Economic  indicators 
model 

Energy indicators model Environment indicators 
model 

CC 0.9942 0.9993 0.9901 

MAE 0.3412 0.1102 0.4431 

RMSE 0.3904 0.1329 0.5123 

RAE 10.06% 3.25% 13.06% 

RRSE 10.29% 3.51% 13.51% 

 

It is further shown in Table 2.3 that RMSE, RAE, MAE and RRSE for the energy indicators model 

are correspondingly less valued as compared to the economic and environment indicators models. 

The lower RMSE, RAE, MAE and RRSE values as depicted by the energy indicators model 

represent a higher accuracy in the prediction of energy demand. Using equation (2.10), the APE 

values computed from Table 2.4 for energy indicators model depicts fluctuations between 0.09% 

and 2.19% while the economic and environment indicators model fluctuates between 011% and 

7.18% and 0.06% and 8.62% respectively. The MAPE values for economic and environment 

indicators models computed using equation (2.9) are 2.5% and 3.27% respectively while in the 

energy indicators model it is 0.83%. MAPE further shows that the energy indicators model 

outperforms its counterparts. 
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Table 2.4: MLR technique models output comparison 

 

 

 

Eco no mic  

Indica to rs  

mo del

Energy 

Indica to rs  

mo del

Enviro nment

Indica to rs  

mo del

Eco no mic  

Indica to rs  

mo del

Energy 

Indica to rs  

mo del

Enviro nment

Indica to rs  

mo del

1990 9.73 9.163 9.88 9.013 2001 14.2 13.957 14.486 14.117

1991 9.93 9.605 10 9.387 2002 14.92 14.625 15.117 15.552

1992 10.06 10.023 9.992 9.864 2003 15.49 15.118 15.402 14.846

1993 10.33 10.397 10.194 10.278 2004 16.2 15.842 16.006 15.815

1994 10.52 10.722 10.29 10.569 2005 17.14 16.752 17.101 16.524

1995 11.02 11.163 10.945 11.409 2006 17.81 17.319 17.778 17.821

1996 11.16 11.652 11.127 11.845 2007 18.31 18.082 18.358 18.027

1997 11.27 12.079 11.23 12.241 2008 19.1 18.739 18.885 18.461

1998 11.93 12.571 12.065 12.601 2009 19.35 19.626 19.31 18.937

1999 12.75 13.059 12.901 13.009 2010 20.04 20.481 20.152 20.507

2000 13.39 13.375 13.455 13.055 2011 20.75 21.195 20.73 21.462

P REDICTED VALUES (MTOE)P REDICTED VALUES (MTOE)

YEAR

ACTUAL 

VALUES 

(MTOE)

YEAR

ACTUAL 

VALUES 

(MTOE)
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The graphical presentation of absolute errors deviations between actual and predicted values for 

all models is illustrated in Figure 2.4. The absolute errors values for predicted against actual values 

for energy indicators model are lower than the other models. The upper absolute error values 

deviations for the energy indicators model is 0.286 while for economic and environment are 0.809 

and 0.971 respectively.  Looking at the three absolute errors deviations curves, the economic and 

environment indicators models curves exhibits the higher fluctuations over the entire dataset. It is 

thus drawn from the absolute errors deviations curves that for better energy prediction, the energy 

indicators model leads its counterparts. 

 

 

Figure 2.4: Absolute error values comparison among models – MLR technique 

2.5.5 ANN-MLP and MLR performance comparison   

The energy indicators model is shown to have a strong influence in the prediction of energy 

demand by outperforming the economic and environmental indicators models. Table 2.5 shows 

performance evaluation indices for energy the indicators model. It is shown that the CC has greater 

values and MAE, RMSE, RAE, RRSE and MAPE have lesser values in the ANN-MLP in 

comparison to the MLR values. Figure 2.5 presents the comparison between predicted values 
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against actual values for the energy indicators model in both ANN-MLP and MLR cases. The 

observations on the curve produced by the ANN-MLP approach show that the predicted values are 

close to the actual values as compared to the curve produced by the MLR approach. This was noted 

in the experimental results where RMSE, MAE, RAE, RRSE and MAPE had lower values and 

higher CC values. These observations show that the ANN-MLP provides better results than the 

MLR technique for energy demand prediction. 

Table 2.5: ANN-MLP and MLR performance comparison 

 ANN-MLP Technique MLR-Technique 

CC 0.9995 0.9993 

MAE 0.0972 0.1102 

RMSE 0.1229 0.1329 

RAE 2.82% 3.25% 

RRSE 3.25% 3.51% 

MAPE 0.67% 0.83% 

 

 

Figure 2.5: Comparison of actual and predicted values for ANN-MLP and MLR techniques 
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2.6 Conclusion 

This paper presented ANN-MLP and MLR techniques for determining an accurate prediction tool 

for energy demand in Tanzania using economic, energy and environment indicators models. The 

ANN-MLP and MLR techniques were first used to analyze separately the influence of economic, 

energy and environment indicators models in the energy demand of Tanzania. Then statistical 

performance indices were applied to evaluate the estimating ability of economic, energy and 

environment indicators in predicting energy demand using ANN-MLP and MLR techniques. The 

best performing indicators model from each techniques were then compared to determine the best 

energy demand prediction technique for Tanzania. Results from both ANN-MLP and MLR 

techniques unanimously determined the energy indicators model as the first ranking followed by 

economic and environment indicators models. Results for the energy indicators model under ANN-

MLP technique had a CC value of 0.9995 against 0.9993 for the MLR technique.  

Comparison of the statistical performance indices showed that MAPE value of the energy 

indicators model under ANN-MLP technique is 0.67% better than that of MLR technique valued 

at 0.83%. The RMSE, MAE, RAE and RRSE values of the energy indicators model under ANN-

MLP technique had less numerical values as opposed to MLR technique. Additionally, the ANN-

MLP technique had a predicted values curve close to the actual values as compared to the curve 

produced by MLR technique whose results deviated more from the actual values. Based on the 

results of this study it is concluded that ANN-MLP technique outperform MLR approach in 

estimating energy demand for Tanzania. The study results therefore suggests energy indicators 

model as an accurate model in estimating energy demand of Tanzania and the ANN-MLP as the 

best technique in such analyses. The use of the ANN-MLP technique in estimating future energy 

demand will assist government in decision-making on expected energy demand for long-term 

sustainable development. Further studies are recommended to compare the ANN-MLP results with 

other algorithms for analysis of energy demand in Tanzania. 
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CHAPTER THREE    

 

PREDICTION OF TANZANIAN ENERGY DEMAND USING SUPPORT VECTOR 

MACHINE FOR REGRESSION (SVR)2 

 

3.1 Abstract 

This study discusses the influences of economic, energy and environment indicators in the 

prediction of energy demand for Tanzania applying support vector machine for regression (SVR).  

Economic, energy and environment indicators were applied to formulate models based on time 

series data. The experimental results showed the supremacy of the polynomial-SVR kernel 

function and the energy indicators model in providing the transformation, which achieved more 

accurate prediction values. The energy indicators model had a correlation coefficient (CC) of 0.999 

as equated to 0.9975 and 0.9952 with PUKF-SVR kernels for the economic and environment 

indicators model. The energy indicators model more closely predicted values as compared to actual 

values when compared to the economic and environment indicators models. Furthermore, root 

mean squared error (RMSE), mean absolute error (MAE), root relative squared error (RRSE) and 

relative absolute error (RAE) of the energy indicators model were the lowest. Long-term 

sustainable development of the energy sector can be achieved with the use of the SVR-algorithm 

as a prediction tool for future energy demand.  

 

3.2  Introduction 

Notwithstanding its extremely vivacious importance to all human activities and life in general, 

energy prediction studies using the machine learning approach in the developing countries like 

Tanzania has not been done deeply. In addition, energy availability and concerns as to its scarcity 

due to the depletion of fossil fuel resources, has made the analysis of energy demand to be of great 

interest to researchers. In fact, energy is important to all human activities and thus a socio-

economic development catalytic agent for individuals and nations in general. The energy analysis 

using various approaches for different applications has assisted individuals and countries to plan 

                                                 
2 International Journal of Computer Applications  (IJCA), Volume 109 – Issue No.3 (2015), 34-39 
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for their energy demands ahead of time. Tanzania is among the developing countries where 

intensive investments are being made in all sectors of the economy. The country energy demand 

is expected to grow (Kichonge et al., 2014a) as new investments floods in due to economic sectors 

expansions and liberalization especially in gas, minerals and agriculture. To facilitate and assist 

energy policy makers in decision-making, this study adopts support vector machine for regression 

(SVR) to analyze the influence of economic, energy and environment indicators in the prediction 

of energy demand of Tanzania. The choice of SVR is due to its strong computational capabilities. 

SVR has previously used for a number of applications such as electricity load forecasting (Pai and 

Hong, 2005a, b); predicting crude oil price (Xie et al., 2006); wind speed estimation (Mohandes 

et al., 2004); classification (Maji et al., 2008; Xue et al., 2005); among many others. Expectations 

are that the study results will present an effective tool for the prediction of long-term energy 

demand based on time series data. 

3.3 Support Vector Machine  

The support vector machines (SVMs) in machine learning are supervised learning models with 

associated learning algorithms that analyze data and recognize patterns (Olson and Delen, 2008). 

SVMs are applicable for classification and regression analysis. When SVMs are used for 

classification they involve identifying to which of a set of categories a new observation belongs, 

on the basis of a training set of data containing observations whose category membership is known 

(Goel, 2009). SVM for regression applies a loss function to solve various regression problems; 

and it has contributed to a broad range of problems arising in various fields. It is a training 

algorithm for learning regression rules from data which can be used to learn linear-SVR, 

polynomial-SVR, RBF-SVR and PUKF-SVR (Üstün et al., 2006). PUKF-SVR has been 

demonstrated to work well with approximation of the linear, polynomial-SVR or RBF-SVR feature 

space. It has further been shown to really act like linear, polynomial-SVR or RBF-SVR (Üstün et 

al., 2006). The detailed theory of SVM is well given in (Burges, 1998; Cristianini and Shawe-

Taylor, 2000; Olson and Delen, 2008; Schölkopf et al., 1998; Smola and Schölkopf, 2004) and the 

theory of kernels in (Bishop, 2006). An overview concept of SVR and PUKF-SVR function is as 

presented in this study. 

 



 

35 

 

 

3.3.1 Support vector machine for regression (SVR) 

Support vector regression (SVR) is an SVM version for regression (Drucker et al., 1997; Olson 

and Delen, 2008). The scholars Schölkopf et al. (1998) and Üstün et al. (2006) approach SVR by 

considering a data set [(x1 , y1),… . . , (xn , yn)] (d-dimensional input space) and y in R space, 

basically arguing that, SVR tries to find the function f(x), which relates the measured input object 

(say, for this case energy indicators) to the desired output property of this object (say, predicted 

energy demand value in MTOE as represented  in equation 3.1. The variables W and b represent 

the slope and offset of the regression function. The solution for this regression problem is solved 

by minimizing equation 3.2. 

𝑓(𝑥) − 𝑊𝑋 + 𝑏          (𝑊,𝑋 ∈ 𝑅𝑑)                                                                       (3.1) 

1

2
||𝑊||

2
+ 𝐶 ∑ 𝐿ε

𝑛

𝑖=1

(𝑓(𝑥𝑖),𝑦𝑖)                                                                                  (3.2)     

Where      𝐶 > 0  and 𝐿𝜀(𝑓(𝑥𝑖),𝑦𝑖) = 0 

if  |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝜀   and  𝐿 𝜀(𝑓(𝑥𝑖),𝑦𝑖) = |𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜀  otherwise         (3.3) 

1

2
||W||2 as given in equation 3.2, is the term characterizing the model complexity (flatness) 

whereas C is the regularization constant which determines the trade-off between the model 

complexity f(x) and the amount up to which deviations larger than ε are tolerated (Burges, 1998; 

Cristianini and Shawe-Taylor, 2000; Schölkopf et al., 1998; Smola and Schölkopf, 2004). Large 

values of C favor solutions with few errors and small values denote preference towards low-

complexity. The reformulation of equation 3.2 by introduction of the slack variable  ξiand ξi
∗ gives 

the primal equation 3.4 which refers to the formulation of the regression problem in the original 

data space (Cortes and Vapnik, 1995).  

The primal formulation of the problem is suitable in case the number of objects is (much) larger 

than the number of involved variables; otherwise, the so-called dual is used. The slack 

variables ξiand ξi
∗ are introduced in the situation that the target value (property of the input object) 

exceeds the numerical limits of the ϵ tube. The points outside the ϵ tube are named support vectors 

and in fact are the vectors supporting the actual regression model  (Üstün et al., 2006). The support 
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vectors machine contribute only to building the regression function whereas the rest of the input 

data in the space are not important and can be rejected after the regression model is built. This is 

termed as sparsely of the solution where only a few data from the input space are actually taken 

into account in building the regression function. Therefore we get at the formulation of the 

approximation function as stated in (Vapnik, 2000). 

Minimize  

1

2
||W||2 + C ∑  (ξi + ξi

∗ )n
i=1 subject to yi − 〈w, xi〉 − b ≤ ε + ξi   〈w,xi〉 + b − yi ≤ ε +

ξi
∗ and ε,  ξi , ξi

∗ ≥ 0                                                                                                                (3.4)  

Finally, intuitively taking into consideration of the non-linear regression by including the mapping 

to the feature space, equation 1 can be re-constructed into equation 3.5 by introducing the Lagrange 

multipliers. 

 f(x) − ∑ (αi − αi
∗ )n

i=1 〈∅(xi),∅(x)〉 b                                                                             (3.5) 

In equation 5, the model parameters αi  and αi
∗ that represent the Lagrange multipliers satisfying 

the constraint 0 < αi ,αi
∗ < C. These parameters can be obtained by maximizing the dual 

formulation, which can be derived from equation 3.4. 

Maximize  −
1

2
∑ (αi − αi

∗)(αj − αj
∗ )〈∅(xi).∅(x)〉n

i,j=1 + ∑ (αi − αi
∗n

i )yi −  ε ∑ (αi − αi
∗n

i )   

                                                                                                                                         (3.6) 

Subject to      ∑ (αi − αi
∗n

i ) = 0 and αi − αi 
∗ ∈ [0,C]                                                   (3.7)  

According to Cristianini and Shawe-Taylor (2000), with the Karush–Kuhn–Tucker conditions, it 

is only a small number of coefficients  αi and αi
∗ will be non-zero, and the data points associated 

with these parameters are mentioned to the support vectors of the model. The vector inner product  

〈∅(xi).∅(x)〉 in equations 3.5 and 3.6 represent the mapping function from the input space to 

feature space. These can be replaced by the generic kernel function K(xi, x). The kernel function 

represents the underlying relationship between the input data and desired output to be modeled. 

Therefore, changing equation 3.6 by introducing the kernel function it develops into equation 8. 

𝑓(𝑥) − ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

𝐾(𝑥𝑖 ,𝑥) + 𝑏                                                                                  (3.8) 
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As a result, the kernel function transforms the nonlinear input space into a high dimensional feature 

space in which the solution of the problem can be represented as being a straight linear problem. 

3.3.2 Kernel idea 

Kernel-based algorithms action idea is to change the data in the input space into a high dimensional 

Hilbert space (Muller et al., 2001; Schölkopf and Smola, 2002; Üstün et al., 2006).That is to say, 

a space spanned by inner-product based functions of real-valued vectors representing physical 

entities which is referred to as the corresponding feature space (Üstün et al., 2006). In this way, it 

becomes possible to solve the problem as if the feature space was linear separable. Kernels based 

methods for SVR have been studied, proposed and the field is now in its development point (Cortes 

and Vapnik, 1995; Vapnik and Vapnik, 1998). The linear, polynomial-SVR and RBF-SVR 

represented in equations 3.9 to 3.11 respectively, are well implemented and tested in the SVR. 

Furthermore, the kernel based on PUKF-SVR has been effected and tested.  A detailed explanation 

of the PUKF-SVR is well covered in (Üstün et al., 2006) and the following section gives a brief 

discussion. 

K(xi , xj) = (〈xi , xj〉 + 1)                                                                                                       (3.9) 

K(xi , xj) = (〈xi , xj〉 + 1)
d

, d = 2 Poly1                                                                    (3.10) 

K(xi , xj) = e(
−||xi ,xj||2

2δ
)                                                                                                            (3.11) 

    when δ = 3 the equation is polynomial − SVR 2 (Poly_2)  

   δ = 8 Poly_3                     δ = 0.5 RBF-SVR_1      δ = 2 RBF-SVR_2 

 

3.3.3 Pearson VII universal kernel (PUKF-SVR) 

PUKF-SVR was proposed by Karl Pearson in 1895 and it is a special case of Type IV 

(symmetrical) of the families of distribution he proposed after noting that not all distribution had 

distributions that resembled the normal distribution (Lahcene, 2013). The general form of the 

Pearson VII function for curve fitting purposes is as given in equation 3.12. 
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f(x) =      
H

[1+(
2(x−x0)√2

1
w⁄ −1

δ
)

2

]

w                                                                                       (3.12)  

From equation 3.12, H is the peak height at the centre x0, and x characterizes the independent 

variable. The parameters δ and w regulates the half-width and the tailing factor of the peak. The 

main reason to use the Pearson VII function for curve fitting is its flexibility to change, by varying 

the parameter w, from a Gaussian shape (when w approximates infinity) towards a Lorentzian 

shape (w equal to 1) as depicted in Figure 3.1 (Üstün et al., 2006). The function was selected to be 

used as the kernel because of its suppleness to vary between a Gaussian and a Lorentzian shape 

and out there. This property makes it able to serve as a kind of universal kernel, which can 

substitute the set of commonly applied kernel functions, such as the linear, polynomial-SVR and 

RBF-SVR kernels (Üstün et al., 2006). The PUKF-SVR function is tested to be a valid kernel 

functions because its matrices belongs to the class of the symmetric and positive semi-definite 

matrix, which is a requirement for any function to be a kernel. The Pearson function in equation 

3.12 is modified to suit the kernel in equation 3.13 (Üstün et al., 2006). 

 

 

 

 

 

 

 

 

Figure 3.1: Pearson VII peak shapes 
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As the Pearson width x =1, it resembles a Lorentzian and as it approaches infinity, it becomes 

equal to a Gaussian peak shape. Moreover, a Pearson peak with x =0.5 (Üstün et al., 2006) is 

shown in Figure 3.1. Note: the region close to zero can be imagined to compare to RBF-SVR and 

higher order polynomial-SVR function shapes. The region between 0.25 – 0.75 represents a linear 

function. Extremely, the full range between 0 – 3 becomes more or less comparable to a sigmoid 

function, which is widely used in neural network modeling. 

K(xi , xj ) =
1

[1 + (
2(||xi − xj||

2)√2
1

w⁄ − 1

δ
)

2

]

w                                        (3.13) 

As can be envisaged, the single variable x in equation 3.12 is replaced by two vector arguments 

and the Euclidean distance measure between these vectors has been introduced. The peak offset 

term  x0 is removed and the peak height H is simply replaced by 1, this without loss of generality. 

3.4 Methodology 

3.4.1 Data collection and pre-processing 

Data used were from National Bureau of Statistics (NBS), World Development Indicators, 

International Energy Agency (IEA), Bank of Tanzania (BoT) and Tanzania Electric Supply 

Company Limited (TANESCO). The dataset had the historical annual data over the period from 

1990 to 2011. The dataset included population, gross domestic product (GDP), per capita energy 

use, total primary energy supply, gross national income per capita, electricity generation and CO 2 

emissions. The pre-processing of the data to fit in the models was done. The three models based 

on the indicators of study were economic, energy and environment. The models were developed 

with the objectives of determining the influence of indicators in the prediction of energy demand. 

3.4.2 Experimental setup 

In the experiment, SVR was used for the study. The training to build the regression model used 

for evaluation involved the polynomial-SVR, normalized polynomial-SVR, RBF-SVR and the 

PUKF-SVR kernels. Data for all the experiments were cross-validated using k-folds cross-

validation (CV). The idea was to split the data into k disjoint and equally sized subsets. The 

validation was done on a single subset and training was done using the union of the remaining k−1 
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subsets. This procedure was repeated k times, each time with a different subset for validation. The 

intention was to allow for the large data in the dataset to be used for training and all cases appear 

for the validation cases (testing). For this case, the true errors were estimated as the average error 

rate. 

3.4.3 Performance evaluation 

The models’ performances in both approaches were compared and evaluated using an appropriate 

choice of the following statistical parameters: correlation coefficient (CC) (Lee and Nicewander, 

1988), root mean squared error (RMSE), mean absolute error (MAE), root relative squared error 

(RRSE) and relative absolute error (RAE). The values of statistical indices were derived from 

statistical calculation of observation in the models output predictions and are given in Armstrong 

and Collopy (1992) and Chattefuee and Hadi (2006). Selection of the appropriate kernel and the 

accurate model for prediction of energy demand was done by considering the combination of 

higher CC and the lowest RRSE, RMSE; MAE and RAE values. 

3.5 Result and discussion 

To demonstrate the SVR capability on energy prediction, three experiments were conducted using 

the cross-validation with 10 folds for the training data. The first experiment involved the economic, 

the second energy and the last one environmental indicators.  The value for k was experimentally 

chosen to be 10 folds; and thus the union of 9 folds were used for the training and the remaining 

subset for validation set (testing) in each cycle of one experiment. 

3.5.1  Analysis of the kernels performance 

The results of the kernels performance analysis regarding the economic indicators model as shown 

in Table 3.1 and Figure 3.2 suggests the PUKF-SVR kernel performed excellently in comparison 

to its counterparts. It had the highest CC value of 0.9975 while the RBF-SVR kernel had the lowest 

CC value in that case. The PUKF-SVR kernel had the lowest MAE and RMSE values of 0.1934 

and 0.2589 respectively. Furthermore, the lowest RAE and RRSE characterize PUKF-SVR kernel 

in relation to the other kernels. The error value findings as depicted in Figure 3.2 provide the 

comparison of errors for the various kernels involved. The two algorithm maps achieved by the 
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Polynomial-SVR and   PUKF-SVR appeared to be slightly close in most of the years with the 

PUKF-SVR attaining the lower value in most cases. 

Table 3.1: Kernels statistical performance comparison-economic indicators model 

 Normalized 
Polynomial SVR 

Polynomial 
SVR 

RBF-SVR PUKF-SVR 

CC 0.9904 0.9912 0.4383 0.9975 

MAE 0.461 0.406 2.9243 0.1934 

RMSE 0.5989 0.4941 3.3271 02589 

RAE 13.59% 11.97% 86.20% 5.70% 

RRSE 15.79% 13.03% 87.73% 6.83% 

 

The results of the kernels performance analysis on the energy indicators model for the prediction 

of energy demand using the normalized polynomial-SVR, polynomial-SVR, RBF-SVR and the 

PUKF-SVR are depicted in Table 3.2. The polynomial-SVR kernel had the greatest predictive 

ability with the correlation coefficient of 0.999. The RBF-SVR and the normalized polynomial-

SVR kernels had the least CC value with the RBF-SVR having the smallest CC value of 0.4961. 

The MAE and RMSE values of polynomial-SVR are shown to be 0.1448 and 0.1629 respectively 

outperforming the other kernels. The polynomial-SVR further exhibits the lowest RAE and root 

relative square error vindicating it to be the better estimating or predictor of energy demand under 

energy indicators model. These can as well be spotted in Figure 3.3. Even though PUKF-SVR and 

Polynomial-SVR appears to have similar values over the considerable range, the predictive 

capability went down beyond the year 2010 making the polynomial-SVR a better approach for the 

prediction of energy demand for this case.  

Table 3.2: Kernels statistical performance comparison-energy indicators model 

 Normalized 
Polynomial SVR 

Polynomial SVR RBF-SVR PUKF-SVR 

CC 0.6411 0.999 0.4961 0.9977 

MAE 2.544 0.1448 2.7927 0.1465 
RMSE 2.8269 0.1629 3.1987 0.2552 

RAE 74.99% 4.27% 82.32% 4.32% 
RRSE 74.54% 4.30% 84.34% 6.73% 
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The last experiment was evaluating the effect of the kernels in the use of environment indicators 

model for the energy demand prediction. Table 3.3 shows that the greatest predictive validity 

algorithm was PUKF-SVR, which had the CC value of 0.9952. It is as well noted to have the 

lowest values for MAE and RMSE of 0.2331 and 0.3686 respectively. The RAE was 6.872% and 

the RRSE is 9.72. The RBF-SVR kernel had again the least CC value. The absolute errors 

comparison between predicted and actual values for both algorithms is illustrated in Figure 3.4. 

The PUKF-SVR and the polynomial-SVR had slightly closer results although in most cases again 

PUKF- SVR values were the lowest. This puts the PUKF-SVR to be a better kernel for energy 

prediction using the environment indicators model. 

Table 3.3: Kernels statistical performance comparison-environment indicators model 

 Normalized 
Polynomial SVR 

Polynomial 
SVR 

RBF-SVR PUKF-SVR 

CC 0.8120 0.9934 0.4375 0.9952 

MAE 1.5012 0.3323 2.8991 0.2331 

RMSE 2.1296 0.4282 3.3048 0.3686 

RAE 44.25% 9.79% 85.46% 6.87% 
RRSE 56.15% 11.29% 87.14% 9.72% 

 

 

3.5.2  Models performance comparison  

Two visible plausible conclusions can be drawn here. The first one involves the best performing 

indicators model on energy demand prediction based on time series data and the second the overall 

better performing kernel regardless of the models. This section begins with the best performing 

indicators model for energy prediction. Although it is noted, the PUKF-SVR kernel had a better 

performance over its counterparts in both the economic and environment indicators models, 

thorough analysis of the energy indicators model results shows the polynomial-SVR kernel had 

the greatest performance over the PUKF-SVR kernel. Comparison of kernels in Table 3.4 shows 

that the polynomial-SVR has the highest correlation coefficient of 0.999 with the energy indicators 

model while in the economic and environment indicators models, the correlation coefficients are 

0.9975 and 0.9952 respectively. Polynomial-SVR kernel for energy indicators model achieved the 

least values in terms of MAE as compared to the PUKF-SVR kernel in the economic and 
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environment indicators model. The PUKF-SVR kernel had MAE values of 0.1934 and 0.2331 

respectively for economic and environment indicators models. These statistical values are greater 

in comparison to the MAE values of 0.1448 for the energy indicators model making it the best. 

Table 3.4: Statistical values performance comparison 

 Economic 
Indicators model 

Energy indicators 
model 

Environment 
indicators model 

SVR Kernel PUKF-SVR Polynomial SVR PUKF-SVR 

CC 0.9975 0.999 0.9952 

MAE 0.1934 0.1448 0.2331 
RMSE 0.2589 0.1629 0.3686 

RAE 5.7% 4.27% 6.87% 
RRSE 0.07% 4.30% 0.09% 

 

Similarly, in terms of the RMSE values, the polynomial-SVR kernel in the energy indicators model 

had a lower value of 0.1629 while the PUKF-SVR kernel for both economic and environment 

indicators model had a higher value of 0.2589 and 0.3686 respectively. Not only these, but also 

RAE value and RRSE values for economic and environment indicators models are similarly higher 

valued as compared to the energy indicators model. Furthermore, the absolute errors deviations 

values between actual and predicted energy demand is relatively very small for the polynomial-

SVR kernel as illustrated in Figure 3.3. It is further as suggested earlier that the polynomial-SVR 

kernels works well with the energy indicators model than is the PUKF-SVR kernel although it had 

shown better results with the economic and environment indicators model. These comparisons 

concludes that the energy indicators model were more accurate for the prediction of energy demand 

with the use of polynomial-SVR kernel in comparison to the economic and environment indicators 

models using PUKF-SVR kernel. 

. 
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Figure 3.2: Absolute errors comparison between kernels – Economic indicators model 

 

 

Figure 3.3: Absolute errors comparison between kernels – Energy indicators model 
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Figure 3.4: Absolute errors comparison between kernels – Environment indicators model 

 

Figure 3.5: Energy demand prediction curve comparison using polynomial-SVR kernel 
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3.5.3  Energy prediction curve 

Figure 3.5 depicts the prediction of the energy demand for the period between 1990 and 2011 using 

the energy indicators model which emerged as a better predictor with polynomial-SVR kernel. It 

can be noted that the curve approximates well the energy demand over the period of interest. This 

curve demonstrate the practicability of the support vector machine for regression (SVR) in the real 

time energy demand prediction for both short and long term. 

3.6  Conclusion 

The application of the support vector machine for regression (SVR) with normalized polynomial-

SVR, polynomial-SVR, RBF-SVR and PUKF-SVR kernels functions in the analysis of energy 

demand was discussed in this paper. The economic, energy and environment indicators derived 

from time series data were used to build the energy models. The statistical performance indices 

applied to evaluate the estimating ability of these techniques within SVR were correlation 

coefficient (CC), root mean squared error (RMSE), mean absolute error (MAE), root relative 

squared error (RRSE) and relative absolute error (RAE). The comparison of the experimental 

results to the kernel functions reveals the possibility of the use of the SVR for the analysis and 

prediction of the energy demand in Tanzania. The analysis of the kernels show that the polynomial-

SVR kernel function with the energy indicators model provided the transformation, which 

achieved more accurate prediction values with the SVR. The use of SVR algorithm in estimating 

future energy demand will assist government in decision making on expected energy demand for 

the long-term sustainable development of the country. Although SVR has shown good results in 

the prediction of energy demand, intensive study of its comparison with other learning algorithms 

is of future interest. The idea is to unveil the best possible algorithm that can be implemented for 

the analysis and prediction of energy demand with the consideration of accuracy. 
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CHAPTER FOUR 

 

MODELLING OF FUTURE ENERGY DEMAND FOR TANZANIA3 

 

4.1 Abstract 

This paper present modelling of long-term energy demand forecast in the main economic sectors 

of Tanzania. The forecast of energy demand for all economic sectors is analysed by using the 

Model for Analysis of Energy Demand (MAED) for a study period from 2010-2040. In the study 

three scenarios namely business as usual (BAU), low economic consumption (LEC) and high 

economic consumption scenario (HEC) were formulated to simulate possible future long-term 

energy demand based on socio-economic and technological development with the base year of 

2010. Results from all scenarios suggests an increased energy demand in consuming sectors with 

biomass being a dominant energy form in service and household sectors in a study period. 

Predicted energy demand is projected to increase at a growth rate of 4.1% and reach 74 MTOE in 

2040 under the BAU scenario. The growth rates for LEC and HEC are projected at 3.5% and 5.1% 

reaching 62 MTOE and 91 MTOE in 2040 respectively. Electricity demand increases at a rate of 

8.5% to reach 4236 kTOE in 2040 under BAU scenario while electricity demand under LEC and 

HEC increases to 3693 kTOE and 5534 kTOE in 2040 respectively. Sectorial predicted demand 

results under both scenarios determine high demand of biomass for service and household sectors 

with decreasing demand of biomass in industry sector. Transport sector predicted energy demand 

pattern suggests a greater increase in demand in passenger transport than freight transport in both 

scenarios. Final energy demand per capita in both scenarios shows an increased trend with lower 

growth rate in LEC scenario while there is a decrease in energy intensity throughout the study 

period.  

4.2 Introduction 

Energy is essential in achieving economic prosperity and advances in social and overall human 

development. Energy has evolved to match modern human development and requirements. As 

                                                 
3 Journal of Energy Technologies and Policy, Vol. 4, Issue No. 7 (2014), pp. 16-31 
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countries develop and the economy grows there is always an associated increase in energy use 

(Reister, 1987). Tanzania being among developing countries, its energy demand is expected to 

increase as its economy and population grows (Tiris, 2005). Energy demand in the country has 

been shown to be spurred by the population growth and economic activities development that has 

occurred in the past decades (Odhiambo, 2009). A growth in energy consumption has been shown 

to increase economic diversity which is measured by a number of economic sectors consuming 

energy (Templet, 1999). 

Global energy status is currently steered by fossil fuels which play a crucial role in the world 

energy market (Goldemberg, 2006; Shafiee and Topal, 2009). Global rate of energy consumption 

with addition of volatile energy markets and the production challenges faced by many producers 

has resulted in worries on energy availability, management, security and environmental concerns 

(Asif and Muneer, 2007; Hughes and Shupe, 2010). Attention to these concerns is serious due to 

the uneven distribution of the fossil fuel resources on which most countries currently rely on. The 

growing competition for energy resources, the need for economic development, energy availability 

at an affordable price and energy supply challenges are making energy security a key issue all over 

the world (Costantini et al., 2007; Grubb et al., 2006; Hughes, 2009). Without knowing future 

energy demand it is difficult to plan for energy supply that will ensure energy security, availability 

and economic development.  

The main objective of this study is to forecast the energy demand of Tanzania. The forecast will 

focus on simulations of future demand based on social, economic and technological development. 

The demand forecast is essential to assess and plan for supply through the use of the energy 

resources for a given set of demands. The study output will present the connection between energy 

demand and development while facilitating policy and decision makers to plan for sustainable, 

reliable and affordable energy.  

4.2.1 Socio-economic Status 

4.2.1.1 Demography 

Tanzania had a population of 44.9 million persons in 2012 as compared to 12.3 million persons in 

1967 (NBS, 2013). From 2002 to 2012 the population has increased by 30% from 34.4 million to 

44.9 million (NBS, 2013). The population growth rate has fallen slightly from an average of 3.3% 
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in the period of 1967-1978 to 2.8%, 2.9% and  2.7% in the periods of 1978-1988, 1988-2002, and 

2002-2012 respectively (NBS, 2012; UN, 2013). Figure 4.1 describes predictions of annual 

population change for Tanzania in a period from 2010–2100 under high, medium and low variants 

scenarios (UN, 2013). The trend line equation on annual population change for high variant 

follows polynomial equation of order 2 given as equation 4.1. Low and medium variant population 

change are also following similar polynomial trend line equation of order 2. Country’s lifestyle 

shows a constant household size of 4.9 between 2002 and 2012 censuses whereas an average of 

4.8 was reported in 2012 census (NBS, 2013). 

                 ∆P = −0.008 (FY)2 − 0.107(FY) + 3.3462                                                       (4.1)  

Where ∆P and FY represents population change and corresponding year.  

 

Figure 4.1: Projected population change (2010 – 2100)  

4.2.1.2 Economic 

Tanzania’s gross domestic product (GDP) has been growing steadily since 2000 at a rate of 7% 

annually.  Highest and lowest growth rates of 7.8% and 6% were recorded in 2004 and 2009 

respectively (BOT, 2012; NBS, 2012). The GDP per capita at current prices shows an increase 

trend from US$ 306 in the year 2001 to US$ 608 in 2012 (UN-data, 2014). Figure 4.2 illustrates 
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GDP growth rate from 2001 to 2012 at 2001 constant prices with projection for 2013 – 2016. GDP 

growth rates for 2014-2016 are projected figures (NBS, 2012).  

 

Figure 4.2: GDP at 2001 constant price 

4.2.2 Country’s Energy Status 

4.2.2.1 Primary energy supply 

Tanzania has been endowed with numerous energy resources ranging from renewable to non-

renewable. The country produces natural gas and coal for domestic consumption mostly in 

electricity generations and industrial applications and does not produce crude oil. Total primary 

energy supply of Tanzania is estimated to be more than 22 million tonnes of oil equivalent (MTOE) 

(Bauner et al., 2012; Wilson, 2010).  Primary energy supply is composed of biomass at 

approximately 90% of the total supply (MEM, 2013c). The rest of primary energy supply is 

represented by 7– 8% from oil products and 1– 2% from electricity (MEM, 2013b; Mwakapugi et 

al., 2010). High consumption of biomass is attributed to the low per capita income and limited 

investment in alternative energy supplies (Monela et al., 1999). The country’s dependence on 

biomass has reached an annual yield of 40 million m3 while annual sustainable yield is estimated 

at 24.3 million m3 (Mwihava, 2010). Biomass in Tanzania is consumed un-sustainably contributing 

to a deforestation rate which is estimated to be between 130,000 and 500,000 hectares per year 
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(Lema, 2009; Songela, 2009). Population that relied on biomass in the form of wood fuel for the 

year 2010 was approximated at 79% while that for charcoal was nearly 14% (Mwihava, 2010).   

Tanzania imports all its petroleum based products requirements.  Imports of petroleum based 

products was 1,482 thousand tonnes of oil equivalent (kTOE) representing 7.14% of total primary 

energy supplies in 2011 which is 66.8% of total fossil fuel consumption and about 23% of the total 

imports (IRENA, 2014). Transport sector was estimated to consume 40% of all imported energy 

in the form of motor oils for the year 2010 followed by industry (25%), household (10%) while 

the balance were accounted by agriculture and commerce sectors (Wilson, 2010). Total energy use 

per capita in 2011 was equivalent to 0.45 tons of oil equivalent. The energy self sufficiency of 

Tanzania was estimated at 92% in 2010 (IRENA, 2014). Historical energy production and imports 

of Tanzania from 1995 to 2011 are shown in Figure 5.3 (IEA, 2013a). The country has a potential 

of using municipal solid waste (MSW) as renewable energy source as addressed in (Omari et al., 

2014a) and Omari et al. (2014b). 

 

Figure 4.3: Energy production and energy imports   

4.2.2.2 Electricity 

Electricity generation using various energy sources from 2003 to 2013 is illustrated in Figure 4.4 

(MEM, 2013b). The share of hydropower in 2003 was 79% of the total generation whereas the rest 
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were covered by thermal generation using heavy fuel oil (HFO), diesel, JET-A and imports. The 

share of hydropower decreased to 34% in 2013 followed by natural gas 41% and the rest covered 

by others thermal generation using HFO, diesel, JET-A and imports (MEM, 2013a). Total installed 

capacity in 2013 was 1,509.85 MW of which 1,438.24 MW was available on the national grid 

(MEM, 2013c). Out of the total installed capacity available for the grid, 553 MW is hydropower 

representing 35%. Capacity utilization shows decreasing utilisation of hydro power at 65%, 48% 

and 43% in 2011, 2012 and 2013 respectively depending on the availability of water (MEM, 

2013a).   

 

 

   Figure 4.4: Electricity generations by source  

4.2.3 Energy models and factors influencing energy demand 

The following section reviews in brief, factors influencing energy demand and the modelling 

scheme that has been used in this study. A bottom-up modelling approach evaluates future energy 

demand centred on medium to long-term scenarios of socio-economic, technological and 

demographic developments.  
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4.2.3.1 Factors influencing energy demand  

Population, imports, exports, GDP and sectorial changes in the economic profile of a country 

characterize paths of energy development (Apergis and Payne, 2009; Csereklyei and Humer, 

2012). Population is a major driver of energy demand although its most weighty determinant is the 

level of economic activity and its structure as measured by the total GDP together with a number 

of sectors and sub-sectors of the economy (Oyedepo, 2012; Sahu, 2008). Population and economic 

growth have been discussed in a number of studies as the major factors that influence energy 

(Bhattacharyya, 2012; O'Keefe et al., 1984). 

4.2.3.2 Energy models  

A common and accepted classification of energy models is through the use of the distinction 

between two general groups of energy models namely top-down and bottom-up approach  (Fleiter 

et al., 2011; McFarland et al., 2004). Interactions amongst energy systems and the economy are 

represented by two modelling paradigms known as top-down and bottom-up (Böhringer and 

Rutherford, 2008).  Top-down and bottom-up terms are shorthand for aggregate and disaggregated 

models. Bottom-up models are characterized as being built on engineering philosophy while top-

down models are characterized to represent the view of economists (Böhringer and Rutherford, 

2008; Fleiter et al., 2011). Top-down models examine the broader economy but they don’t feature 

technological details of energy production or conversion. Additionally bottom-up models are 

characterized as those using an engineering approach, reflecting technical potential, and being able 

to use disaggregated data for exploring purposes (Van Beeck, 1999). Bottom-up models are viewed 

as being made with detailed considerations of technologies which allow modelling the impact of 

distinct and well-defined technologies on the long-term development of energy consumption 

(Rivers and Jaccard, 2006). Bottom-up models have the potential to model the effects of 

technology-oriented policies due to technology explicitness. 

MAED is a bottom-up approach model widely used for forecasting medium and long-term energy 

demands. MAED interrelates energy demand with the population, gross domestic product (GDP), 

technological development, among many other factors (Hainoun et al., 2006; Nakarmi et al., 2013). 

MAED, being a bottom-up model is built with detailed considerations of technologies which allow 

modelling the impact of distinct and well-defined technologies on the long-term development of 
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energy consumption (Rivers and Jaccard, 2006).  MAED relates systematically specific energy 

demands to the corresponding socio-economic and technological factors that affect the demand 

(IAEA, 2009, 2006 ).  

Future energy demands are disaggregated into end-use categories as a function of several 

determining factors including population growth, transportation modes, and national priorities for 

the development of certain industries or economic sectors, energy forms, among others. Key 

consumption sectors that are considered in MAED comprises of industry, household, transport, 

and service. The industry is further divided into sub-sectors that comprise of agriculture, 

construction, mining (ACM) and manufacturing while the transport sector is sub-divided into 

passenger and freight transport. MAED final consumption fuel types and energy forms comprise 

of fossil fuel for thermal use (mainly industry), motor fuel and electricity (Hainoun et al., 2006). 

MAED’s important demographic and economic data are labour force, rural and urban populations, 

potential labour force, and sectorial distribution of GDP (Ediger and Tatlıdil, 2002). 

Reconstruction of the base year energy consumption pattern is the process that requires compiling 

and reconciling necessary data to help calibrate the model to the specific situation of the country. 

The second stage is development of future scenarios that suits the country’s possible future energy 

demands. The MAED framework of analysis is given by breaking down of the economy by sector 

through scenario assumptions up to final energy demand. The energy demand is calculated by 

MAED as a function of a scenario of possible development (IAEA, 2006 ).  

The MAED generic equation, in which energy demand in future year is determined, is given in 

Equation 5.2. 

 

(ED)FY =    (
𝐸𝐷

𝐷𝑃
)

BY

 ×  (CH)FY ×  (DP)FY   … … … … … … … … … … … … . (4.2) 

Where:  

 FY - Represent “Future Year” 

 BY - Represent “Base Year” 

  (ED)FY   - Represents energy demand in future year; 

(
𝐸𝐷

𝐷𝑃
)

BY
  - Specific energy demand per unit of driving parameter in base year; 
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(CH)FY - Coefficient to reflect evolution of specific energy demand per unit of driving 

parameter in future year; 

(DP)FY   - Specific energy demand per unit of driving parameter in future year 

 

4.3 Methodology 

The following sections detail the methodology that was applied in the study. The study period 

considered in this analysis is from 2010-2040.  

4.3.1 Division of the main economic sectors 

The main Tanzanian economic consumption sectors disaggregated were industry, service, 

household and transport sectors. The energy consumption in the industrial sector was further 

subdivided into consumption by agriculture, construction and mining (ACM) and manufacturing 

while that for transport was subdivided into freight and passenger transport. 

4.3.2 Elements influencing energy demand 

The following are important factors influencing energy demand that were used in the study. These 

factors are GDP growth rates and their structural changes, population growth and its distribution 

in the country (urban and rural) changes in life style, population mobility growth, passenger and 

freight transportation, and market penetration of competing energy forms. 

4.3.3 Modelling Scenarios 

Three different scenarios were proposed to represent possible future energy demand for Tanzania. 

In the analysis of the long-term energy demand, three possible future development scenarios were 

proposed as Business as usual scenario (BAU), low economy consumption scenario (LEC) and 

high economic growth scenario (HEC). 

4.3.3.1 Business as usual scenario (BAU) 

Business as usual scenario (BAU) being the reference economic growth scenario was developed 

to assume normal economic growth rate and expected development of other factors influencing 

energy consumption. Tanzanian economic structure has experienced a significant changes during 

the last two decades. The country historical and projected GDP growth rates from 2002 to 2016 

are shown in Figure 4.2 in which the average growth is approximately 7% over the last 10 years. 
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BAU scenario presumed that GDP average growth rate trend of 7% will continue in the future until 

the end of study period in 2040. The population growth rate characterizes the most significant 

factor. BAU scenario presumed population growth rate, would decline moderately from base year 

value to 2.52% at the end of study period according to the official estimations for Tanzania under 

medium variant prospects of United Nations (UN, 2013).  The additional factors describing the 

future population distribution development show moderate change to a more urbanization scene 

resulting from the fact that villages around the cities will develop to form towns and small cities. 

With that regards, BAU scenario assumed the current moderate trends will continue and lead to an 

urbanization rate of 37% towards the end of study period as compared to 27% in the base year. 

The increase of the share in urbanizations, signifies an increase of population in cities and towns 

reducing the rural population share. Furthermore, the expected life styles improvement will be 

moderate leading to decrease in children per family, the number of persons per household and 

other socio-economic parameters. 

4.3.3.2 Low Economic Consumption scenario (LEC) 

The slow economic growth scenario named as low economy consumption scenario (LEC) was 

developed to assume a slower economic growth rate. LEC scenario defines a lower bound for 

economic development, which could be expected in the number of assumptions. These include 

high population growth rate (high variant as per Figure 4.1) which aggravates the difficult 

economic situation (URT, 1992) associated with considerable increase in current level of 

urbanization. Others are economic situation and development related to unstable socio-economic 

and political environments, low level of internal and foreign investment, low GDP growth rate for 

the entire study period and decrease of growth in income per capita. On international environment 

the scenario assumed un-favourable investment backgrounds due to un-stable political situation in 

the region, and unexpected climatic, political and economic crises. In life style the scenario 

assumed no improvement in household size whereas car per family ownership and public transport 

follows past trends. The scenario does not favour the growth on the use of renewable energies. 

The slow economic scenario in LEC was represented by a GDP growth rate of 5% which has never 

been experienced by Tanzanian economy for over a decade ago as shown in Figure 4.2. The lowest 

GDP growth rate so far reached was 6% in 2009. Therefore, the selection of 5% GDP growth rate 

is a good representative of slower economic growth of Tanzania as far as historical GDP growth 
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rate is concerned. LEC scenario presumed population growth rate would decline slowly from base 

year value to 2.86% at the end of study period according to the official estimations for Tanzania 

under high variant prospects of United Nations (UN, 2013).  The added factors describing the 

future population distribution development in LEC scenario features high shift towards more 

urbanization scene resulting from the slow economic situation. In LEC scenario, it is presumed 

that availability and quality of services at rural level such as hospital, schools and other social 

services will be limited causing migrations to towns and cities. The migration is presumed to cause 

a decreasing share of rural population and increases of urban population share. With that regards, 

LEC scenario assumed the current moderate trends will shift towards high urbanisation rate of 

40% towards the end of study period as compared to 27% in the base year. Furthermore, the 

expected life styles improvement will be slow leading to slow decrease in children per family, the 

number of persons per household and other socio-economic parameters. 

4.3.3.3 High Economic Consumption scenario (HEC) 

The high economic growth scenario (HEC) is developed to assume high economic growth rate and 

expected development of other factors influencing energy consumption. HEC scenario is presumed 

from an optimistic perspective based on the assumption that the country’s economy will grow at a 

higher constant GDP growth rate of 8 % for the entire study period. As shown in Figure 4.2, the 

GDP growth rate of Tanzania has never crossed an 8% growth rate line. The selection of this value 

is based on that fact and it is assumed as a good representative of higher economic growth rate for 

the country. The growth in HEC scenario is linked to decrease in current population growth rate 

from base year value to 2.18% in 2040, no considerable increase in current level of urbanization 

and negligible net migration value as in BAU scenario. Economic situation and development under 

HEC is presumed to be stable with increase in service and industry sectors shares, exploration of 

more natural gas, minerals and new discoveries in oil resources resulting in positive growth in 

income per capita.  

Population growth rate in HEC follows low variant trend to favours economic development. Life 

style in HEC scenario is a result of low variant growth rate that favours improvements in household 

size. HEC scenario is presumed to have increases in car per family ownership, cooking and thermal 

applications in household shifting to service sector and more population travel within the country 

and abroad. Furthermore, HEC assumes technological improvement in the use of non-commercial 
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energy sources with improved efficiency leading to mechanisation/automation. Transportation 

policies in HEC scenario, favours upgrading of existing and construction of modern roads with the 

introduction of railroads in intracity and intercity transport. HEC scenario on international 

environment favours investment due to stable political situation in the region. 

4.3.4 Base Year Reconstruction  

The selection of a base year for the study was from among the recent past years to represent the 

economic and energy background of the country. The year 2010 was chosen as the base year to 

present the economic and energy background of Tanzania. The main reason for the choice is the 

stable energy consumption, which represents the best pattern for the country. Furthermore the year 

2010 is well-matched with Tanzanian Vision 2025 which is to be implemented by a series of three 

five year development plans (FYD) (URT, 1999, 2012). The first series of FYD aims at unleashing 

the growth potential 2011/12 - 2015/16; the second one nurturing an industrial economy 2016/17 

– 2020/21 while the third series aims at realizing competitiveness–export led growth 2021/22 – 

2025/26. In 2010 shares of GDP at 2001 prices for the service sector was 48.8% of which the 

transport sector constituted 5.1% of the service sector. Agriculture and fishing constituted 24.1% 

whereas industry and construction was 21.6%  (NBS, 2011). The total population for 2010 was 

estimated at 43.2 million persons with an average household size of 4.8 and the share of urban 

population being 27%.   

4.4 Results and discussions  

Modelling results for three scenarios formulated to represent possible developments trends in 

energy demand of Tanzania based on social, economic and technological development are 

presented in the following sub-sections.  

4.5.1 Final energy demand forecast 

The projected final energy demand for the three scenarios from 2010 – 2040 are presented in Figure 

4.5. The average annual growth rate will amount to 4.08%, 3.45% and 5.07% for BAU, LEC and 

HEC respectively. The final energy demand will grow from 22 MTOE in 2010 to 74 MTOE in 

2040 for BAU scenario. A similar trend is observed for LEC and HEC scenarios in which energy 

demand will increase to 62 MTOE and 91 MTOE in the year 2040 respectively. The growth in 

final energy demand for all three scenarios follows an increasing exponential trend due to 
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exponential growth of population as is the case of global energy demand (Demirbas et al., 2004). 

The trend line equation representing exponential growth for BAU is given as equation 4.3 while 

the corresponding trend line equations for LEC and HEC are given as equations 4.4 and 4.5 

respectively. 

ED = 17.719e0.2FY … … … … … … … … … … … … … … … … … … … … … … … … … (4.3) 

 

ED = 18.25e0.17FY . … … … … . … … … … … … … … … … … … … … … … …  … … … (4.4) 

 

ED = 17.127e0.23FY … … … … … … … … … … … … … … … … … … … … … … … …  (4.5) 

 

Where ED and FY denote energy demand and future year forecast respectively 

 

 

 

Figure 4.5: Final energy demand forecast 2010-2040  

The energy balances for both scenarios has been dominated by biomass followed by imported 

energy (fossil and motor fuels) and electricity. Biomass dominates both scenarios by having an 

average share of 76.5 % of total final energy demand for BAU, LEC and HEC scenarios in 2040. 

Moreover, results indicate that imported energy has an average share of 17% in 2040 for both 

scenarios. Electricity will command a share of 5.7%, 5.9% and 6.1 % of final energy demand in 

BAU, LEC and HEC scenarios respectively in 2040. 
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4.5.2 Projected demand by energy form 

Table 4.1 depicts projected demand by energy form for the BAU, LEC and HEC scenarios. In 

comparing the three scenarios, the LEC scenario shows less projected energy demand growth rate 

as compared to BAU and HEC scenarios. The final energy demand in LEC scenario is less by 12 

MTOE as compared to BAU scenario whereas HEC scenario is higher by 17 MTOE both in 2040. 

The annual growth rate of biomass demand is projected to amount to 3.44%, 2.79% and 4.15% for 

BAU, LEC and HEC scenario respectively. Electricity demand annual growth rate is projected to 

increase at a rate of 8.51%, 8.01% and 9.48% for BAU, LEC and HEC scenario respectively. Fossil 

fuel for thermal applications projected demand is expected to increase at 9.97% for BAU scenario, 

8.01% for LEC scenario and 10.39% for HEC scenario.   

Motor fuels demand projected growth rate is above 6% in all scenarios as depicted in Table 4.1 

reaching a maximum of 6.8 MTOE in HEC scenario while that of LEC and BAU scenarios are 5.1 

and 6.2 MTOE respectively. Solar energy demand annual growth rate is projected to increase at a 

rate of 11.3%, 9.9% and 12.1% for BAU, LEC and HEC scenario respectively. The unsatisfactory 

growth rate in LEC scenario is attributed to poor performance in the economy that hinders its 

ability to promote renewable energy. 

 Table 4.1:  Energy demand by energy form 

 

 

 

 

 

 

 

4.5.3 Energy consumption by sectors 

The results of final energy demand by sector are illustrated in Figure 4.6, 4.7 and 4.8 for BAU, 

LEC and HEC scenarios respectively. The results of the projected sectorial energy demand show 

Energy Form 

GROWTH RATE (%) 

BASE 
YEAR 2040 

(MTOE) (MTOE) 

BAU LEC HEC 
BASE 

YEAR 
BAU LEC HEC 

Biomass 3.4 2.8 4.1 20.7 57.1 47.5 70.4 

Electricity 8.5 8.0 9.5 0.4 4.2 3.7 5.5 

Fossil fuels 10.0 9.0 10.9 0.4 6.8 5.1 8.6 

Motor fuels 6.4 6.5 7.1 1.0 6.2 5.7 6.8 

Solar 11.3 9.9 12.1 0.000 0.006 0.004 0.008 
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the service sector commanding an average share of 41% of the final energy demand while 

household; industry and transport sectors account for 31%, 21% and 7% respectively in all 

scenarios. The service sector will have a total final energy demand of 31.9 MTOE in 2040 for the 

BAU scenario whereas the LEC and HEC will have 20.9 MTOE and 42 MTOE respectively. The 

transport sector depicts higher final energy demand in passenger transport as compared to freight 

transport in all scenarios. Final energy demand in the transport sector in BAU scenarios for 2040 

will be 4.64 MTOE for passenger transport as compared to 0.49 MTOE for freight transport. In 

the industry sector manufacturing is the leading sub-sector in consumption of final energy demand 

as compared to agriculture, construction and mining (ACM) combined together. The same trend 

is observed for LEC and HEC, which depicts higher consumption in manufacturing as compared 

to ACM. The final energy demand for the three scenarios concludes that the service sector would 

have the highest shares in the projected final energy demand followed by the household sector for 

BAU and HEC while the highest share holder for LEC would be the household sector. This is 

explained by slow economic growth that does not favour growth in the service sector and higher 

population growth. 

 

Figure 4.6: Final energy demand by sector (BAU) 
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Figure 4.7: Final energy demand by sector (LEC) 

 

 

Figure 4.8: Final energy demand by sector (HEC) 
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4.5.4 Sectorial biomass consumption 

Sectorial biomass demand projections for the BAU, LEC and HEC scenarios are illustrated in 

Table 4.2.  The annual growth rate of biomass for BAU, LEC and HEC are projected to be 3.4%, 

2.7 % and 4.1 % respectively. The highest consumer of biomass is the service sector followed by 

household and industry sectors respectively. Service and household sectors in the BAU scenario 

are projected to demand 26 MTOE and 17.6 MTOE respectively in 2040. Service sector demand 

for biomass in the HEC scenario is higher by 8.3 MTOE as compared to BAU. In the industry 

sector, biomass projected demand is increasing at a higher rate in the manufacturing sub-sector as 

related to agriculture, construction and mining (ACM). Manufacturing sub-sector biomass demand 

is projected to increase annually at an average of 6.5% as compared to 4.7% of ACM. The highest 

growth rate in biomass demand is observed in the industry sector at an average value of 6% 

followed by the service sector at 3% and household 2.7%. In the LEC scenario the population 

growth rate has been presumed to be higher as compared to other scenarios resulting into high 

biomass demand.  

 

 

 

 

 

 

 

4.5.5 Sectorial electricity demand 

The electricity demand under BAU, LEC and HEC scenarios are projected to increase as depicted 

in Figure 4.9. Electricity demand for the BAU scenario will increase to 4,236.4 kTOE in 2040 

which is equivalent to an average annual increase of 8.5 % against 365.7 kTOE in the base year. 

LEC and HEC scenarios will observe an increase in electricity demand of 3,693 kTOE and 5,535 

kTOE respectively in 2040, which is equivalent to an increase of 8.0% and 9.5% from base year 

value. As a country's population grows and its economy expands, electricity demand multiplies. 

Table 4.2: Sectorial biomass consumption 

 

Energy 

Form 

GROWTH RATE (%) 

BASE 

YEAR 
2040 

(MTOE) (MTOE) 

BAU LEC HEC 
BASE 

YEAR  
BAU LEC HEC 

Industry 6.1 4.6 7.1 2.1 12.4 8.1 16.4 

   - Manuf. 6.7 5.2 7.7 1.3 8.9 5.8 11.8 

   - ACM 4.9 3.4 5.9 0.8 3.5 2.3 4.6 

Household 2.6 3.2 2.7 8.4 18.1 22.0 18.236 

Service 3.2 1.8 4.2 10.204 26.6 17.4 35.8 
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Projected electricity demand growth follows an exponential trend with the trend line equation 

representing the growth for the BAU scenario given as equation 4.6 whereas the corresponding 

trend lines for LEC and HEC scenarios are given by equations 4.7 and 4.8 respectively. 

EED = 250.44e0.407FY ….……………………………………………… (4.6) 

 

EED = 259.6e0.384FY … … … … … … … … … … … … … … … … … … … … … … (4.7) 

 

EED = 239.84e0.451FY … … . … … … … … … … … … … … … … … … … … … … (4.8) 

 

 Where EED and FY denote electricity  demand and future year forecast respectively  

 

The peak growth rate in electricity demand is observed in the industry sector. The industry sector 

will command 39.7% share of electricity demand in the period 2035-2040 followed closely by 

service and household sectors at 35.6 % and 24.7 % respectively in BAU scenario. This is 

attributed to presumed industrial development in 2040 as compared to the period prior to 2025. 

The trend before 2025 shows the service sector as the highest consumer of electricity. Similar 

trends are observed for the LEC and HEC scenarios with different magnitude in the consumption. 

Table 4.3 depicts the comparison in electricity demand growth for the BAU, LEC and HEC 

scenarios. Sectorial consumption of electricity shows the growth rate of electricity demand for 

industry to be 9.3 %, 7.8 % and 10.3 % for BAU, LEC and HEC scenarios. Average growth rate 

for households is 7.6 %, 9 % and 8.5 % respectively for BAU, LEC and HEC scenarios. Household 

higher electricity demand in LEC scenario as compared to BAU and HEC is due to higher 

population growth rate as presumed in the scenario.  
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Figure 4.9: Projected electricity demand 

Table 4.3: Sectorial projected electricity demand 

 

 

 

 

 

 

4.5.6 Fossil and motor fuel consumption by sector 

Fossil fuel consumption projected trends into 2040 with the exclusion of aviation and marine 

bunkers is illustrated in Figure 4.10. Fossil fuel demand for thermal applications is observed to 

increase exponentially in both scenarios with the projected demand in 2040 amounting to 6,754 

kTOE. The share of the service sector in fossil fuel consumption is 55.9% followed by industry at 

25 % and households at 19 % in 2040 for BAU scenario. Figure 4.11 depicts the projected shares 

in fossil fuel demand by consuming sectors for the BAU scenario. There is an observed increase 

 

CONSUMING 

SECTOR 

GROWTH RATE (%) 

BASE 

YEAR 
2040 

(kTOE) (kTOE) 

BAU LEC HEC 
BASE 

YEAR 
BAU LEC HEC 

Industry 9.3 7.8 10.3 116.7 1681.7 1100.9 2223.1 

   - Manuf. 10.1 8.6 11.1 75.3 1350.1 883.8 1784.8 

   - ACM 7.2 5.7 8.2 41.4 331.6 217.1 438.3 

Household 7.6 9.0 8.5 117.5 1046.8 1570.2 1347.8 

Service 8.5 7.1 9.4 131.6 1507.8 1022.3 1963.4 
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in demand for fossil fuel by the service sector while the households and industry share decreases. 

The trend is a result of the presumed economy in the BAU scenario that is mainly service oriented. 

An average of 21.4 %, 30.4 % and 48 % will be commanded by industry, household and service 

sectors respectively for the LEC scenario. However the share for HEC will be 26%, 15.7 % and 

58.2 % for industry, household and service sectors respectively. The annual growth rate of fossil 

fuel for each scenario is projected at 9.8 % for BAU scenario, 9 % for LEC scenario and 10.9 % 

for HEC scenario. 

 

 

Figure 4.10:  Projected fossil fuel consumptions 
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Figure 4.11:  Projected fossil fuel consumptions - BAU 

Motor fuel predicted demand in all scenarios is illustrated in Figure 4.12. BAU, LEC and HEC are 

projected to consume 6754 kTOE, 5146.7 kTOE and 8570.9 kTOE respectively in 2040 compared 

to base year demand of 956.2 kTOE. The projected demand is equivalent to an annual growth rate 

of 6.4%, 6.5% and 7.1% for BAU, LEC and HEC respectively. Motor fuel growth rate in the LEC 

scenario is higher as compared to the BAU scenario due to the high population growth presumed 

in the scenario resulting in the higher demand in passenger transport. Motor fuel shares for the 

base year were transport 87%, industry 11% and service 1.8%. The distribution of shares in 2040 

for the projected motor fuel demand show transport to command a higher share of 85.6% followed 

by industry at 12.7% and service at 1.7% respectively for the BAU scenario. For the LEC scenario 

the shares are predicted to be distributed at 89.8% for transport followed by 9% and 1.2% for 

industry and service sectors respectively. A similar trend is also observed for the HEC scenario in 

which the transport sector will command a higher share of 82.6% followed by industry at 15% and 

service at 2.1%. The share of transport in the HEC scenario is much lower as compared to LEC 

and BAU scenarios due to low variant population growth and increased activities in industry and 

service sectors. 
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Figure 4.12:  Projected motor fuel consumptions  

Table 4.4 represents fossil and motor fuel demand for sectors and sub-sector growth rates in 

scenarios. It is predicted there will be an average fossil fuel growth rate of 9.2%, 11.5% and 8.1% 

for industry, the service sector and households respectively. There is a higher growth rate in fossil 

fuel demand in the LEC scenario as compared to the BAU and HEC scenarios due to presumed 

high variant population growth rate in the scenario resulting in higher demand. The predicted 

motor fuel demand growth rate averages at 7.1%, 6.6% and 6.5% for industry, transport and service 

sectors respectively. Higher growth rate in motor fuel is observed in the service sector followed 

by industry and household sectors for BAU, LEC and HEC scenarios respectively.  
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Table 4.4:  Fossil and motor fuel consumption growth rate (%) 

Consuming  

Sectors 

FOSSIL FUEL MOTOR FUEL 

BASE 

YEAR 

(kTOE) 

BAU  

Growth 

Rate 

(%) 

LEC 

Growth 

Rate 

(%) 

HEC 

Growth 

Rate 

(%) 

BASE 

YEAR 

(kTOE) 

BAU 

Growth 

Rate 

(%) 

LEC 

Growth 

Rate 

(%) 

HEC 

Growth 

Rate 

(%) 

Industry 114.6 9.4 7.8 10.4 94.8 7.3 5.8 8.3 

   - Manufacturing 58.0 9.8 8.2 10.8 18.8 8.9 7.4 9.9 

   - ACM 56.6 8.9 7.4 10.0 76.0 6.8 5.3 7.8 

Transport - - - - 846.2 6.3 6.6 6.9 

  -Freight - - - - 107.7 6.7 5.2 7.7 

  -Passengers - - - - 738.5 6.2 6.8 6.8 

Household 139.3 7.7 8.6 8.0 - - - - 

Service 136.3 11.7 10.1 12.8 15.1 6.7 5.2 7.7 

 

4.5.7 Final energy demand per capita 

Modelling results depicts an increasing trend in energy demand per capita in all three scenarios.  

An energy demand per capita of 12.2 MWh for BAU scenario will be realized in 2040 against a 

base year value of 8.2 MWh.  Contrariwise energy demand per capita of 9.3 and 15.9 MWh will 

be realized under LEC and HEC scenarios in 2040 against 8.2 MWh in the base year. Annual 

growth rate of energy demand per capita of 1.3%, 0.38% and 2.18% is observed for BAU, LEC 

and HEC scenarios respectively. Development of final energy demand per capita comparisons for 

BAU, LEC and HEC scenarios is shown in Figure 4.13. 
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Figure 4.13: Final energy demand per capita 

4.5.8 Energy intensity  

Energy intensity shows an annual decreasing rate of 2.7% reaching 7.9 kWh/US$ in the BAU 

scenario by 2040 against the base year value of 18 kWh /US$. Energy intensity on the other hand 

will decrease at an annual rate of 1.9% and 2.9% under LEC and HEC scenarios respectively in 

2040 against the base year value. Comparison of final energy demand per GDP in all scenarios is 

shown in Figure 4.14. Energy intensity in the BAU and HEC scenarios is projected to improve by 

approximately 50% from base year up to 2040 while that for LEC the improvement will be less 

than that. By these values it means it will take the country approximately half the energy to produce 

a dollar of GDP in 2040 as it was in the base year. The projected decrease in energy intensity is 

brought about mainly by improvements in technological energy efficiency in industry, service, 

household and transport. The high decrease rate in HEC scenario is due to these changes while the 

low decrease rate in the LEC scenario is due to less improvement.  
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Figure 4.14:  Energy intensity projections 

4.6 Conclusion  

It has been shown from the modelling results that energy demand of Tanzania is increasing 

exponentially. It has been determined that there is an increase of energy demand in all sectors of 

the economy with total demand more than tripled towards the end of study period 2010-2040. 

Based on the obtained results presented in this study, the following important conclusions are 

drawn:  

i) Projected energy demand by energy form shows biomass to dominate the energy balance in 

the study period by commanding the highest share followed by fossil and motor fuels combined 

and electricity. The average share of biomass in both scenarios is more than 75 % of total final 

energy demand. 

ii) Projected sectorial energy demand shows the service sector to command the highest share of 

the total final energy demand in the study period. The share of the service sector averages 41% 

of the total energy demand followed by households 31%, industry 21% and the transport sector 

7%. 

iii)  Biomass demand in the study period is projected to grow annually at an average of 3.5 % for 

all three scenarios combined whereas the highest growth observed in HEC scenario. Biomass 
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demand will be highly dominated by the service sector followed by households and industry 

sectors.  

iv) The study results show the highest growth rate of electricity demand is in the industry sector 

followed closely by the service and household sectors.  

v) Fossil fuel demand for thermal applications is increasing exponentially in all three scenarios 

with the highest share being in the service sector. Much of the fossil fuel consumption increases 

is observed in the service sector followed by industry and household sectors. 

vi) Modelling results predict motor fuel demand to grow at an average of 6.7% with higher demand 

being in the transport sector followed by industry and service sectors. 

vii) A further detailed analysis of the supply side is recommended to optimize the use of energy 

resources available locally to lessen dependence on biomass and imported energy for 

environmental conservation. 
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CHAPTER FIVE 

 

MODELLING ENERGY SUPPLY OPTIONS FOR ELECTRICITY GENERATIONS IN 

TANZANIA4 

 

5.1 Abstract   

The current study applies an energy-system model to explore energy supply options in meeting 

Tanzania's electricity demands projection from 2010 to 2040. Three economic scenarios namely; 

business as usual (BAU), low economic consumption scenario (LEC) and high economic growth 

scenario (HEC) were developed for modelling purposes. Moreover, the study develops a dry 

weather scenario to explore how the country's electricity system would behave under dry weather 

conditions. The model results suggests: If projected final electricity demand increases as 

anticipated in BAU, LEC and HEC scenarios, the total installed capacity will expand at 9.05%, 

8.46% and 9.8% respectively from the base value of 804.2MW. Correspondingly, the model results 

depict dominance of hydro, coal, natural gas and geothermal as least-cost energy supply options 

for electricity generation in all scenarios. The alternative dry weather scenario formulated to study 

electricity system behaviour under uncertain weather conditions suggested a shift of energy supply 

option to coal and natural gas (NG) dominance replacing hydro energy. The least cost optimization 

results further depict an insignificant contribution of renewable energy technologies in terms of 

solar thermal, wind and solar PV into the total generation shares. With that regard, the renewable 

energy penetration policy option (REPP), as an alternative scenario suggests the importance of 

policy options that favour renewable energy technologies inclusion in electricity generation. 

Sensitivity analysis on the discount rate to approximate the influence of discount rate on the future 

pattern of electricity generation capacity demonstrated that lower values favour wind and coal fired 

power plants, while higher values favour the NG technologies. Finally, the modelling results 

conclude the self-sufficiency of the country in generating future electricity using its own energy 

resources. 

                                                 
4 Journal of Energy in Southern Africa (JESA), Vol. 26, Issue No. 3 (2015), pp. 41-57 
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5.2 Introduction  

Energy is an important element in accomplishing the interrelated socio-economic development of 

any country. Tanzania’s energy supply relies mainly on biomass which accounts for nearly 90% 

of the total primary energy supply (IEA, 2013a; Wawa, 2012). The remaining energy supply is 

accounted from petroleum products at approximately 8%, grid electricity 1% and renewable 

energy sources such solar and wind which account for nearly 1% (Kabaka and Gwang’ombe, 2007; 

MEM, 2012). Total electricity generation shares in 2012 were mainly from natural gas 50.7%, 

hydro 28.6%, oil products 20.1%, biofuels 0.3% and solar PV 0.2% (IEA, 2014a). Projections are 

approximating electricity demand to reach 47.7 TWh in the year 2035 equivalent to an annual 

growth of approximately 8%  (MEM, 2012). Energy resources are enormous and are available in 

various forms, including biomass, hydro, geothermal, biogas, wind, solar,  natural gas and coal 

(Kihwele et al., 2012; MEM, 2013a). There is an estimated coal proven reserve of 304 million 

tonnes whereas that of natural gas is 45 billion cubic meters (Kusekwa, 2013; MEM, 2012).  

Geothermal has an estimated potential of 650 MW (Kihwele et al., 2012; Mnjokava, 2008) while 

hydro estimated potential is 4700 MW (MEM, 2012). Biomass estimated sustainable potential is 

12 million TOE from agriculture wastes, plantation forests and natural forests (Wilson, 2010). The 

country experience annual sunshine hours of 2800 to 3500 and solar irradiation ranging from 4-7 

kWh/m2 across the country (Casmiri, 2009; Kihwele et al., 2012). The renewable energy potential 

in the country is substantial but largely untapped for electricity and other thermal applications 

(Bauner et al., 2012; Kichonge et al., 2014b). The country’s renewable energy potential from 

municipal solid wastes currently disposed in dump sites is considerable as shown in studies by 

Omari et al. (2014a) and Omari et al. (2014b).  

Tanzanian energy demand specifically electricity has been growing over years because of socio-

economic transformations that opened up the country’s economy. Statistics on the country’s GDP 

growth since the year 2000 show annual average increase of 7% (BOT, 2012). However, 

substantial challenges faces the electricity sector owing to constrained generation capacity and 

distribution network (Kapinga, 2013; Wangwe et al., 2014)  which previously resulted into outages 

and rationing (Loisulie, 2010; MEM, 2013c). Despite the electricity sector challenges, the demand 

is expected to grow as the country targets a middle income economy status as detailed in 

Development Vision 2025 (URT, 1999) and its implementation through  Big Results Now (BRN) 
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initiatives (Kahyoza, 2013). Realizing Tanzania Development Vision 2025 goals implies that the 

country needs adequate, reliable, affordable and environmentally friendly electricity supply 

options. Achieving these require optimal generation capacity additions, which consider 

diversifications of power plants systems. Finding optimal generation capacity addition based on 

least cost plan is important in formulating supply options considering the high investments costs 

associated with it. It is therefore the objective of this study to apply MESSAGE (Model for 

Alternative Energy Supply Strategies and their General Environmental Impacts) to find least-cost 

optimal energy supply options. MESSAGE is an appropriate framework for this study as it is 

capable to deal with long-term planning horizons based on high-resolution short-term system 

dynamics. Using MESSAGE, optimization of electricity supply options in each scenario will help 

describes possible future final electricity supply options availability. Study results will benefit 

policy and decision makers to arrive at a relevant solution interactively in national electricity 

system expansion planning.  

5.3 Methodology 

5.3.1 MESSAGE Model  

Model for Energy Supply Strategy Alternatives and their General Environmental Impacts 

(MESSAGE)  is an optimization modelling tool (Messner and Strubegger, 1995) which calculates 

the least-cost energy supply system. Connolly et al. (2010), describes MESSAGE as a bottom-up 

model capable of optimizing operation and investment of technologies in a medium to long term 

energy systems. MESSAGE modelling approach allows the realistic evaluation of the long-term 

role of an energy supply option under competitive conditions (Hainoun et al., 2010; IAEA, 2008).  

The least-cost determination in MESSAGE is through minimization of the total discounted energy 

system cost subject to the constraints representing demands, resource deficiency and capacity 

limits.  Discounted energy system cost minimization includes investments, fixed and variable 

operation costs, maintenance costs, fuel and any additional penalty costs, which defines the limits 

and constraints relation. With MESSAGE, alternative energy supply strategies in agreement with 

user-defined constraints are assessed (IAEA, 2006; Tait et al., 2014).  

Mathematical techniques tied up with MESSAGE comprises of linear and mixed-integer 

programming.  The purpose for linear programming (LP) applications is that all the limits and the 
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objective function (optimization target) are linear functions of the decision variables. Mixed-

integer use in MESSAGE is due to integer values at the optimal solution requirements by some of 

the decision variables. Objective function in MESSAGE modelling approach is as shown in 

Equation 1. The variable Xi,j,t denotes a flow variable (input) of fuel form i in technology j in the 

time step t.  Flow variable describes amount produced in which technology and the type of fuel. 

The investment variable denoted by Yi,t represents new installation of technology j in time step t.  

 

Min ∑  Cost ∗ (Xi,j,t +  Yi,t)                                                                                   (5.1)  
.

 

The MESSAGE model computes the objective function to satisfy the condition that ensures a 

balance between demand and supply as illustrated in equation 5.2. The parameter  D denotes 

energy demand, j represents energy demand of j while  t represents time step. In addition, η 

represents technology efficiency, X denotes production decision of the technology, i is the number 

of technologies and n total number of technologies. 

∑ 
i,t

i=n

i=1

Xit  ≥   Dj,t                                                                                                   (5.2)   

MESSAGE has been used to model power supply sector  by means of the principle of reference 

energy system (RES) which allows representation of the entire energy network including possible 

development paths (Rečka, 2011; Selvakkumaran and Limmeechokchai, 2011).  RES is composed 

of energy resources and sources, energy carriers (form) and technologies. RES captures network 

flow of energy carrier from one process to the other starting in the resource to the consumer 

delivery.  The explanation of energy forms includes each level of energy chains, technologies using 

or producing these energy forms, and the energy resources. MESSAGE defines energy forms and 

technologies in all steps of energy chains. This includes identification of energy chain levels 

beginning from the demand to the resources, the energy forms to energy services. MESSAGE 

computes energy demand from the first level of each energy chain up to the energy resource level. 

Final demand level is distributed according to the types of consumption (Pinthong and Wongsapai, 

2009; Van Beeck, 1999).  

The MESSAGE modelling approach has previously applied to formulate an optimal energy supply 

strategy for Syria (Hainoun et al., 2010); policy options study for power sector in Zambia (Tembo, 
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2012); strengthening of renewable energy applications (IAEA, 2006, 2007); Optimal electricity 

system planning in a large hydro jurisdiction: Will British Columbia soon become a major importer 

of electricity? (Kiani et al., 2013) alternate electricity supply model (Roque, 2014); climate change 

policy analysis (Nakicenovic N et al., 2000): nuclear energy in mitigating CO2 emissions (AlFarra 

and Abu-Hijleh, 2012) among many others. Further information on MESSAGE as LP optimization 

tool is as found at the IAEA organization web site. 

5.3.2  Electricity Demand Projections 

The final electricity demand projections were done using  Model for Analysis of Energy Demand 

(MAED) (Kichonge et al., 2014a) and have been summarized in Figure 5.1. MAED is a bottom-

up modelling approach (Bhattacharyya and Timilsina, 2009) chosen because of its suitability to 

model the final electricity demand projections based on time and data availability. Suitability of 

MAED to relates systematically the corresponding social, technological and economic factors 

which affect the demand was also considered in the selection of the model (IAEA, 2009, 2006 ). 

Literatures such as Hainoun et al. (2006), IAEA ( 2006 ), Nakarmi et al. (2013) and IAEA 

organization website IAEA (2009) gives detailed account of MAED.  

 

Figure 5.1: Electricity demands forecasts 
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5.3.3  Modelling framework 

5.3.3.1 Electricity conversion technologies 

Conversion technologies candidates considered includes coal, solar PV, hydro, solar thermal, 

biomass, conventional gas turbine (GT), heavy fuel oil (HFO) and combined cycle gas turbine 

(CCGT) power plants.  

5.3.3.2 Reference energy system (RES) 

The proposed Tanzanian RES accommodates resources, primary, secondary and final demand 

energy levels. Simplified schematic flow of the energy chains, levels and conversion technologies 

in RES are as described in Figure 5.2. Rectangles in the RES represents the technologies, which 

contains the techno-economic data. A single technology as used in the proposed RES denotes all 

conversion technologies, which uses the same type of fuel. The energy resource level is 

characterized by coal and natural gas, which are locally available resources.  Energy carriers in the 

form of natural gas (NG), coal and HFO defines primary energy level in the energy chain.  The 

secondary energy level is composed of electricity as the only form of energy echoed in this study.  

Intermediary of primary and secondary energy levels, there are electricity conversion technologies 

whose main inputs are energy carriers from the primary energy level. Electricity transmission and 

distribution network connects secondary and final energy levels. The final electricity demand 

developed from model’s external factors (Kichonge et al., 2014a) is given at the first level of each 

energy chain. The model calculates the equivalent productions of each technologies at the 

succeeding levels of the chain up to the energy resource level which then gives the optimal 

technical choice by minimizing the total system cost while meeting the given final electricity 

demand. 
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Figure 5.2: Energy chain levels and conversions technologies schematic flow diagram 

5.3.4  Modelling basic assumptions 

The general assumptions considered in modeling energy supply options for electricity generation 

for Tanzania are as follows: 

All model scenarios span from 2010, which is the base year to 2040 as the last year.  A time step 

of five years  has been adopted throughout the study period as more steps slows down the solver 

and also for easy results reporting; 

Each model year in all scenarios is divided into four seasons to capture seasonal variations in 

reservoir inflows and load for hydro, solar PV and wind turbines. The seasons includes Season 1 

which encompasses January to February (dry season); Season 2 - March to May (wet/rainy 

season); Season 3 - June to September (dry/sunny weather season) and Season 4 - October to 

December (short rainy season);  

The expected load profile for defining the mix in power generation plants follows an annual 

hourly and monthly load curve characteristics as shown in Figure 5.3 and Figure 5.4. An annual 

hourly load curve characteristics was produced from hourly generation data collected for the 

years 2009 to 2012. Generation of annual hourly load curves was done by taking average values 



 

80 

 

 

in load demands for a particular hour throughout a year. Daily base load patterns together with 

energy resources variations are taken into account by describing two types of days which are 

workdays (Monday to Saturday) and weekends (Sunday and holidays). The daily base load 

patterns for a 24 hours day has been divided as nine parts for Season 1, ten parts for Season 2, 

eight parts for Season 3 and twelve parts for Season 4; 

 

 

Figure 5.3: Annual hourly load curve characteristics 

 Final electricity demand differences under business as usual (BAU), low economic consumption 

(LEC) and high economic growth (HEC) scenarios as projected in MAED are as depicted in 

Figure 5.1. Other parameters such as energy forms, seasonal and daily power demand variability,  

constraints, technologies and resources remained the same for BAU, LEC and HEC scenarios; 

Air emissions control measures have not been included in the model; 

The operation time thus electricity output for solar PV, solar thermal and wind power plants 

follows the proposed seasonal and daily sunshine/wind variation;  

Geothermal power plants begin operation in 2025 with an initial installed capacity of 100 MW 

and increasingly to 650 MW in 2040 (MEM, 2012; Mnzava and Mayo, 2010); 
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Discount rate parameter for economic evaluation of the future investment project was set to 10% 

in each scenario. The value of discount rate is the official one used in the investment of most of 

the projects concerned with electricity; 

 

 

Figure 5.4: Annual monthly load curve characteristics 

The entire national electricity system has been simplified and modeled as a single grid system; 

Existing and future expansion projects, transmission and distribution losses and reserve margins 

as specified in the power system master plan (MEM, 2012) has been adopted for optimization 

purposes; 

Summary of the crucial parameters for modeling electricity supply options in terms of specific 

technical and economic characteristics adopted for conversion technologies are as depicted in 

Table 5.1. 

The investment costs for renewable energy technologies (wind, solar PV and thermal) assumed 

a decreasing trend as the industry develops and thus became cost competitive in future (Philibert, 

2014). The investment cost for wind technology in the base year as shown in Figure 5.5 was 

approximated at 2438 US$/kW and then decreased steadily to 1800 US$/kW in 2025 where it 
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assumed this constant value to 2040. The assumed constant value is due to uncertainties towards 

the future though with current trend, the value is likely to decrease. Solar PV technology 

investment costs assumed a base year value of 4000 US$/kW and decreased in steps to 3500 

US$/kW and 2500 US$/kW in 2025 and 2030 respectively where it presumed a constant value 

of 2500 US$/kW towards the year 2040. Similarly, the investment cost for solar thermal 

technology towards the end of the study period presumed a decreasing trend from the base year 

value of 4500 US$/kW to 3500 US$/kW. 

Table 5.1:  Summary of technical and economic characteristics of conversions technologies 

  

CO NVERSIO N TECHNO LO GY 

CCGT_PP GT_PP HYDRO_PP 
SOLAR 
PV_PP 

SOLAR 
TH_PP 

BIOMASS_PP HFO_PP Wind_PP COAL_PP 

Investment 
Costs  

(US$'00/kW) 

1808.5 1220 2227 4000* 4500* 3860 800 2438* 1900 

Variable O & 
M Costs  
(US$'00/kWyr) 

26.5 39.5 4.5 0 40 26.5 105 4.5 52.56 

Fixed Costs  
(US$'00/kW/yr) 

9.5 9.5 8.5 40 149 40 20 40 50 

Plant life  
(years) 

25 25 50 30 30 30 40 25 30 

Plant factor 

(share) 
0.95 0.95 0.95 0 - 0.95 0.75 0.9 0.95 

Efficiency (%) 0.52 33   - - 28 30 - 40 

Operation time 
(share) 

0.94 0.75 0.85 0.26 0.26 0.9 0.7 0.35 0.85 

Input NG NG - - - Biomass  HFO  - Coal  

Output Electricity Electricity Electricity Electricity Electricity Electricity Electricity Electricity Electricity 
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Figure 5.5: The investment costs for wind, solar thermal and solar PV power plants 

5.4 Results and Discussions 

Final electricity demands have been optimized in order to determine the optimal energy supply 

options for Tanzanian electricity sector. This section presents MESSAGE modeling results 

calculated based on the least-cost energy supply options for electricity generation for the period 

2010-2040.  Based on the total system costs of the electricity system discounted over the study 

period 2010-2040, three different energy supply options have been optimized in lieu of BAU, LEC 

and HEC scenarios as detailed in Kichonge et al. (2014a).  

5.4.1  Installed capacity 

The total installed capacity increases gradually from 804.2 MW in the base year to 10811.5 MW, 

9190.6 MW and 13325.6 MW in 2040 for BAU, LEC and HEC scenarios respectively as illustrated 

in Figure 5.6. The least-cost optimal results show HEC scenario has the highest total capacity 

additions at 12,521.4 MW in 2040 as compared to the BAU scenario 10,007.3 MW and LEC 
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scenario 8,386.65 MW. Annual increase of installed capacity in HEC scenario is equivalent to 

9.81% while BAU and LEC scenarios projection increases are 9.05% and 8.46% respectively. 

Hydro, NG, coal and geothermal power plants dominate the total installed capacity additions in all 

scenarios. Wind and biomass represents a small proportion in the total installed capacity whereas 

solar PV and thermal were not able to compete.  

There is a corresponding increase of thermal installed capacity addition (coal and NG power 

plants) in both scenarios. NG power plants (CCGT and GT) increase their shares in the total 

installed capacity from 202 MW in 2010 to 2546.55 MW in 2040 for BAU scenario. LEC scenario 

observes similar increasing trend to 2090.67 MW in 2040 while HEC scenario is 4794.47 MW. 

The shares of hydro power plants witnesses an opposite decreasing trend in the period 2015-2030 

where it pick-ups the dominance to 2035. Hydro power plants shares decreases from 69.8% in 

2010 to 35.8%, 42.1% and 29% in 2040 for BAU, LEC and HEC scenarios respectively. The main 

reason attributed to the decreasing trend is the potential constraints despite the fact that it is the 

cheapest in operating costs (MEM, 2013c).  

 

Figure 5.6: Total installed capacity (2010 - 2040) 
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Table 5.2: Installed capacity shares by technology  

 

 

 

 

 

 

5.4.2  Electricity generation mix  

Summarized least cost total electricity generation for each scenario are as shown in Figure 5.7 and 

the least-cost electricity generation supply options results by technology in Table 3. BAU scenario 

least cost electricity generation expanded from 5,632 GWh in 2010 to 62,770 GWh in 2040. The 

expansion is equivalent to an annual growth rate of 8.4 % as compared to 7.9% and 9.3% for the 

LEC and HEC scenarios respectively. The base year proportions in the generation mix include 

hydro (66.7%), NG (28.9%), biomass (2.5%) and HFO (2 %). Results describe general dominance 

of hydro power plants in generation mix with NG, biomass and HFO power plants compensating 

the balance. The optimized results show the proportion of hydropower plants generation increasing 

gradually to 41.2 %, 47.1 % and 31.7 % in 2040 for BAU, LEC and HEC scenarios respectively.  

2010

Base Year BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC

-          -    -   -   9.3 7.4 14.2 10.1 5.0 9.2 7.3 3.7 13.2 27.0 18.3 26.7 29.1 27.0 25.6

5.1 10.8 10.9 10.5 6.4   6.6   6.1   4.34 4.48 3.95 3.16 3.31 2.75 2.37 2.61 1.92 0.96 1.13 0.78

-          30.6 30.2 33.2 36.8 37.6 34.8 24.8 27.9 31.6 9.8 11.1 12.9 2.4 5.2 15.9 18.4 16.7 31.8

25.1 21.9 22.0 21.1 13.8 13.8 12.8 9.1 9.4 8.3 6.8 5.6 7.7 7.8 7.3 6.5 5.2 6.1 4.2

69.8 35.4 35.6 34.1 25.4 25.9 24.0 43.3 44.6 39.3 56.4 59.1 49.0 51.0 56.0 41.3 35.8 42.1 29.0

-          -    -   -   -   -   -   -   -   -   -   -   -     -     -    -    4.6 -    3.8

-          1.2 1.2 1.2 0.8 0.8 0.7 0.5 0.5 0.5 0.4 0.4    0.3 0.2 0.2 0.2 -     -    -    

-          -    -   -   -   -   -   2.6 2.7 2.4 12.4 12.9 10.7 9.3 10.2 7.5 6.0 7.1 4.9

-          -    -   -   -   -   -   -   -   -   -   -   -     -     -    -    -     -    -    

-          -    -   -   -   -   -   -   -   -   -   -   -     -     -    -    -     -    -    

-          -    -   -   7.8 7.9   7.3 5.2   5.4    4.8    3.8 4.0    3.3 -     . -    -     -    -    

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Electricity Import 

Total (%)

GT_PP 

CCGT_PP

Hydro_PP

Wind_PP 

Biomass_PP

GeoTh_PP 

Solar_PV 

Solar_Th 

Coal_PP

HFO_PP

2015 2020 2025 2030 2035 2040
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Figure 5.7: Electricity generation projections (2010-2040) 

Table 5.3:  Electricity generation shares by technology (2010-2040) 

 

 

 

 

 

The proportion of coal power plants in the total generation rises gradually from 11.8 % in 2020 to 

38.1% in 2040 for BAU scenario while for LEC scenario is 9.3% in 2020 and rises to 33.5% in 

2040. HEC scenario witness higher proportion at 17.7% in 2020 and grows to 33% in 2040.  The 

higher proportion of hydro, NG and coal power plants in generation mix is imminent due to lower 

investment and fuel costs as compared to other candidates technologies considered. Unlike the 

increases in hydro and coal power plants generation shares, the proportions of NG power plants 

2010

Base Year BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC

-          -    -   -   11.8 9.3 17.7 13.3 6.7 11.9 6.6 3.3 15.0 25.9 17.2 30.4 38.1 33.5 33.0

2.0 0.2 0.2 0.2 -   -   -   0.03 0.02 0.06 0.05 0.03 0.04 0.03 0.03 0.02 0.01 0.01 0.01

         28.9    54.3   53.8   56.5   57.1   58.8   53.4   28.9   33.1   36.9   11.8   11.8     14.5       7.5      9.8    15.8     10.7    10.6    27.6 

-          76.5 76.2 78.8 86.9 86.6 86.8 88.6 89.4 92.6 88.3 92.2 90.5 88.3 91.2 96.3 96.9 95.7 99.3

100.0 23.5 23.8 21.2 13.1 13.4 13.2 11.4 10.6 7.4 11.7 7.8 9.5 11.7 8.8 3.7 3.1 4.3 0.7

66.7 44.3 44.7 42.2 30.4 31.2 28.2 53.9 56.1 47.8 66.0 69.8 56.5 55.2 60.5 44.6 41.2 47.1 31.7

-          0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 1.7

2.5 1.2 1.2 1.0 0.6 0.6 0.6 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

-          -    -   -   -   -   -   3.6 3.8 3.2 15.2 14.8 13.8 11.2 12.3 9.1 7.7 8.8 5.9

-          -    -   -   -   -   -   0.0 -   -   -   -   -     -     -    -    -     -    -    

-          -    -   -   -   -   -   0.0 -   -   -   -   -     -     -    -    -     -    -    

-          -    -   -   0.1 0.1 0.2 -   -   -   0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.03

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Solar_PV

Solar_Th

Electricity Import

Total (%)

CCGT_PP

GT_PP

Hydro_PP

Wind_PP

Biomass_PP

GeoTh_PP

2035 2040

Coal_PP

HFO_PP

NG Power Plants

2015 2020 2025 2030
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increasingly dominate more than 50% of the generation from 2015-2020 and thereafter declines in 

2040. The decline in NG power plants proportions after 2020 is due to presumed new investments 

in hydro power plant. NG power plants technologies proportion in 2040 for BAU scenario split 

into CCGT (96.9%) and GT (3.1%). However, similar trend follows in LEC and HEC scenarios in 

which the share of CCGT will be as high as 95.7% and 99.3% respectively in 2040. The choice of 

CCGT in least-cost optimized results attributes to higher availability and efficiency up to 60% in 

comparison to that of GT 40% (Sharman, 2005; Sims et al., 2003).  

Combined thermal generation contributes 48.8% of the total in 2040 for BAU scenario as shown 

at the top-left plate of Figure 5.6. The contribution of thermal generation for LEC scenario is 44.1 

% top-right plate while for HEC scenario is 60.6% bottom-left plate. Higher electricity demands 

in HEC scenario drives the use of thermal generations. The use of more thermal generations instead 

of hydro and geothermal attributes to energy resource potential constraints.  On the contrary, 

renewable energy with the exclusion of hydro makes up small proportion in the contribution of the 

total electricity generation mix.   

The contribution of renewables technologies into electricity generation for BAU, LEC and HEC 

scenarios extends to 6.2 TWh, 4.8 TWh and 6.2 GWh respectively in the year 2040. The share of 

renewable energy generation in BAU scenario accounted for an average of 2.1% in the period from 

2010 to 2025 and thereafter grows to 15.4% in 2030 and then retreat to 9.9% in 2040. The rise of 

renewable energy in 2030 attributes to utilization of full geothermal energy potential presumed in 

the year. HEC scenario shares of renewable energy from 2025 – 2040 averaged at 1.9 % in the 

total electricity generation. Comparable trends are also as observed in LEC scenario. Moreover, 

within renewable energy technologies geothermal dominates the generation mix followed by 

biomass and wind with insignificant shares from solar thermal and solar PV power plants. 

Geothermal and wind power plants by the end of study period in 2040 generated 7.7 % and 2.2 % 

respectively of all electricity in BAU scenario. Similarly, geothermal power plants generation for 

LEC and HEC scenarios was approximately 8.8 % and 5.9 % respectively. The constraints on 

geothermal energy resources potential and the rise in electricity demand reduced the share of 

geothermal technologies in 2040 for HEC scenario. 

The least-cost electricity generation results in the BAU, LEC and HEC scenarios draws four most 
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important conclusions. The first one is the key role played by hydro, coal and NG technologies in 

the final electricity generations. These technologies have shown least-cost competitiveness in 

electricity generation, which describes their importance in sustainable development of the 

electricity sector. The second is insignificant contribution from solar thermal and solar PV 

technologies in the entire study period. The high investment costs associated with the technologies 

discourages the penetration in generations mix despite their least operations and maintenance 

costs.  The last conclusion is the country self-sufficiency in generating electricity using its own 

local energy resources thus ensuring security of supply for sustainable development.  

5.4.3  Primary energy supply 

Primary energy supply composition for electricity generation is as shown in Table 5.4. Coal, NG, 

HFO and biomass are the main primary energy supply for electricity generation. Conversion 

technologies for geothermal, hydro, wind, solar PV and solar thermal do not consume primary 

energy for electricity generation.  Primary energy supply in BAU scenario will grow from 6203 

GWh in 2010 to 73083 GWh in 2040. Similarly, the growth in LEC scenario amounts to 57529 

GWh against 110,700 GWh in HEC scenario. Generally, all scenarios projects increased coal 

consumptions as compared to NG with small proportions from biomass and HFO towards 2040. 

The least-cost supply option, show electricity generation will depend on coal and NG to cover 

primary energy supply. It further depicts gradually decrease in HFO to less than 0.1% in 2040. 

Figure 5.8 depicts primary energy supply in BAU scenario that is the representative trend for other 

scenarios.  

Table 5.4:  Primary energy production (2010-2040) 

 

BAU LEC HEC BAU LEC HEC BAU LEC HEC BAU LEC HEC

2010 -         -        -          5326.4 5326.4 5326.4 380.8 380.8 380.8 495.5 495.5 495.5

2015 -         -        -          10469.6 10310.4 11278.5 66.7 63.4 72.5 369.9 367.6 326.9

2020 4235.5 3283.0 6865.4 17314.4 17465.6 17524.9 0.0 -      0.0 313.0 315.7 312.7

2025 6809.8 3283.0 6865.4 12356.9 13519.5 17351.5 21.5 14.3 42.6 242.2 237.6 154.7

2030 4995.2 2366.6 13130.6 7430.1 6801.0 10467.1 52.6 25.4 48.0 126.4 117.4 123.8

2035 27982.2 16905.6 40673.7 6787.2 7933.7 16647.6 41.0 44.4 38.5 91.2 91.2 50.3

2040 59862.6 45949.3 67200.2 13196.3 11555.5 43475.7 24.2 24.2 24.2 -     -     -      

Total 103885 71787 134735 72881 72912 122072 587 552 607 1638 1625 1464

Coal Natural Gas HFO Biomass
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Figure 5.8:  Primary energy supply – BAU scenario  

5.4.4  CO2 emissions 

The total CO2 emission depicted in Figure 5.9 rises from 1182-kilo tonnes of CO2 in 2010 to 

23652.3-kilo tonnes of CO2 in 2040 for BAU scenario. The rise in CO2 emission in BAU scenario 

represents an annual growth of 10.5 %. Similarly, the increases for LEC and HEC scenarios 

represent annual growth of 9.5% and 11.7 % respectively. The growth rate in CO2 emission in 

LEC scenario is much lower than that of HEC and BAU scenarios due to slow economic growth 

presumed in the scenario representing less energy consumption. Similarly, the higher CO 2 

emission in HEC scenario is highly contributed by higher electricity demands, which resulted in 

optimal capacity additions of coal and NG power plants. The emission of CO2 in all scenarios is 

higher due to insignificant renewable energy conversion technologies applications.  
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Figure 5.9:  Projected CO2 emissions (2010-2040) 

5.5 Economics of scenarios 

The capital investment cost required for the entire period of study is as based on MESSAGE least 

cost modelling results. The sharing of capital investments for the period of 2010 – 2045 is as shown 

in Figure 5.10. In meeting final electricity demand under BAU, LEC and HEC scenarios, the total 

capital investment cost of 4488 million US$, 3903 million US$ and 5573 million US$ respectively 

would be required. The main share of the capital investments for the entire period in BAU, LEC 

and HEC scenarios falls into the period of 2015 to 2035 in which most of the capacity addition is 

taking place. The capital investment needed to develop a BAU scenario final electricity demand 

in the entire study period would be about 584 million US$ more than LEC scenario, while 1086 

million US$ increase would be needed for a HEC scenario. The higher capital investment costs is 

observed in 2035 for HEC and BAU scenarios while for LEC scenario is in 2030. 
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Figure 5.10: Capital investment costs for the entire study period (2010-2040) 

Least cost modelling results as presented in Table 5.5 shows the main differences among BAU, 

LEC and HEC scenarios in terms of the investment costs and variable and fixed O&M costs. 

Variable O&M costs for HEC scenario are 335.1 and 529.4 million US$ higher than those for the 

BAU and LEC scenarios. Moreover, the LEC scenario entail lower fixed O&M costs at 1013.4  

million US$ as compared with the BAU and HEC scenarios. 

 Table 5.5: Total Investment and O&M costs 

Name of  

Scenario 

O&M Variable 

Cost 

 (Million US$ ) 

O&M Fixed Cost  

(Million US$ ) 

Investment Cost   

(Million US$ ) 

Total Investment and  

O&M Cost   

(Million US$ ) 

BAU 999.7 1127.7 4487.6 6615.1 

LEC 805.4 1013.4 3900.0 5718.8 

 HEC  
                          

1,334.8  

                               

1,222.2  

                               

5,595.3  

                               

8,152.4  
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5.6 Sensitivity Analysis  

Sensitivity analyses carried out in this study, intended to explore the influence of techno-economic 

parameters, policy options and extreme dry weather conditions in the expansion of the final 

electricity generation mix.  

5.6.1  Renewable energy penetration 

Least-cost optimization results as distinguished in previous sections reveals in-significant 

penetration into electricity generation of renewable energy technologies due to the high investment 

costs. Among the reasons behind the insignificant penetration of renewable energy technologies 

in electricity generation is the absence of non-environmental friendly energy supply constraints. 

As a result, the market forces decides to choose the least-cost energy supply options for electricity 

generations which in most cases occurs as non-environmentally friendly sources (Bull, 2001; 

Lewis, 2007). Based on this fact, the study formulates a renewable energy penetration policy 

option (REPP) as an alternative scenario to study electricity system behavior under energy supply 

constraints to promote renewable energy technologies in the generation of electricity. The policy 

option in REPP requires a compulsory penetration of renewable energy technologies (combined 

together) to contribute at least 10% of the total electricity generation in 2020 and increasingly to 

30% in 2040.  REPP scenario assumes energy demands projections and all techno-economic 

parameters of BAU scenario with the additions of the compulsory policy measures. All modelling 

inputs of REPP scenario remains the same as in BAU scenario except for the imposed compulsory 

penetration of renewable energy technologies.  

The results of REPP scenario implementations as compared to BAU scenario in terms of the total 

installed capacity, electricity generation and CO2 emissions are as illustrated in Table 5.6. The 

MESSAGE results depicts a huge reduction of CO2 emission at approximately 48% in REPP 

scenario as compared to BAU scenario in 2040. The displacement of thermal power plants with 

renewable energy technologies has resulted into reduction of CO2 emission and primary energy 

supply. The total installed capacity shares of renewable energy technologies increases to 17.1% 

and 34.7% in 2020 and 2040 respectively. BAU scenario composition was 0.8% in 2020 and 10.6% 

in 2040. The shares of renewable energy technologies in the total generation mix for REPP 

scenario has increased to 30% in 2040 as compared to 9.9% it had in BAU scenario. Satisfactory 
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inclusion of renewable energy technologies into electricity generation mix as shown in REPP 

scenario has demonstrated the importance of compulsory measures in policy formulation in favor 

of renewable energy sources.  

Table 5.6: Renewable energy penetration  

 

 

 

 

 

Even though the compulsory policy measures resulted in the expansion of renewable energy 

technologies shares, REPP scenario depicts additional investments costs as compared to BAU 

scenario. The comparison in the investments costs between BAU and REPP scenarios is as 

depicted in Figure 5.11. Meeting REPP scenario requirements will necessitate considerable 

investment cost of 7,665.8 million US$ as compared to 4,487.6 million US$ for BAU scenario. 

Contrariwise, as shown in Figure 5.12, REPP scenario accommodation exhibit a decrease in the 

operation and maintenance variable costs (O&M). There is a decrease to 680.6 million US$ in the 

operation and maintenance variable costs for REPP scenario when compared to 999.7 million US$ 

for BAU scenario in the entire study period. MESSAGE modelling results, show that REPP 

scenario demands a more aggressive approach to investment in renewable energy technologies.  

For that reason, if the country chooses to implement the policy, additional policies such as 

renewable energy feed-in tariff and institutional frameworks that are essential for the growth of 

renewable energy technologies must be in place. The compulsory policy measures as revealed in 

MESSAGE modelling helps in tapping of the enormous potential of renewable energy resources 

into electricity generations for the benefit of the environment and security of supply. 

Scenario 2010 2015 2020 2025 2030 2035 2040

BAU 2.5 1.2 0.6 4.0 15.4 11.3 9.9

REPP 2.5 1.2 10.1 15.1 20.7 25.0 30.0

BAU 1182.3 2134.0 4982.8 4889.3 3266.5 11189.3 23652.3

REPP 1182.3 2134.0 3874.6 2927.7 1906.2 4380.7 12198.3

BAU 6202.7 10906.2 21862.9 19430.5 12604.3 34901.5 73083.1

REPP 6202.7 10906.2 18778.3 14069.0 8924.9 18971.2 41212.6

BAU 0.0 1.2 0.8 3.1 12.7 9.5 10.6

REPP 0.0 1.2 17.1 20.7 18.1 24.1 34.7

Renewables shares in 

electricity generation (%)

CO2 emission level 

(kilo tonnes of CO2)

Primary energy supply 

(GWh)

Renewables installed 

capacity shares (%)
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Figure 5.11: Investments costs comparison between BAU and REPP scenarios 

 

Figure 5.12: Variable O&M costs comparison between BAU and REPP scenarios 
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5.6.2 Discount rate adjustment 

Adjustments was carried out on BAU scenario to approximate the influence of discount rate on 

the upcoming pattern of electricity generation capacity, electricity production or economic 

effectiveness of a number of electricity generation plants. The discount rate adjustments carried 

out were 6%, 8%, 12% and 14% in comparison to a study-adopted value of 10%. Adjustments of 

discount rate value to 6% preferred early capacity addition of 500 MW wind power plant into 

electricity generation in 2035 while 8%, 10% and 12% favors addition in 2040 with no addition 

for the 14% values. Solar PV and thermal failed to be competitive in all discount rates adjustments. 

These technologies require special policy option for their inclusion into electricity generation to 

be realistic. Adjustments of discount rate values to 12% and 14% were in favour of capacity 

addition of CCGT and GT power plants as opposed to lower values (6% and 8%) which preferred 

coal power plants.  

Higher efficiency coupled by a lower operating and maintenance costs, shorter construction time 

and fuel cost characterizes CCGT and GT power plants thus turn out to be more attractive for 

capacity addition in comparison to other technologies options. The discounts rates of 6%, 8%, 12% 

and 14% resulted into coal fired power plants total installed capacity of 6652 MW, 6108 MW, 

5385 MW and 4773 MW respectively. In other words, a higher value of discount rate leads to the 

postponement of large-scale investments. According to the minimum cost criterion, a discount rate 

of 10% gives greater preference for the fossil fuel scenarios. A decrease or increase of discount 

rate has insignificant influence on capital investments of hydro, biomass and geothermal which 

seems to be due mainly to the limited resources potential. 

5.6.3 Dry Weather scenario 

Experience has shown weather conditions affects electricity generation capacity causing outages 

and rationing (Loisulie, 2010; MEM, 2013c). The alternative dry weather scenario was formulated 

to analyse electricity system behavior under uncertain weather conditions. All modelling inputs of 

dry weather scenario remains the same as in BAU scenario except for the imposed generation’s 

constraints of hydropower to 20% of the total generations in the period 2020-2040. The 

MESSAGE least-cost results in Table 5.7 depicts the generations will incline to coal and NG power 

plants at approximately 42.8% and 30.2% respectively in 2040. The capacity additions for coal 
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power plants will expand to 9772 MW as compared to 6040 MW in BAU scenario. Because of 

imposed hydropower constraints, the CO2 emission will increase to 86938.67-kilo tonnes of CO2 

as compared to 51296.6-kilo tonnes of CO2 in BAU scenario.  

Table 5.7:  Electricity generation shares by technology (%) - dry weather scenario  

  2010 2015 2020 2025 2030 2035 2040 

Coal_PP - - 25.11 34.92 41.15 52.93 42.85 

HFO_PP 2.03 0.23 - - 0.004 0.03 0.01 

NG_PP 28.86 54.56 54.41 41.00 22.06 15.60 30.20 

CCGT_PP 0.00 76.62 89.11 87.23 92.20 90.55 97.88 

GT_PP 100.00 23.38 10.89 12.77 7.80 9.45 2.12 

Hydro_PP 66.65 43.98 19.90 20.04 20.23 20.03 16.98 

Wind_PP - - - - - - 2.20 

Biomass_PP 2.46 1.23 0.59 0.41 0.13 0.07 - 

GeoTh_PP - - - 3.63 16.29 11.22 7.71 

Solar_PV - - - - - - - 

Solar_Th - - - - - - - 

Electricity 

Import - - - - 0.13 0.12 0.05 

Total %  100 100 100 100 100 100 100 

 

Based on MESSAGE modelling results, if the country chooses to implement measures because of 

dry weather conditions, more usage of coal and NG as primary energy supplies will be the least 

cost option. The additional capacity in terms of coal and NG power plants to replace hydropower 

plants would decrease both the risks of a dry weather condition and energy security uncertainties. 

However, the weaknesses of coal and NG development into dry weather scenario are the higher 

CO2 emissions as compared to BAU scenario as depicted in Figure 5.13. The capital investment 

cost of dry weather scenario will require less than 535.52 million US$ as compared to capital 

investment in BAU scenario. Less capital investment cost in dry weather scenario is due to lower 

capital investment cost and shorter construction time of coal coal-fired and NG power plants. 

Despite hydro power plant lower operation and maintenance costs, coupled with zero fuel 

consumption for final electricity generation, they have higher capital investment costs and longer 

construction life (Sharma, 2010). 
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Figure 5.13: Comparison in CO2 emissions between Dry weather and BAU scenarios 

5.7 Conclusion 

The study presented a modelling approach on the energy supply options for electricity generation 

in Tanzania. The modelling approach emphasized optimal results based on the least-cost as 

assumed in MESSAGE.  Based on the results presented, MESSAGE turned out to be a useful tool 

to address energy supply options for electricity generation in Tanzania. The projected total 

installed capacity increases gradually from 804.2 MW in the base year to 10811 MW, 9190.9 MW 

and 13325.6 MW in 2040 for BAU, LEC and HEC scenarios respectively. The increase in the total 

installed capacity would call for capital investment cost of 4488 million US$, 3903 million US$ 

and 5573 million US$ respectively for BAU, LEC and HEC scenarios.  Hydropower plants 

dominate the capacity additions followed by coal, CCGT, geothermal and GT power plants to meet 

the electricity generation expansion in both scenarios. Total primary energy supply dominated by 

coal and NG rises to 73083 GWh, 57529 GWh and 110,700 GWh in 2040 for BAU, LEC and HEC 

scenarios respectively, as compared to base year amount of 6203 GWh.  
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In meeting final electricity demands, CO2 emissions will expand from 1182-kilo tonnes of CO2 to 

10.5%, 9.5% and 11.7% respectively for BAU, LEC and HEC scenarios with decreases of CO2 in 

the REPP scenario. Renewable energy sources as concluded in REPP scenario were identified as 

promising candidates for meeting the future electricity demand in Tanzania. Potential contribution 

of renewable energy sources to the savings of coal and NG reserves would be a great contribution 

to the economy and the environment. However, the dry weather scenario has shown a shift to coal 

and NG power plants generations at approximately 42.8% and 30.2% respectively resulting into 

higher CO2.   The sensitivity analysis tests results has shown lower discount rates to favor 

investments on wind and coal power plants while higher discount rates favor NG power plants. 

The least-cost results has shown implications concerning capital investment costs versus 

environmental impacts concerns. Least cost modelling results have concluded that meeting final 

electricity demands without considerations of environmental impacts concerns is cheaper. Policy 

makers should balance the capital investment costs and environmental concerns in the energy 

planning of the country.  
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CHAPTER SIX 

 

PREDICTION OF THE CONTRIBUTION OF RENEWABLE ENERGY SOURCES IN 

ELECTRICITY GENERATION IN TANZANIA 5  

 

6.1 Abstract 

This paper analyses through modelling the contribution of renewable energy in electricity 

generation in Tanzania.  Two scenarios with regards to the Tanzanian power sector were developed 

representing a renewable energy promotion scenario and the base case scenario. The base case 

scenario was developed as an overall scenario to predict the supply of energy resources for power 

generation, whereas the renewable energy promotion scenario was imposed with constraints 

requiring the gradual introduction of renewable energy technology into electricity generation. The 

analysis of the power sector for the two scenarios was based on installed capacity, power 

generation, CO2 emissions and investment costs using Model for Energy Supply Strategy 

Alternatives and their General Environmental Impact (MESSAGE). The results from two 

scenarios show power generation will be optimally expanded from 11,291 GWh in 2015 to 54,981 

GWh in 2035. The total installed capacity will be 2,383 MW in 2015 as compared to 13,177 MW 

in 2040. Total investment cost for the renewable energy promotion scenario is higher compared to 

the base case scenario. Renewable energy promotion scenario showed reduction in CO2 emission 

contrary to the base case scenario. It is evident from results that without intervention in promoting 

renewable energy, its contribution in power generation will remain insignificant. The study 

concludes that it is possible to have renewable energy shares in the power generation mix with an 

associated rise in investment costs and reduction in CO2 emission.  

6.2 Introduction  

Renewable energy is an important energy resource due to its availability and is generally clean, 

hence environmentally friendly (Dincer, 2000). The use of renewable energy sources in electricity 

generation is essential for socioeconomic development as it enables production of various products 

                                                 
5 International Journal of Renewable Energy Technology Research (IJRETR)  Vol. 3, No. 4 (2014), pp. 1 - 13  

 



 

100 

 

 

and services, which are essential for human wellbeing ranging from domestic to industrial use with 

ensured security in supply. Tanzania’s total primary energy supply in 2011 is estimated at 20.75 

MTOE while energy net imports stood at 1.64 MTOE (IEA, 2013a). The total electricity generated 

in 2011 was estimated at 4,076 GWh with total system loss of 23% for interconnected grids. 

Tanzania’s annual per capita electricity consumption stood at 81 kWh in 2011/2012, with the target 

being 200 kWh in 2015/2016 (MEM, 2012). In Tanzania 18.5% of total population have access to 

electricity (Msyani, 2013). 

Total installed capacity for power generation as of 2012 was hydro 565 MW, natural gas 501 MW 

and oil products 375 MW with a negligible contribution from renewable energy sources (MEM, 

2013c). Main sources of energy for electricity generation in Tanzania are coal, oil products, natural 

gas and hydro. Figure 6.1 illustrates electricity generation using different sources energy from 

1990-2011(IEA, 2013a). Power available for isolated grids through imports from Uganda and 

Zambia is 8 MW and 5 MW respectively (MEM, 2012; Vernstrom, 2010). Isolated grids comprise 

of installed capacity of 21.6 MW both being from thermal sources (Mgonja, 2011). The sector has 

seen a rapid growth in power demand. It is projected the power demand will rise to 75% from the 

current status of 18.5% (MEM, 2012, 2013c). country’s distribution networks as of 2011 

comprised of 400/240 V lines having a length of approximately 26,565km with a system loss of 

23.5% (MEM, 2012).  

 

Figure 6.1: Power generation by fuel type  

 



 

101 

 

 

The power sector has been faced with recurrent challenges in power generation that have seriously 

affected national socio-economic development and the environment. Major challenges facing the 

power sector are generation challenges, aging infrastructure, power demand growth outstripping 

supply, high transmission and distribution losses, among many others (Kihwele et al., 2012). 

Generation challenges have also been due to country’s over reliance on hydro for electricity 

generation (Kihwele et al., 2012; MEM, 2013c). The country’s spatiotemporal distribution of 

rainfall suggests a decrease in the overall annual rainfall accompanied by intensified and prolonged 

dry and wet spell weather events making the predictability of seasonal weather patterns more 

challenging (Casmiri, 2009; Loisulie, 2010; Valimba, 2004). These effects can be traced back to 

2006 where power demand was then 540 MW while the six hydro power plants production reached 

a minimum record of 50 MW at some points (IEA, 2012; Loisulie, 2010).  

 

 

 

 

 

 

 

 

Figure 6.2: Mtera hydro reservoir inflows  

An example of weather patterns predictability challenges were as those witnessed at Mtera dam, 

which is the largest hydroelectric dam in Tanzania. The dam built to ensure that there is sufficient 

water dammed throughout the year to supply the Kidatu hydropower plant. The dam has a 

catchment area of 68,000 square kilometers with a storage volume of 3,200 million cubic meters 

(Casmiri, 2009). Mtera dam has experienced high unpredictability in annual rainfall since 2008 as 
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illustrated in Figure 6.2 (MEM, 2013c). The data in Figure 6.2 indicate an overall decrease in 

rainfall with the frequency of below-average rainfall increasing (MEM, 2013c).  

As a solution to hydropower generation challenges, the alternate option focused on thermal 

generation using locally available natural gas and imported oil products. Status shows the decline 

in hydropower dependence with the recent share being at 35% in 2012 as compared to more than 

50% prior to 2000 (MEM, 2013c). Tanzania is now shifting from hydro generation to thermal 

generation as a measure to fill in the gap due to the frequent drought occurrences. This shifting has 

caused a high cost of electricity due to the use of thermal emergency power producers (EPP’s). 

Electricity has turned out to be an expensive commodity primarily due to the dominance of thermal 

generation and secondly the obsolescence of hydropower plants as depicted in Table 6.1.  More 

than half of hydropower plants in operations are of over twenty years of age. The average life span 

of hydropower plant is estimated at 50 years after which they will require major overhaul (Yüksel, 

2010). Thermal power generation has the consequence of high electricity tariffs as compared to 

hydro-power generation. The average cost of electricity from hydro is 0.063 US$/kWh as 

compared to 0.33 US$/kWh for oil products thermal generations (Evans et al., 2009; MEM, 2012; 

Sims et al., 2003) even though the cost is even down to 0.22 US$/kWh. 

Table 6.1: Hydro Power Plants in Tanzania 

Plant Name 
Installation 

Year 
Plant Capacity 

(MW) 
Firm Energy 

(MW) 

Mtera 1988 80 195 

Kidatu 1975 204 601 

Hale 1967 21 55 

Kihansi 2000 180 492 

Pangani Falls 1995 68 201 

Nyumba ya 
Mungu 

1968 8 20 

 

Power generation is an important area with strong potential to contribute towards sustainable 

economic growth. The use of renewable energy sources is one of solutions in addressing the 

challenges related to the recurrent drought affecting hydropower generation and the environment 

(Hossain, 2012). Renewable energy resource potential in Tanzania has not been fully exploited, 
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predominantly due to the limited policy interest and investment levels as is the case for the rest of 

Africa (Karekezi and Kithyoma, 2003) although the trend is rapidly changing in recent years. This 

study focused on modeling the contribution of renewable energy sources into electricity generation 

using the Model for Energy Supply Strategy Alternatives and their General Environmental Impacts 

abbreviated as MESSAGE. Modelling results from the study will be used as a tool for the policy 

and decision makers to arrive at a relevant solution interactively in the use of renewable energy 

resources to meet the power demands of Tanzania. Through the output of this study, it is expected 

Tanzania will realize sustainable economic development, a stable power supply based on a 

balanced energy resource mix and ensured energy security due to the use of local energy resources. 

6.3 Methodology 

In this study, a bottom-up integer programming based optimization model known as Model for 

Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) was 

used. The model works on the principle of reference energy system which allows representation 

of the entire energy network including existing and future technologies (Pinthong and Wongsapai, 

2009; Rečka, 2011; Selvakkumaran and Limmeechokchai, 2011; Van Beeck, 1999). MESSAGE 

has an objective of planning to meet demand while minimizing total energy system cost. 

Mathematical techniques used in MESSAGE are composed of linear and mixed-integer 

programming (Van Beeck, 1999).  

MESSAGE has been chosen in optimizing the scenarios in this study due to its features that provide 

a flexible framework for the wide-ranging modeling of diverse energy supply systems. MESSAGE 

is the sophisticated model that has the capability to optimize energy supply under user defined 

constraints such as energy policy constraints, rates of technology penetration in the market, fuel 

availability and environmental emission control (AlFarra and Abu-Hijleh, 2012; IAEA, 2008). 

Furthermore, MESSAGE considers current installations and expedient life span, the indigenous 

availability of energy resources, options for technology expansion and replacement of retired units 

(Hainoun et al., 2006). 

6.4.1 Modelling Scenarios 

The modeling process applied two scenarios to analyze the contribution of renewable energy in 

power generation, which are the base case scenario (BCS), and renewable energy scenario (RES). 
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The renewable energy in this study is limited to wind, solar PV, solar thermal, geothermal and 

biomass, excludes hydropower. One important features of renewable energy when it comes to 

contribution in electricity generation is their failure to compete under least-cost basis. Hydropower 

is quite different from the other renewable energy such as solar PV and solar thermal as under least 

cost basis, hydropower is so competitive. Furthermore, hydropower is a mature technology in 

Tanzania, and has been extensively in use for over forty years. For modelling purposes of this 

study, hydropower treatment is like other technologies, which are cost competitive such as coal, 

natural gas among many others. 

The BCS is an overall electricity generation scenario. The scenario intends to illustrate how the 

electricity generation mix would take into account renewable energy technologies (RETs) into 

power generation. In the BCS, renewable and non-renewable technologies compete equally for the 

share in electricity generation.  The main feature of BCS is to consider the growth of energy 

systems, and to minimize total discounted energy costs based on the technology and resource cost 

as inputs to the model. This scenario focuses on optimizing investments to get a least cost 

composition of energy sources and technologies to supply electricity in Tanzania. 

The RES development requires a mandatory minimum share of renewable energy penetration into 

electricity generation. The scenario target is to introduce steadily the generation of electricity with 

renewable energy technologies into the total country generations. In the RES scenario, it is 

required to have a 15% share of wind, solar PV, geothermal, biomass and solar thermal (added 

together) of the total electricity generation by 2040 starting from 5% in 2020 and progressively 

increase the share to 10% in 2025 and 15% in 2030 through 2040. The basis for these growth rates 

is the country has never crossed a share of 1% renewable energy (excluding hydro) prior to 2010 

of the total generation. These growth rates are realistic to start with and corresponds to targets set 

by a number of Sub-Saharan countries with similar economic characteristics as Tanzania. 

6.4.2  Data 

Data for the study consisted of electricity demand, technologies, technological constraints and 

efficiencies, technology's lifetime, investments, fixed costs and capacity boundary. These data are 

needed to optimize the energy investment through the least cost supply solution in the long-term. 
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Additionally the annual load curve distributed hourly and monthly to capture the variations of 

demand for fuels within a year was generated. 

The study applied seven different technologies using natural gas (subdivided into two 

technologies), biomass, geothermal, solar, wind, coal and imported oil products as fuels for the 

optimization of power generations under the two scenarios. Natural gas technologies that were 

used in the optimization were gas turbine (GT) and combined cycle gas turbine (CCGT) power 

plants. Technologies for solar were solar PV and solar thermal. Other technologies were coal, 

biomass, geothermal, hydro and wind power plants. Data for this study has been collected from 

the Tanzania Electric Supply Company Limited (TANESCO), Ministry of Energy and Minerals 

(MEM) - Tanzania and International Energy Agency (IEA). 

6.4 Results and Discussions 

The optimal energy mix considering resources investment costs, installed capacity and 

technologies for the diversification of electricity supply in Tanzania is analyzed in the next 

sections. 

6.4.1 Load Curves 

The annual load curve distributed hourly and monthly was generated to capture energy 

consumption behavior. The hourly generation data collected from TANESCO for the years 2009 

to 2012 were explored to reveal load demands characteristics in Tanzania. Hourly load curves were 

generated by taking average and maximum of values in load demands for a particular hour 

throughout a year. The hourly load curve is illustrated in Figure 6.3. It is evident that there is a 

sharp decrease in demand from 21:00 to 4:00 where the lowest demand point is depicted.  This is 

explained by the fact that most of load demands in households are switched off for the night. The 

load demands start to peak slowly again at 5:00 and continues with the trend up to 10:00. At this 

time horizon most of load consumers at household level are awake for the day’s activities and 

industry consumers often starts the days’ work at 8:00.  

The load starts to level off from 10:00 to 18:00 though there are some drops in demand from 13:00 

to 18:00. This is because most industrial activities schedules for a lunch break at 13:00 and after 

that, they wind up the day’s activities. The hourly load curve shows there is a very sharp rise in 
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the load demand from 18:00 and reach peak level at 21:00. This attributes mainly by a growing 

demand by a household consumer for lighting and other activities. Load peak hours of the day are 

observed between 18:00, 21:00, and the lowest load demand being between 4:00 and 5:00.  

The daily, hourly load pattern displays a constant load during the day followed by an evening peak 

with the exception of Sunday.  The Sunday hourly load pattern displays a morning and an evening 

peak and is typically at a lower demand level than the rest of the week. An average hourly load 

curve divides into five parts to capture the variations in load demands in the MESSAGE model.  

Figure 6.3: Hourly load curves 

6.4.2 Scenario Analysis 

Optimization results for electricity generation mix in BCS are as illustrated in Figure 6.4. 

Electricity generation mix in the BCS is dominated by natural gas, hydro and coal. In BCS a total 

of 11,291 GWh will be generated in 2015 as compared to 54,981 GWh in 2035. Matching these 

results with official projections a total of 11,246 GWh and 47,724 GWh were projected as demands 

in the year 2015 and 2035 respectively (MEM, 2012, MEM, 2013). The marginal difference 

between the least-cost and official projections attributes to the reserve margin considered in 

optimizations. 
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In relation to the modeling results for BCS, natural gas will have the largest share at 44%, followed 

by coal and hydro at 31.8% and 24% respectively in 2015. The dominance of natural gas will 

continue through 2040 when natural gas will command a share of 54.3%. The share of hydro will 

increase from around 24% in 2015 to 40% by 2030 and then decrease to 25% in 2040. The share 

of hydro and geothermal are limited due to potential constraint of 4700 MW and 650 MW 

respectively despite their low operating cost advantages (Dincer, 2000; Kihwele et al., 2012; 

Kusekwa, 2013). Power generation is expected to almost triple by 2025. Combined cycle gas 

turbine (CCGT) leads natural gas technologies for power production commanding a share of 79%, 

90% and 100% in the years 2015, 2020 and 2025 respectively. That is to say, among natural gas 

technologies the CCGT are more preferred as compared to GT. This is attributes to good 

availability, better efficiency and short construction times as compared to gas turbine (GT) 

technology, which is suitable for peak times. CCGTs are the highly favored option where gas is 

available at reasonable prices due to the peak efficiency of 60% as compared to 40% for GT 

(Sharman, 2005; Sims et al., 2003). 

 

 

 

 

 

 

 

 

Figure 6.4: Electricity generation mix – BCS 

Renewable energy technologies were not able to be competitive in the BCS as the optimization 

was based on meeting demand at a least cost composition of energy sources and technologies. This 

is due to cost profiles for renewable energy such as solar technologies being of high capital 
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investment and low running costs, due to no fuel requirements (Evans et al., 2009). The only 

renewable energy technology that was able to penetrate into the energy mix in 2020 was 

geothermal. Geothermal is characterized by high availability capable to provide base load power 

for 24 hours a day and lower operating costs as compared to other renewable energy technologies 

(Evans et al., 2009; Karekezi and Kithyoma, 2003; Sims et al., 2003).  

The optimization results for installed capacities of various technologies to produce electricity 

through 2040 in the BCS are illustrated in Figure 6.5. Total installed capacity for the years 2015, 

2035 and 2040 are 2,383 MW, 9,083 MW and 13,177 MW respectively. Relating these 

optimization results with official projections, a total of installed capacity for 2015 and 2035 was 

projected at 2,088 MW and 7,645 MW respectively (MEM, 2012, 2013c). The contribution of 

fossil fuel sources in BCS for 2035 will be 1808 MW equivalent to 76% of the total installed 

capacity whereas hydro will contribute 24%. In the year 2040, natural gas will contribute 55%, 

which is the largest share among fossil fuels in the total installed capacity followed by 11% and 

29% from coal and hydro respectively with the rest from geothermal. There is little contribution 

of renewable energy in the base case scenario and the contribution of fossil fuel technologies 

constitutes more than half of the total installed capacity. 

 

 

 

 

 

 

 

 

Figure 6.5: Total Installed capacity – BCS 
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The optimization results for electricity generation mix in the RES are as illustrated in Figure 6.6. 

Electricity generation mix for the RES show an increase in the share of renewable energy from 5% 

in the year 2020 to 10% in 2025 and 15% in 2030 through 2040. Overall electricity generation in 

the renewable energy promotion scenario show natural gas power plants to contribute 45.6% of 

the total electricity generated in the year 2040 followed by 25% from hydro power plants and 14% 

from coal. The amount of electricity from fossil fuel sources will decrease from 49,023 GWh in 

BCS to 42,987 GWh in RES, the difference being taken by renewable energy sources. In the year 

2040, the total contribution from renewable energy sources will amount to 10,876 GWh as 

compared to 4840 GWh in the BCS.   

.   

 

 

 

 

 

 

 

Figure 6.6: Electricity generation mix – RES 

Total installed capacity in RES is as illustrated in Table 6.2 for the period from 2015 to 2040. A 

total of 1216 MW in renewable energy sources will be installed in 2035 of which wind, solar 

thermal and solar PV geothermal will contribute 500 MW, 516 MW and 200 MW respectively. 

The contribution of coal and natural gas for the year 2035 will be 1800 MW and 3618 MW 

respectively in the total installed capacity. Hydro power plants contribute 3775 MW and 3759 MW 

to the total installed capacity in the years 2035 and 2040 respectively. Installed capacity for solar 

PV will increase gradually from 44 MW in 2030 up to 200 MW in 2035 and then retreat to 156 
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MW in 2040. This is due to availability of geothermal which is cheaper than solar PV. Solar 

thermal will increase gradually from 516 MW in 2035 to 1400 MW in 2040. 

Table 6.2: Total Installed Capacity (MW) -RES 

 2015 2020 2025 2030 2035 2040 

Coal 412 412 712 1800 1800 1500 

Oil Products (HFO) 63 63 63 0 0 0 

Natural Gas 541 1394 2228 2313 3618 6278 

Hydro 565 1564 2875 3475 3775 3759 

Wind 0 0 0 500 500 0 

Biomass 10 10 0 0 0 0 

Geothermal 0 0 200 650 650 650 

Electrical Imports 0 200 200 200 0 0 

Solar PV 0 0 0 44 200 156 

Solar Thermal 0 0 0 0 516 1400 

Total 1590 3642 6277 8983 11059 13743 

 

6.4.3 Comparison of BCS and RES 

Comparison of investment costs between BCS and RES is as illustrated in Figure 6.7. Compared 

with RES, higher investment costs for renewable energy technologies drive the use of hydro, coal, 

oil products, geothermal and natural gas technologies in electricity generation under the BCS. The 

general trend of RES shows the replacement of coal- and oil-based generation with renewable 

energy technologies. This is achieved after imposing constraints that require the introduction of 

renewable energy shares. The consequence of the replacement is associated with the rise in 

investment costs. There is an increase of approximately 10% in investment cost under RES as 

compared to BCS. It is more expensive to implement renewable energy electricity generation as 

compared to conventional fossil fuel. Furthermore, simulation results reveal that without imposing 

constraints, it is difficult to have a reasonable share in renewable energy technologies for electricity 

generation. 

 

 

 



 

111 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Investments cost comparison 

Comparison of scenarios in terms of environmental impacts has shown BCS to produce more CO 2 

as compared to RES. The level of emissions under BCS and RES are illustrated in Figure 6.8. The 

level of CO2 in 2015 is the same for both scenarios, but decreases in RES as imposed constraints 

are effected. As the share of renewable energy increases, the amount of CO2 decreases too. The 

CO2 emissions saving in RES amounts to 2,565 kilo tonnes of CO2 in 2040 as compared to BCS. 

The saving in CO2 will help curbs greenhouse emissions which are on increase globally causing 

climate change (Ziuku and Meyer, 2012). 
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Figure 6.8: CO2 Emissions levels comparison 

6.5 Conclusion 

Optimization of the renewable energy scenario showed that it is possible to have a share of 

renewable energy mix in electricity generation with an associated rise in investment costs.  

Inclusion of renewable energy sources in the power mix will increase the investment cost by 10% 

as compared to BCS in the period 2015 - 2040. Renewable energy for generations of electricity is 

more expensive to implement than fossil fuels.  Apart from cost implications, renewable energy 

sources in the energy mix will replace a considerable amount of coal, natural gas and oil products 

and hence result in a less polluted environment. Renewable energy sources can play a leading role 

in moving Tanzania on a more secure, reliable and sustainable energy track. The potential of 

renewable energy sources in Tanzania is enormous, but their contribution in Tanzania power 

generation relies on government support to make them cost-competitive. This has been 

demonstrated by the analysis of the two scenarios, which indicate that without policy interventions 

renewable energy will not be able to penetrate the power generation mix. The government should 

implement REFiTs, which is in draft stage to encourage investment in renewable energy 

generation. REFiTs have the potential to successfully, increase overall electricity generation while 

reducing the greenhouse gas emission and other economic development problems related to energy 

use. 
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CHAPTER SEVEN 

 

 MAIN FINDINGS AND DISCUSSIONS 

 

7.1 Introduction 

This paper-based dissertation titled, “Modelling of Energy Demand and Supply Patterns in 

Tanzania” primary objective was to develop long-term energy demand and supply patterns for 

Tanzania that would enable the country to meet her growing energy demand sustainably using 

the current and future available energy resources. This chapter, presents summaries of the main 

findings and general discussions resulting from papers presented in chapters two, three, four, 

five and six. The dissertation first part as given in chapter two and three, applied machine-

learning approach to analyse the influence of selected indicators in the prediction of energy 

demand. The second part of the dissertation as given in chapter four, five and six, applied 

bottom-up modelling approach to simulate future energy demand through formulated scenarios 

and then optimize electricity supply options.  

7.2 Machine Learning Approach 

In addressing the general objective, the analysis of the influence of selected indicators in the 

prediction of energy demand preceded the study through the use of machine learning approach 

involving ANN-MLP, MLR and SVR.  The analysis was based on selected socio-economic 

and environment indicators that were determined to have influence in the energy demand of 

Tanzania. These indicators included population, GDP, per capita energy use, total primary 

energy supply, gross national income per capita, electricity, GHG emissions and year. The 

selected indicators were grouped to form economic, energy and environment indicator models. 

The economic indicators model considered in the analysis took GDP, gross national income 

per capita, population and year as explanatory variables and energy demand as dependent 

variable. In the energy indicators model, the choice of explanatory variables was based on per 

capita energy use, total primary energy supply, electricity, population and year as explanatory 

variables while energy demand was a dependent variable. Similarly, for the environment 

indicators model energy demand was the dependent variable with GHG, population and year 

were taken as explanatory variables.  
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7.2.1 Cross-validation (CV) process 

The experimental set-up for machine learning is as given in Section 2.4.2 and Section 3.4.2 of 

this dissertation. The analysis was carried out using Weka, which is a suite of machine learning 

software written in Java applicable for data mining tasks. The training and testing of data for 

all the experiments were done and cross-validated using 𝑘 folds cross-validation. In the 𝑘 fold 

cross validation, the original full sample data is divided into 𝑘 − subsamples data lacking 

overlays. For a 10 folds cross validation as applied in this dissertation, the division was k1, k2, 

k3 …… to k10. In the first case run, k1 up to k9 is selected as a training set to develop a model.  

The developed model uses the remaining k10 to test its performance. For the second case run, 

k10 and k1 to k8 forms a training set that develop a model, which then uses k9 to test its 

performance. The cross-validation process is repeated in a similar manner to ensure each fold 

is used only once as the validation data. The 𝑘 performances from all folds are then averaged 

by Weka and then presented on the output-pane. With the 10 fold cross validation, 10 different 

models are build using 10 different folds, which gives the average performance.  A 10 folds 

cross-validation process in a simplified form is as depicted in Figure 7.1.  

Figure 7.1: Simplified cross-validation process 

The choice of 10 folds cross validation bases on an extensive test previously done on a number 

of datasets using different learning techniques, which concluded it as the best number of folds 

for error estimation. The following literatures provides details on the benefits and deficiency 

of 10 cross validation; Bengio and Grandvalet (2004), Witten and Frank (2005), Markatou et 

al. (2005), Abu-Nimeh et al. (2007), Schaffer (1993), Arlot and Celisse (2010). Using 10 folds 
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means that of the total sample data set, 90% is for training and the remaining 10% for validation 

process. In practice, 90% is very near to 100% that makes the cross validation to produces a 

reasonable estimation of test performance as opposed to using 100% sample data set for 

training and test its performance against another hidden test set.  

7.2.2 Machine learning major results 

The results of ANN-MLP and MLR (Kichonge et al., 2014d) as presented in Chapter Two of 

this dissertation unanimously suggests a higher generalization accuracy in the prediction of 

energy demand with the use of the energy indicators models than economic and environment 

indicators models. A similar case is also observed in the application of SVR (Kichonge et al., 

2015b) as mentioned in Chapter Three of which the generalization performance of the 

polynomial-SVR kernel and energy indicators model outperformed economic and environment 

indicators models in the prediction of energy demand. The graphical representation as shown 

in Figure 7.2 of the generalization accuracies indicated that it is difficult to differentiate the 

accuracies of ANN-MLP, MLR and SVR, though the values of ANN-MLP seem to lie closer 

together than that of MLR and SVM. This is indicative of superior correlation and therefore 

predictive ability of ANN-MLP than its counterparts MLR and SVM. Table 7.1 supports the 

situation in which ANN-MLP outperforms others with CC value of 0.9995 as compared to 

corresponding values of 0.9993 and 0.9990 produced by MLR and SVR respectively. In 

addition to that, ANN-MLP is lower among others in terms of MAE, RMSE, RAE and RRSE 

values. On the whole, the results depicted in Figure 7.3 shows the deviations of ANN-MLP are 

in the range of +0.214 and -0.188 for all years much less as compared to MLR and SVR. The 

maximum deviation is obtained by SVR at +0.303 in 2004 followed by -0.286 in 2001 for 

MLR. As also shown the minimum deviation is obtained by ANN-MLP at -0.002 in 2004. 
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Figure 7.2: Generalization accuracies of ANN-MLP, MLR and SVR 

 

Table 7.1: ANN-MLP, MLR and SVR results - energy indicators model 

 
ANN-MLP MLR SVR (polynomial) 

CC 0.9995 0.9993 0.999 

MAE 0.0873 0.1102 0.1448 

RMSE 0.1155 0.1329 0.1629 

RAE 2.57% 3.25% 4.27% 

RRSE 3.04% 3.51% 4.30% 
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Figure 7.3: Comparison of deviations of ANN-MLP, MLR and SVR 

In this work the likely influences of social, economic and environment indicators to energy 

demand for Tanzania as sought in the research question is established. It is shown that the 

presence of a strong relationship between energy indicators and the determination of energy 

demand in Tanzania is obvious and that the energy indicators model formulated from time 

series data involving per capita energy use, electricity, population and year showed greater 

accuracy in the prediction on test data. Economic and environment indicators models reached 

satisfactory prediction results on the test data though they produced less accurate predictions 

as compared to energy indicators model using performance indices as discussed in Chapter 

Two and Chapter Three. Literature comparison show a different scenario for Turkey in which 

usage of economic indicators was found to be more suitable than the usage of energy indicators 

in the estimation of energy demand using ANNs. This is due to the fact that more precise and 

dependable results with GDP were obtained (Sözen and Arcaklioglu, 2007). In terms of 

techniques, artificial neural network showed superior accuracy in energy prediction for Greek 

by outperforming linear regression and support vector machine methods (Ekonomou, 2010). 

From the comparison and analysis of the techniques presented in Section 7.2, Machine 

Learning approaches (ANN-MLP, MLR and SVR) reached a satisfactory analysis and 

prediction results on the test data. However, ANN-MLP performance was superior among the 

three techniques due to minimum deviations and errors. Findings from this work show ANN-
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MLP is the best technique for the analysis of influential energy demand indicators for Tanzania 

although MLR and SVR are viable alternatives due to their good performances. It is therefore 

established from the results the likely influences of social, economic and environment 

indicators to energy demand for Tanzania. 

7.3  Bottom-up Modelling Approach 

To accomplish the primary objective of this dissertation, bottom-up models (end-use) namely 

MAED and MESSAGE were selected for the purpose. The MAED scenario approach was 

applied to simulate possible development paths of a country and the associated energy 

demands. Simulation of future energy demand considered business as usual (BAU), high 

economic consumption (HEC) and low economic consumption (LEC) scenarios. The 

simulation of energy demand considered four main economic sectors namely industry 

(subdivided into manufacturing and a combined agriculture, construction and mining 

subsectors), service, household and transport (subdivided into freight and passenger) for a 

study period from 2010-2040. A summary of the main assumptions and other data based on 

socio-economic and technological development which were considered in the simulation are 

given in Appendix II – XVI. MESSAGE optimization approach was applied to establish 

separately the least cost supply options for electricity generation in Tanzania. 

The choice of bottom-up models was based on the fact that they are more appropriate for 

Tanzania and other developing countries due to their flexibility (Grubb et al., 1993; Hourcade 

et al., 1996). Bottom-up models as opposed to top-down models, capture rural-urban socio-

economic differences and are capable of accounting for non-monetary transactions 

(Bhattacharyya, 2012; Bhattacharyya and Timilsina, 2010). One of the major advantages of 

bottom-up approach is in allowing modelling technological details resulting in a disaggregated 

description of energy technology processes. Moreover, bottom-up models are able to take into 

considerations important characteristics of the energy systems of developing countries. The 

important characteristics of the developing countries energy system among many others 

includes, the high dominance of biomass which is a non-commercial energy, low access to 

electricity and the poor performance of the electricity sector and the economy in general 

(Bhattacharyya and Timilsina, 2010; Urban, 2009). Suitability of these models for this 

dissertation is further enhanced by their ability to take account of non-cost/price policies 

prevailing in developing countries. However, the main drawback of bottom-up models is in 

their incompetence to analyse cost/price-induced effects though this is not a major concern for 
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energy modelling (Bhattacharyya and Timilsina, 2009).  

7.3.1 Energy demand simulation major results 

Simulation outcomes as discussed and presented in Chapter Four depict an exponential increase 

in the total energy demand. It has been shown that there is a growth of energy demand to three 

times as was in the base year just before the end of study period in 2040. The differences in 

total final energy demand are a result of presumed economic growth rates. BAU, LEC and 

HEC scenarios simulation results propose an increased demand in biomass for service and 

household sectors thus making it a dominant energy form in the entire study period. The 

average biomass shares in the three scenarios is greater than 75 % of total final energy demand. 

Results project higher demand of biomass in the service and household sectors whereas there 

is an observed decrease in the industry sector due to assumed technological improvement to 

substitute biomass. Wilson (2010) approximates sustainable biomass energy potential at 12 

MTOE. Simulation results as discussed in Chapter Four project biomass demand exceeding 

sustainable biomass energy potential throughout the entire study period. As reported in Lema 

(2009), Songela (2009), Felix and Gheewala (2011) and WB (2009) biomass use in Tanzania  

has induced a severe strain on the resources causing deforestation estimated at 130,000 and 

500,000 hectares per year. Simulation results concur with these studies since projected demand 

exceeds sustainable biomass energy potential posing a risk to forests status in the future. Even 

though this is true, there is an urgent need of ensuring sustainable usage of biomass resources 

in the country to capture its availability for future generation use. Avoiding use of energy from 

biomass is impossible at present thus a balance to ensure less damage to the environment is of 

great concerns. Higher biomass needs in the service and household sectors attributes primarily 

to thermal applications. 

Biomass usage for thermal applications in service and household sectors can be relieved by 

substituting to coal, natural gas and renewable energies.  The country has been blessed with 

huge amount of natural gas, coal and bio-fuel sources with additions of renewable energies 

(MEM, 2013a, c; Wilson, 2010). The use of natural gas, coal, bio-fuels and renewable energies 

for thermal applications in service and household sectors will significantly decrease population 

relying on biomass in the form of wood fuel and charcoal (Mwihava, 2010; NBS, 2008).  

Simulation results show the important role played by imported energy composed mainly of 

fossil fuel and particularly motor fuels, in the final energy demand of the country. Results 

depicted imported fuel commanding a 6% share of the total final energy demand in the base 
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year and observe an increase to approximately 17% at the end of study period. The higher share 

of fossil fuels in the total final energy demand attributes to the high demand in the industry 

sector dominated by the energy intensive industries. Besides, thermal applications demands in 

the household and service sectors will contribute to an increased share of fossil fuels because 

of life style changes indicating a shift from biomass dependency.  Moreover, motor fuel 

demand will contribute nearly as much as other fossil fuel in the total final energy demand. 

The increase of motor fuels depicts significant growth in the number of vehicles and total 

mobility. However, the share of imported energy specifically fossil fuel for thermal 

applications could be reduced by substituting to coal and natural gas which are locally available 

resources, thus increasing energy security by decreasing energy imports into a country. In 

addition to that, substitution to coal and natural gas will significantly decrease the share of 

imported energy. Despite difficulties in finding substitutes for motor fuel, efforts are underway 

to promote bio-fuels and natural gas as alternative transport fuel (GNV, 2015; Moreno and 

Fallen-Bailey, 1989).  

The significant outcome deduced in the development of electricity demand projection is the 

shift from household dominance of the total shares towards industry and service sectors. The 

decrease in household shares of electricity describes the changes in life styles leaning towards 

dependence on the service sector. However, the growth rate of electricity demand is constantly 

greater than that of energy demand over the entire study period depicting more mechanization 

in the industry and service sectors. The per capita electricity consumption, which measures the 

significant improvements in the basic quality of life and other socio-economic development, 

indicates its value in 2025 will be higher the current values of lower middle-income Sub-

Saharan Africa countries such as Ghana & Zambia for BAU and HEC scenario only. Likewise, 

the per capita electricity consumption in 2040 for BAU, LEC and HEC scenarios will be higher 

than the present values possessed by lower-middle income countries. 

7.3.2 Electricity supply options optimization results 

Medium and long-term energisation plans for Tanzania were achieved using MESSAGE, 

which is a bottom-up optimization model. Special consideration was given to electricity owing 

to its distinct nature as an energy form and its importance to the socio-economic development 

of Tanzania. The energisation plan (Kichonge et al., 2015a) and as presented in Chapter Five 

was based on evolution of electricity demand using MAED (Kichonge et al., 2014a) and as 

presented in Chapter Four. Chapter Six presents an energisation plan based on evolution of 
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electricity demand using Power System Master Plan (PSMP) projections (MEM, 2012). 

Optimization results based on formulated scenarios show electricity generation and the total 

installed capacity increases towards the end of study period in 2040. Least-cost results indicate 

the dominance of hydro, coal, geothermal and natural gas with an insignificant contribution 

from renewable energy as possible supply options for future electricity generation. Although 

coal and natural gas energy resources are locally available and give least-cost advantages, their 

combination is heavily founded in non-environmental friendly sources.  Drawback on the 

applications of hydro and geothermal are on the potential limitations at 4700 MW and 650 MW 

respectively leaving the least-cost options to coal and natural gas only. 

The optimized results reveal that under a least-cost basis without policy interventions, it is 

difficult to have a significant share of non-hydro renewable energy sources in the generation 

mix as indicated in Kichonge et al. (2014c). However, as shown in the optimization results, 

wind technology is the most promising among renewable energy technologies available in the 

country. The technology reaches competitiveness in the electricity generation in 2040 

explained by its lower investment costs and availability in delivering electricity. With the 

introduction of compulsory policy measures in REPP, wind technology reaches a significant 

share earlier as compared with solar PV and solar thermal technologies. In contrast, solar PV 

and solar thermal technologies had no contribution under least-cost basis explained by lower 

capacity factor and higher investment costs. Even with compulsory measures introduced in 

REPP scenario, the contribution of solar PV and solar thermal remain statically small as 

compared to geothermal and wind technologies. The optimization results as presented also 

suggests the potential of geothermal technology in the electricity generation for which it has 

shown competitiveness in BAU, LEC and HEC scenarios. Geothermal technology is most 

preferred for base load generation but the lack of information about the real potential 

availability and its quality for electricity generation hinders its penetration into electricity 

generation. Biomass resources employed in the electricity generation in this dissertation was 

limited to the use of solid residues from sugar plantations at 19.7 MW due to un-availability of 

information about its potential for electricity generation. The potential of biomass from sugar 

plantation in the electricity generation is promising and calls for increased effort into its 

utilization. 

Renewable energies have advantages of less GHG emission, lower operating and variable costs 

and most importantly require no primary energy supply. Demonstration over the immense 
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potential of renewable energy sources in reduction of GHG emissions levels over the entire 

modeling period is as shown in Figures 5.9, 5.13 and 6.8. The major drawbacks of the 

renewable energy sources integration into electricity generation lies in higher investments costs 

as depicted in Figures 5.11 and 6.7. However, apart from policy intervention, the huge 

discoveries of natural gas and coal could provide an alternative solution to investment cost 

barriers of renewable energy technologies. Petrochemicals which is an essential part of the 

chemical industry, could be derived from natural gas and coal and thus develop into a major 

player in the country’s economy and society wellbeing. With the policy intervention that 

favours renewable energy, part of the profit from petrochemical industry could fund the 

integration of renewable energy sources into electricity generation and thus displacing the huge 

dependency on coal and natural gas in the electricity generation as depicted in the optimization 

results. These measures will have positive impact on the levels of emissions reduction as 

depicted in the dissertation optimization results. The success of introducing renewable energy 

into the generation mix has a positive impact to society as it supplements on-going efforts for 

the provision of an environmentally friendly source of energy for industry and household use 

as stipulated in the country energy policy (Kichonge et al., 2014c; URT, 2003). 

The enormousness at which hydropower has in the generation of electricity from the optimized 

results of this dissertation is huge and needed special attention. The hydropower potential in 

the country has previously affected by the decrease in an overall annual rainfall accompanied 

with intensified and prolonged dry and wet spells weather events making the predictability of 

seasonal weather patterns more challenging (Loisulie, 2010). Dry-weather scenario introduced 

for the purpose, reveals that with less availability of hydropower at 20%, the electricity 

generations swings heavily to fossil fuel power plants technologies. In dry-weather scenario, 

higher shares of electricity generation comes from coal and natural gas power plants. The shift 

to fossil fuels power plant technologies goes in line with the increase in the expenditure for 

primary energy supply. Moreover, less availability of hydropower reveals huge impact in the 

environment including the increase of GHG.  

The optimization results with MESSAGE suggests the importance of natural gas, hydro, coal 

and most important renewable energy in backing up electricity generation in the country’s 

power system. The balanced combination of these resources as represented in REPP scenario, 

has established the reduction in terms of costs and GHG emissions as compared to the system 

without diversification of resources. The balanced portfolio of technologies incorporating 
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fossil fuel and renewable technologies ensures less effect to the power system due to prolonged 

dry and wet spells weather events and thus less GHG emission levels. The findings have 

established that it feasible to have a sustainable and economical supply of energy to Tanzania 

that will meet her energy demand and ensure for short, medium and long term energisation 

plans using currently available energy resources. It is through the optimized use of available 

energy resources where the quest in energizing the country will be realized as shown in the 

research findings. 

7.4 Key Challenges and Uncertainties 

i) Key challenges in accomplishing this study was on data access and availability. The data 

concerning energy modelling were to the large extent, disconnected and thus delayed the 

whole modelling process. In some cases, some of the data were as assumed/adopted from 

countries with similar developments path as Tanzania. It was even difficult to predict future 

energy demand using machine-learning approaches due to abstract data involving 22 years 

annual data set. Most important indicators intended for use in machine learning, were left 

out of process due to either broken time series data or un-availability of data. 

 

ii) Modelling the future of energy systems in Tanzania as is the case in other developing 

countries encompasses risks, due to uncertainties on energy cost, macro-economic growth, 

technology development and policies implementation. Cost of energy has an effect in the 

scenario formulation, as they tend to be volatile and hard to predict their future growth due 

to many factors such as geo-political issues among many others. It is challenging to be 

certain on macro-economic growth of Tanzania as a rapidly developing country due to its 

fast changes as observed recently after discovery of natural gas.  

 

Technological development in general result in advances from one point to another without 

the need to progress through all phases in in the middle (leap-frogging), which paves way 

to missing over periods observed in historic data. With leap-frogging, the effect in scenario 

formulation is challenging in modelling development of a technology at a specific time due 

to un-expected rapid positive changes.  Policies preparations and implementation 

worldwide have are determined by a number of issues including administration in office at 

a particular period, legislation periods, and developments plans, unexpected political 

decisions spurred by public debates or outcry. It is therefore, concluded that the scenarios 

presented in this dissertation are an indicator of possible future development paths.  
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iii)  Machine learning comparison with bottom-up models as applied in this dissertation was 

not realistic due to a number of factors inherited from the models themselves. Machine 

learning approach are simple and quick in information processing as compared to bottom-

up models. They require a minimum of a single indicator for prediction purposes and as a 

result cannot explain energy demand drivers as opposed to bottom-up models, which works 

on scenario basis and are able to disaggregate energy demand. Under data issues and 

dissimilarity upon which machines learning approach and bottom-up models, it was a 

challenge to make fruitful comparisons of these approaches out-puts.  
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CHAPTER EIGHT 

 

 CONCLUSIONS AND RECOMMENDATIONS 

 

8.1      Conclusions 

The primary objective of this dissertation was to develop a long-term energy demand and 

supply pattern for Tanzania that would enable her to meet her growing energy demand 

sustainably using the current and future available energy resources. Specific objectives and 

research questions were formulated and the work carried out in addressing the general 

objectives. From the aforementioned analysis and discussions as presented, the followings are 

the main conclusions drawn in line with the objectives and research questions of the study. 

i) In this dissertation, machine-learning approaches have been used to build socio-economic 

and energy indicator models to analyse and predict energy demand. The first model built is 

an economic indicators model with two economic indicators, a year and one demographic 

indicator as input units. The second model is an energy indicators model with two energy 

indicators, a year and one demographic indicator as input units. The last model built up 

with environment indicators model including one environment and one demographic 

indicators. all models out-puts units were energy demand. The models were built and then 

processed into three stages namely; the training, the testing and the evaluation stages. The 

cross-validation with 10-folds was also adopted for training. The training set was split into 

10 folds with 9 folds used for the training and the remaining fold for the validation process 

aimed. The training algorithm used in this dissertation for artificial neural network was the 

back propagation algorithm, which permits the input signal to be broadcasted to the output 

layers, then the error is processed at the output layer and propagated back to the input layer 

to adjust the weights as the network is trained.  

 

The models were trained, tested and evaluated using indicators time series data for the 

period extending from 1990 to 2011. The most appropriate ANN-MLP architecture, the 

best performing MLR model and the best SVR kernels among polynomial-SVR, 

normalized polynomial-SVR, RBF-SVR and the PUKF-SVR kernels was selected by 

considering performance indices to represent the best generalizing ability. Based on the 

results found with machine learning, it is concluded that the proposed models have 
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generated reasonably good generalizing performance results concerning the analysis of the 

influence of social, economic and environment indicators in the energy demand of 

Tanzania. The findings have established a stronger correlation of the energy indicators to 

energy demand than other indicators. The prediction using a model made up of energy 

indicators showed greater accuracy as compared to economic and environment indicator 

models. Even though the energy indicators had more accurate results, the use of economic 

and environment indicators is established as possible alternatives in the analysis and 

prediction of energy demand of Tanzania owing to acceptable performances showed.  

 

ii) Comparison of machine learning approaches in the prediction of energy demand using 

social, economic and environment indicators showed that ANN-MLP technique together 

with energy indicators model produced more accurate and reliable results. The statistical 

performance indices applied to evaluate the estimating ability of ANN-MLP, MLR and 

SVR approaches showed greater accuracy is as reached with ANN-MLP. Good 

performance of ANN-MLP technique attributes to higher correlation coefficient, minimum 

deviations and errors as compared to MLR and SVR. Although ANN-MLP outperformed 

MLR and SVR techniques, the results produced with these approaches showed a 

satisfactory performance. Based on the dissertation findings, the conclusion is reached that 

ANN-MLP is the best machine learning approach for the prediction of energy demand of 

Tanzania with the use of energy indicators. Furthermore, MLR and SVR techniques are 

viable alternatives to ANN-MLP in the prediction of energy demand of Tanzania due to 

their good performances.   

 

iii)  Simulations of future energy demands under various scenarios using a bottom-up approach 

have shown that the country’s energy demand will grow up exponentially towards the end 

of study period reaching 91.3 MTOE, 74.3 MTOE and 62.1 MTOE for HEC, BAU and 

LEC scenarios respectively. The energy balances for HEC, BAU and LEC scenarios are 

dominated by biomass followed by fossil and motor fuels added together and electricity. 

Biomass dominates both scenarios with annual growth rates of 3.44%, 2.79% and 4.15% 

for BAU, LEC and HEC scenario respectively. Simulation results reveals the projected 

biomass consumption exceeds the sustainable biomass usage throughout the entire study 

period and thus calling for alternative source of energy. Electricity demand annual growth 

rate is projected to increase at a rate of 8.51%, 8.01% and 9.48% for BAU, LEC and HEC 

scenario respectively while the growth rate for fossil fuels is at 9.97% for BAU scenario, 
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8.01% for LEC scenario and 10.39% for HEC scenario. The projected growth in electricity 

demand and therefore the per capita electricity consumption supersede lower middle-

income economic status values in 2025 indicating quality of life improvement. 

Furthermore, simulation results depicts higher growth rate in electricity demand as related 

to the total final energy demand. However, the more significant result observed in the 

development of electricity demand projection in the period 2035-2040 is the change from 

household and service dominance toward industry sector command at 39.7% as compared 

to 24.7% and 35.6% for household and service sectors respectively. Sectorial energy 

demand shows service sector as a dominant sector in the entire period at an average of 41% 

while household, industry and transport sectors accounts for 31%, 21% and 7% of the total 

share respectively. The final energy intensity is established to decrease continuously from 

base year value of 10 kWh/US$ to 10 kWh/US$, 7.9 kWh/US$, and 7.3 kWh/US$ for LEC, 

BAU and HEC scenarios, respectively in the year 2040 which is a suggestion of improved 

mechanization and automation. 

 

iv) Modelling of the energy resource mix to meet short to long-term energisation plan for 

Tanzania has shown the self-sufficiency of the country in generating its future electricity 

using its own energy resources. The optimization of energy mix has indicated the important 

role of natural gas, coal, hydro and geothermal energy resources in future energisation plan. 

The optimized results reveal that under a least-cost basis and without policy interventions, 

it is difficult to have a significant share of non-hydro renewable energy sources in the 

generation mix. However, as shown in the optimization results, wind technology and 

geothermal are the most promising among renewable energy technologies available in the 

country. The wind technology reaches competitiveness under least-cost basis in 2040 

explained by its lower investment costs and availability in delivering electricity.  

 

With the introduction of compulsory policy measures in REPP, wind technology reaches a 

significant share earlier than other renewable technologies. In contrast, solar PV and solar 

thermal technologies had no contribution under least-cost basis explained by lower capacity 

factor and higher investment costs. Results suggests the potential of geothermal technology 

in the electricity generation for which it has shown competitiveness under least-cost basis 

and enter generation mix earlier than other renewable energy technologies. The results have 

established that it is feasible to have a sustainable and economical supply of energy to 
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Tanzania that will meet her energy demand and be sufficient for short, medium and long-

term energisation plans using currently available energy resources.  

 

8.2     Dissertation Contribution to Science and Technology 

The followings are the summaries of the main contribution of this dissertation to science and 

technology as far as energy demand and supply patterns for Tanzania are involved: 

i) The dissertation through findings as presented in Chapter Two and Chapter Three, add body 

of knowledge to researcher and scholars that exists in the analysis of the influence of socio-

economic and environment indicators in the energy demand of Tanzania; 

ii) The findings provides a platform for more comparative studies using machine learning and 

other advanced techniques in determining the level of influences and relationship between 

socio-economic indicators and energy usage in Tanzania; 

iii)  The dissertation through findings as presented in Chapter Four, provides vital information 

to policy analysts, scholars, environmentalists and decision makers on possible future 

energy demand trend under various scenarios representing economic development paths of 

the country and the influence of each; 

iv) The findings as provided in Chapter Five and Chapter Six, provides vital information to 

policy analysts, scholars, environmentalists and decision makers into energy resources 

possible utilization options that ensure access to adequate and affordable energy services 

that ensures environmental quality, economic development and energy security. 

 

8.3       Recommendations 

The following are the recommendations deduced from this dissertation: 

i) Renewable energy potential can play a leading role in moving the country on a more secure, 

reliable and sustainable energy track. Realising this important role for renewable energy 

depends on whether existing and future policies successfully encourages the behaviour of 

project developers and investors. The dissertation results has opened-up through modelling 

the importance of renewables and recommends for policy interventions that ensures a 

significant contribution of renewables is realized in the energisation of Tanzania. 
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ii)  Dissertation findings have revealed a huge dependence of biomass for thermal applications 

in the household and service sectors that will continue to strain the country’s forests to a 

level of severe deforestation as much of these biomass originate from forests. A 

recommendation is made to the government and other regulatory bodies to ensure the 

sustainable use of biomass through policy intervention that ensures affordable utilization 

of coal and natural gas as substitute fuels. These policy interventions should be 

complimented by introduction of efficient cook stoves that will ensure minimization of CO2 

into atmosphere. 

 

iii)  Usage of geothermal and biomass technologies for electricity generation lack important 

information about their energy potential availability and the quality possessed. The 

geothermal and biomass technologies have shown an important role in contributing to the 

electricity generation. The dissertation results recommends fast tracking for detailed 

assessment of these potential for future use. 

 

iv) To control GHG, investments in new technologies such as combined cycle gas turbines 

(CCGT), for energy conversion purposes is highly recommended. In doing so it is possible 

to mitigate the environmental limitations while achieving optimized energisation plan. 

 

v) To finalize, the results of this dissertation should be complemented with additional studies 

using top-down and bottom-up energy models to determine energy demand and supply 

options for comparative and improvement purposes. Likewise, complemented studies 

should be conducted in the analysis of the influence of socio-economic and environment 

indicators towards energy demand using hybrid artificial intelligence techniques, SVR with 

genetic algorithm among many other artificial intelligence (AI) approaches. 
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Appendix I: Selected Socio-economic and Energy Indicators 

YEAR 
Population  

(Millions) 

TPES  

(MTOE) 

GNI per 

capita 

(current 

US$) 

GDP 

(Billion 

2005 

US$) 

Electricity  

(TWh) 

Energy use  

per capita 

(kg of oil 

equiv. per 

capita) 

CO2 

Emissions  

(Million 

tonnes 

CO2) 

1990 24.57 9.73 200 7.45 1.3 381.9 1.71 

1991 25.27 9.93 180 7.61 1.43 377.12 1.68 

1992 25.99 10.06 180 7.65 1.44 369.4 1.67 

1993 26.73 10.33 170 7.75 1.46 367 1.73 

1994 27.49 10.52 160 7.87 1.43 361.9 1.81 

1995 28.28 11.02 170 8.15 1.71 368.08 2.52 

1996 29.09 11.16 190 8.52 1.9 362.5 2.8 

1997 29.98 11.27 210 8.82 1.79 356.69 2.6 

1998 30.91 11.93 250 9.15 1.96 368.55 2.4 

1999 31.86 12.75 280 9.59 1.87 384.24 2.19 

2000 32.49 13.39 310 10.06 1.98 393.58 2.57 

2001 33.86 14.2 310 10.66 2.11 407.01 2.76 

2002 34.57 14.92 310 11.43 2.25 416.58 3.17 

2003 35.26 15.49 330 12.22 2.03 421.4 3.31 

2004 36.31 16.2 360 13.17 2.07 428.91 3.79 

2005 37.27 17.14 380 14.14 2.65 441.51 5.04 

2006 38.67 17.81 390 15.1 2.69 445.86 5.49 

2007 39.45 18.31 410 16.17 3.29 445.18 5.31 

2008 40.67 19.1 450 17.38 3.53 446.73 5.62 

2009 41.92 19.35 500 18.42 3.55 443.29 5.38 

2010 43.19 20.04 530 19.72 4.11 445.67 5.84 

2011 44.48 20.75 540 20.99 4.27 447.57 6.26 

 

 

 

 

 

 



 

147 

 

 

Appendix II: Energy intensities - Motor fuels 
    

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Agriculture [kWh/US$] 0.080 0.079 0.077 0.075 0.073 0.072 0.070 

Construction [kWh/US$] 0.512 0.510 0.508 0.506 0.504 0.502 0.500 

Mining [kWh/US$] 0.241 0.239 0.237 0.235 0.234 0.232 0.230 

Manufacturing [kWh/US$] 0.157 0.162 0.166 0.171 0.175 0.179 0.184 

- Basic material [kWh/US$] 0.280 0.278 0.277 0.275 0.273 0.272 0.270 

- Machine equipment [kWh/US$] 0.450 0.448 0.447 0.445 0.443 0.442 0.440 

- Non-durable goods [kWh/US$] 0.076 0.076 0.076 0.075 0.075 0.074 0.074 

 

Appendix III: Energy intensities - Electricity specific applications 
  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Agriculture [kWh/US$] 0.024 0.024 0.024 0.023 0.023 0.023 0.023 

Construction [kWh/US$] 0.215 0.215 0.215 0.215 0.214 0.214 0.214 

Mining [kWh/US$] 0.481 0.481 0.481 0.481 0.480 0.480 0.480 

Manufacturing [kWh/US$] 0.606 0.653 0.699 0.745 0.791 0.836 0.882 

- Basic material [kWh/US$] 0.776 0.775 0.774 0.773 0.772 0.771 0.770 

- Machine equipment [kWh/US$] 3.420 3.416 3.413 3.410 3.407 3.403 3.400 

- Non-durable goods [kWh/US$] 0.239 0.239 0.238 0.238 0.238 0.238 0.238 

 

Appendix IV: Energy intensities - Thermal applications 
    

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Agriculture [kWh/US$] 0.348 0.347 0.345 0.344 0.343 0.341 0.340 

Construction [kWh/US$] 0.488 0.487 0.485 0.484 0.483 0.481 0.480 

Mining [kWh/US$] 0.030 0.030 0.030 0.030 0.029 0.029 0.029 

Manufacturing [kWh/US$] 1.829 1.799 1.770 1.741 1.712 1.683 1.655 

- Basic material [kWh/US$] 2.123 2.119 2.115 2.112 2.108 2.104 2.100 

- Machine equipment [kWh/US$] 0.265 0.264 0.263 0.263 0.262 0.261 0.260 

- Non-durable goods [kWh/US$] 1.874 1.869 1.863 1.857 1.851 1.846 1.840 

 

Appendix V: Energy intensity - Intracity transportation 
  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Car diesel [l/100km] 10.000 9.833 9.667 9.500 9.333 9.167 9.000 

Car petrol [l/100km] 11.000 10.500 10.000 9.500 9.000 8.500 8.000 

Motorbike [l/100km] 3.000 2.917 2.833 2.750 2.667 2.583 2.500 

Bus - big [l/100km] 17.000 16.833 16.667 16.500 16.333 16.167 16.000 

Bus - small [l/100km] 13.000 12.833 12.667 12.500 12.333 12.167 12.000 
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Appendix VI: Energy intensity - Intercity transportation 
  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Air plane [l/1000seatkm] 150.000 149.167 148.333 147.500 146.667 145.833 145.000 

Car diesel [l/100km] 7.250 7.042 6.833 6.625 6.417 6.208 6.000 

Car petrol [l/100km] 8.000 7.833 7.667 7.500 7.333 7.167 7.000 

Motorbike [l/100km] 2.500 2.483 2.467 2.450 2.433 2.417 2.400 

Bus - big [l/100km] 50.000 49.833 49.667 49.500 49.333 49.167 49.000 

Bus - small [l/100km] 15.000 14.833 14.667 14.500 14.333 14.167 14.000 

Train [l/100km] 250.000 246.667 243.333 240.000 236.667 233.333 230.000 

Boat [l/100km] 100.000 99.167 98.333 97.500 96.667 95.833 95.000 

Electric train [kWh/100km] 1200.000 1166.667 1133.333 1100.000 1066.667 1033.333 1000.00 

 

Appendix VII:  Mean biomass efficiencies in thermal applications - ACM 

Item   2010 2015 2020 2025 2030 2035 2040 

Agriculture [%] 15.00 15.43 15.76 16.00 16.88 17.00 17.50 

Construction [%] 15.00 15.43 15.76 16.00 16.88 17.00 17.50 

Mining [%] 15.00 15.43 15.76 16.00 16.88 17.00 17.50 

 

Appendix VIII: Mean fossil fuels efficiencies in thermal applications - ACM  

Item   2010 2015 2020 2025 2030 2035 2040 

Agriculture [%] 40.00 40.33 40.67 41.00 41.33 41.67 42.00 

Construction [%] 40.00 40.33 40.67 41.00 41.33 41.67 42.00 

Mining [%] 40.00 40.33 40.67 41.00 41.33 41.67 42.00 

 

Appendix IX: Dwelling factors for thermal applications - Rural Household  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Cooking [kWh/dw/yr] 2359.108 2465.923 2572.739 2679.554 2786.369 2893.185 2981.000 

Dw with hot 

water 
[%] 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

HW per cap [kWh/cap/yr] 34.856 45.713 56.570 67.428 78.285 89.143 100.000 

Electr. cons. 

for appliaces 
[kWh/dw/yr] 293.959 294.965 295.972 296.979 297.986 298.993 300.000 

Electr. 

penetration 
[%] 3.000 5.000 7.000 9.000 11.000 13.000 15.000 

FF for 

lighting 
[kWh/dw/yr] 179.845 169.871 159.897 149.923 139.948 129.974 120.000 
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 Appendix X: Dwelling factors for thermal applications - Urban Household  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Cooking [kWh/dw/yr] 2328.398 2273.665 2218.932 2164.199 2109.466 2054.733 2000.000 

Dw with hot 

water 
[%] 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

HW per cap [kWh/cap/yr] 71.991 84.992 97.994 110.995 123.997 136.998 150.000 

Electr. cons. 

for appliances 
[kWh/dw/yr] 4065.890 4221.575 4377.260 4532.945 4688.630 4844.315 4989.000 

Electr. 

penetration 
[%] 14.650 17.208 19.767 22.325 24.883 27.442 29.98 

FF for 

lighting 
[kWh/dw/yr] 72.940 65.784 58.627 51.470 44.313 37.157 30.000 

 

 Appendix XI: Service sector basic data  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Labour force in SS [%] 10.399 10.499 10.599 10.700 10.800 10.900 11.000 

Floor area per 

employee 
[m2/cap] 15.000 15.833 16.667 17.98 19.533 20. 67 22.000 

Labour force in SS [million] 1.495 1.763 2.043 2.348 2.691 3.070 3.476 

Floor area of SS [million m2] 22.6 28.2 34.8 42.012 48.92 59.62 69.96 

 

Appendix XIIa: Service sector thermal efficiencies  

Item Unit  2010 2015 2020 2025 2030 2035 2040 

Efficiency - Biomass [%] 15.000 23.333 26.667 30.000 33.333 36.667 40.000 

Efficiency - Fossil fuels [%] 62.000 62.667 63.333 64.000 64.667 65.333 66.000 

COP heat pumps [ratio] 2.500 2.917 3.333 3.750 4.167 4.583 5.000 

 

Appendix XIIb: Penetration of energy forms into thermal applications - Service sector  

Item Unit  2010 2015 2020 2025 2030 2035 2040 

Biomass [%] 93.782 90.295 86.623 83.56 79.952 76.473 72.66 

Electricity [%] 0.980 1.650 2.320 2.990 3.660 4.330 5.000 

Fossil fuels [%] 5.18 7.65 10.12 12.59 15.06 17.53 20.00 

 

Appendix XIII: Electricity penetration projections – Rural Households 

Item Unit  2010 2015 2020 2025 2030 2035 2040 

BAU [%] 3 10 15 22 28 34 42 

HEC [%] 3 12 20 25 35 45 50 

LEC [%] 3 8 12 16 20 24 30 
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Appendix XIV: Electricity penetration projections – Urban Households 

Item Unit  2010 2015 2020 2025 2030 2035 2040 

BAU [%] 15 22 30 37 45 53 60 

HEC [%] 15 25 35 45 55 65 75 

LEC [%] 15 20 25 30 35 45 50 

 

Appendix XV: GDP structure by main economic sectors  

Item Unit 2010 2015 2020 2025 2030 2035 2040 

Agriculture [%] 24.129 23.107 22.086 21.064 20.043 19.021 18.000 

Construction [%] 7.027 7.189 7.351 7.514 7.676 7.838 8.000 

Mining [%] 2.391 2.326 2.261 2.195 2.130 2.065 2.000 

Manufacturing [%] 9.615 10.346 11.077 11.807 12.538 13.269 14.000 

Service [%] 54.695 54.912 55.130 55.347 55.565 55.782 56.000 

Energy [%] 2.144 2.120 2.096 2.072 2.048 2.024 2.000 
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Appendix XVI:  Efficiencies, ratios and other factors - Manufacturing 

Factors   2010 2015 2020 2025 2030 2035 2040 

COP of heat pumps [ratio] 2.5 2.5 2.56 2.600 2.633 2.667 2.700 

Eff. of cogeneration [%] 40 40 40 40 40 40 40 

Heat/electricity ratio [ratio] 4 4 4 4 4 4 4 

Eff. of Fossil Fuel, steam gen. [%] 40 40.8 41.667 42.5 43.333 44.167 45 

Eff. of Fossil Fuel, furn./dir. heat [%] 33 33.3 33.667 34 34.333 34.667 35 

Eff. of Fossil Fuel, sp./w heating [%] 47 47.7 48.167 48.625 49.083 49.542 50 

Eff. of Biomass, steam generation [%] 15 15.5 16 16.5 17 17.5 18 

Eff. of Biomass, furn./dir. heat [%] 15 15.5 16 16.5 17 17.5 18 

Eff. of Biomass, sp./w heating [%] 15 15.5 16 16.5 17 17.5 18 

Eff. of Fossil Fuel, mean [%] 39.837 40.324 40.819 41.319 41.819 42.317 42.811 

Eff. of Biomass, mean [%] 15 15.5 16 16.5 17 17.5 18 



 

152 

 

 

PUBLICATIONS AND CONFERENCE PAPERS RELATED TO THIS WORK 

1). Modelling of Future Energy Demand for Tanzania, Journal of Energy Technologies and 

Policy (JETP), Vol. 4, # 7, pp. 16-31. (2014). 

2). Modelling the integration of renewable energy into power generation: A case study of 

Tanzania, In The 9th Regional Collaboration Conference -Research and Innovations 

forum for sustainable regional Development: Over a Decade of Swedish Partnership, 

Imperial Resort Beach Hotel, Entebbe, Uganda (2014) 

3). Prediction of Tanzanian Energy Demand using Support Vector Machine for Regression 

(SVR), International Journal of Computer Applications (IJCA), Vol. 109. #3, pp. 34-39. 

(2015) 

4). Analysis of Tanzanian Energy Demand using Artificial Neural Network and Multiple 

Linear Regression, International Journal of Computer Applications (IJCA), Vol.108, # 2, 

pp.13-20, (2014) 

5). Prediction of the Contribution of Renewable Energy Sources into Electricity Generation 

in Tanzania, International Journal of Renewable Energy Technology Research (IJRETR) 

Vol. 3, # 4, pp.1 - 13. (2014) 

6). Modelling Energy Supply Options for Electricity Generations i36.assasn Tanzania, 

Journal of Energy in Southern Africa (JESA), Vol. 26, #3, pp. 41-57. (2015) 


