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ABSTRACT 

Residents of malaria-endemic communities spend several hours outdoors performing 

different activities such as cooking, story-telling or eating; thereby exposing themselves to 

potentially-infectious mosquitoes. This compromises indoor interventions, notably long-

lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study 

characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed 

protective efficacies of transluthrin-treated chairs and hessian ribbons against mosquitoes. 

Two hundred households were surveyed, and their most-used peri-domestic spaces physically 

characterized. Protective efficacies of these two prototyped interventions were tested outdoor 

in 28 households in dry and wet seasons, using volunteer-occupied exposure-free double net 

traps. Center for Diseases Control and Prevention miniature light traps (CDC-LT) were used 

to estimate host-seeking mosquito densities within outdoor kitchens. Field-collected 

Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs 

to estimate 24h-mortality. Approximately half (52%) of houses had verandas. Aside from 

these verandas, most houses also had peri-domestic spaces where residents stayed most times 

(67% of houses with verandas and 94% of non-veranda houses). Transfluthrin-treated chairs 

reduced outdoor-biting An. arabiensis densities by 70-85% while transfluthrin-treated hessian 

ribbons caused 77-81% reduction in the general peri-domestic area. Field-collected An. 

arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. 

Most houses had actively-used peri-domestic spaces where exposure to mosquitoes occurred. 

The transfluthrin-treated chairs and ribbons reduced outdoor-biting malaria vectors in these 

peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-

caught malaria vectors. These two new prototypes, if developed further, may constitute new 

options for complementing LLINs and IRS with outdoor protection against malaria and other 

mosquito-borne pathogens in areas where peri-domestic human activities are common. 

Keywords: Peri-domestic spaces, transfluthrin-treated chairs, hessian ribbons, transfluthrin, 

spatial repellents, outdoor-biting, and malaria vectors. 
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CHAPTER ONE 

INTRODUCTION 

This chapter comprises of general introduction, objective, statement of the problem, rationale 

of the study, research questions, hypothesis, significant of the research and the delineanation 

of the study. The overall objective was to create mosquito-free outdoor spaces using 

transfluthrin-treated chairs and transfluthrin-treated hessian ribbons and this was 

accomplished by creating three specific objectives: (a) to characterize peri-domestic spaces 

used by people for various early-evenings outdoor activities; (b) assess the efficacies of 

transfluthrin-treated chairs and ribbons in creating mosquito-free peri-domestic space and (c) 

test insecticide susceptibility of mosquitoes to pesticides commonly used in public health. 

1.1 Background of the Problem 

Since 2000, malaria morbidity and mortality have tremendously declined in sub-Saharan 

Africa (Bhatt et al., 2015; WHO, 2015b, 2017, 2018b), though the recent evidence suggests 

that such gains are starting to stagnate (WHO, 2017, 2018b, 2019). Most of the gains 

observed between 2000 and 2015 were estimated to have been contributed by the existing 

core indoor vector control interventions, i.e. Insecticide Treated Nets (ITNs) and indoor 

residual spraying (IRS) (Bhatt et al., 2015; Noor et al., 2014; O'Meara, Mangeni Steketee & 

Greenwood, 2010; Steketee & Campbell, 2010). 

Long-lasting insecticide treated nets (LLINs) and IRS are effective against indoor-biting and 

indoor-resting mosquitoes, but are less effective against outdoor-biting mosquitoes, which are 

important vectors for residual malaria transmission (Durnez & Coosemans, 2013; Govella & 

Ferguson, 2012; Russell et al., 2011; Sherrard-Smith et al., 2019). It has been estimated that 

the Anopheles bites not preventable by LLINs could be causing up to 10 million additional 

malaria cases annually (Sherrard-Smith et al., 2019). As a result, LLINs and IRS require 

complementary interventions to achieve the 2030 global targets of reducing malaria burden 

by at least 90% and elimination in 35 endemic countries (WHO, 2015a).  

In many malaria-endemic communities, people spend several hours cooking, eating and 

socializing outdoors in the early evenings before they go to sleep (Monroe, Moore, Koenker, 

Lynch & Ricotta, 2019), and also in the early mornings after they wake up, when malaria 

vectors may be active and mediating transmission (Durnez & Coosemans, 2013). Some of 
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these outdoor activities, as well as sleeping outdoors (Monroe et al., 2015), are partly 

attributable to warm climate (Moshi et al., 2017), but they also have strong cultural 

determinants (Finda et al., 2019; Moshi et al., 2018). The importance of outdoor malaria 

transmission, and associated outdoor human activities, are now well-established (Finda et al., 

2019; Govella & Ferguson, 2012; Monroe et al., 2019; Russell et al., 2011). However, there 

are still gaps regarding appropriate interventions to address these gaps. The characteristics of 

the peri-domestic spaces where households conduct outdoor activities remain poorly 

documented, despite being essential for designing, creating and testing interventions to 

complement LLINs and IRS by protecting such outdoor spaces.  

Several intervention options have been proposed as candidates for closing these malaria 

transmission gaps (Williams et al., 2018). Examples include: (a) outdoor-baited traps (Homan 

et al., 2016; Okumu, Govella, Moore, Chitnis & Killeen, 2010), (b) attractive targeted sugar 

baits (Müller et al., 2010), (c) pyrethroid-treated clothing (Crawshaw et al., 2017; Rowland et 

al., 1999), zooprophylaxis (Rowland et al., 2001) and (d) repellents (Gupta & Rutledge, 

1994) among others. Topical repellents applied on human skin are widely available for 

personal protection in some areas. However, commercial formulations of government-

sectioned scale-up campaigns of such topical repellents are limited because  they protect only 

individual users (Moore, Davies, Hil & Cameron, 2007), have low user compliance rates and 

acceptance (Gryseels et al., 2015; Maia, Kliner, Richardson, Lengeler & Moore, 2018; 

Makungu et al., 2017), and have only short-term efficacy (Sangoro, Kelly, Mtali & Moore, 

2014). They are also expensive for repeated use by the low-income populations at greatest 

risk.  

On the other hand, spatial repellents are volatile insecticides that diffuse into the air as 

vapour, and may protect multiple people within the surrounding space against outdoor-biting 

malaria vectors (Achee et al., 2012; Govella, Ogoma, Paliga, Chaki & Killeen, 2015; Masalu 

et al., 2017; Ogoma et al., 2017; Ogoma et al., 2012). In recent years, several versions and 

delivery formats have been recently developed and have shown promising result to be able to 

provide both indoor and outdoor protection against diseases-transmitting mosquitoes without 

repeated application for several months (Govella et al., 2015; Masalu et al., 2017; Mmbando 

et al., 2018; Mwanga et al., 2019; Ogoma et al., 2017; Ogoma et al., 2012). In particular, a 

wide range of transfluthrin emanator prototypes based on treated hessian fabric products have 

been recently developed that protect indoor and outdoor spaces for several months without 
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repeated reapplication (Govella et al., 2015; Masalu et al., 2017; Mmbando et al., 2018; 

Mwanga et al., 2019; Ogoma et al., 2017; Ogoma et al., 2012). Transfluthrin also has 

additional properties beyond just spatial repellency that include toxicity to mosquitoes, and 

incapacitation that prevents blood-feeding, which could contribute to community-wide mass 

effects, even for non-users (Mwanga et al., 2019; Ogoma et al., 2014). 

Improved understanding of the peri-domestic spaces coupled with new interventions that can 

be effective in such spaces, could potentially address current challenges related with exposure 

to outdoor-biting exposure and transmission risk. This study was therefore aimed at 

addressing two knowledge gaps by: (a) characterizing the common peri-domestic spaces used 

by communities in rural south-eastern Tanzania for various outdoor activities, and (b) 

assessing the protective efficacies of two hessian-based transfluthrin-emanator prototypes, 

specifically transfluthrin-treated chairs and transfluthrin-treated hessian ribbons wrapped 

around outdoor kitchen, against outdoor-biting malaria vectors and other pathogens-carrying 

mosquitoes in those peri-domestic spaces, and lastly (c) conducting WHO insecticide 

susceptibility test in malaria vectors. 

1.2 Statement of the Problem 

The importance of outdoor malaria transmission and the outdoor human activities that 

facilitate it is now well-established (Finda et al., 2019; Govella & Ferguson, 2012; Monroe et 

al., 2019; Russell et al., 2011). However, there are still gaps regarding appropriate 

interventions to address the challenges. The characteristics of the peri-domestic spaces where 

households conduct outdoor activities remain poorly documented, despite being essential for 

designing, creating and testing interventions to complement LLINs and IRS by protecting 

such outdoor spaces. 

1.3 Rationale of the Study 

The fact that data on characteristics of the peri-domestic spaces used by household members 

for various outdoor activities remain poorly documented and these people are high 

disproportionately exposed to potentially-infectious mosquitoes while are in these spaces; 

characterizing peri-domestic spaces, designing, creating and testing interventions that would 

be used specific in the these space  to complement LLINs and IRS worth investigation. 
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1.4 Objectives 

1.4.1 General objective 

Create mosquito-free outdoor spaces using transfluthrin-treated chairs and ribbons 

1.4.2 Specific objectives 

(i) To characterize peri-domestic spaces used by people for various early-evenings 

outdoor activities. 

(ii) To assess the efficacy of transfluthrin-treated chairs and transfluthrin-treated 

hessian ribbons in creating mosquito-free outdoor spaces, and 

(iii) To test insecticide susceptibility of mosquitoes to pesticides commonly used in 

public health. 

1.5 Research questions 

(i) Which are the peri-domestic spaces used by households members for various 

outdoor activities? 

(ii) By what magnitude do transfluthrin-treated chairs and transfluthrin-treated hessian 

ribbons create mosquito-free outdoor spaces? 

(iii) What is the current insecticide susceptibility status on malaria vectors in Lupiro 

village? 

1.6 Hypothesis 

(i) The study hypothesized that transfluthrin-treated chairs can create mosquito-free 

outdoor spaces, and 

(ii) The study hypothesized that transfluthrin-treated hessian ribbons can create 

mosquito-free outdoor spaces 

1.7 Significance of the study 

As the data on the characteristics of common peri-domestic spaces used by household’s 

members for various outdoor activities was lacking, this study filled this gap by clearly 

characterizing these spaces. This information were used as a benchmark for designing, 

creating and testing two interventions, notably transfluthrin-treated chairs and transfluthrin-

treated hessian ribbons for specifically creating mosquito-free peri-domestic spaces in order 

to complement LLINs and IRS. 
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1.8 Delineanation of the Study 

Important of outdoor malaria transmission and the associated outdoor activities which 

coincide with peak hours of mosquitoes bites and this expose people to potentially-infectious 

mosquitoes is well documented. To date, data on the characterization of the peri-domestic 

spaces which are used by people for different activities before they go to sleep such as 

cooking, eating, watching television, story-telling among other is missing. This data is 

invaluable in the sense that it could be used as a basis for designing, creating and testing 

vector control intervention specific for these spaces to complement long lasting insecticidal 

nets and indoor residual spraying. 

This study therefore focused on clearly characterizing peri-domestic spaces, which are used 

by people for various activities before they go to sleep and created and tested two vector 

control tools in creating mosquito-free outdoor spaces: (a) transfluthrin-treated chairs and (b) 

transfluthrin-treated hessian ribbons. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

To achieve global malaria elimination and eradication targets, protection of people against 

outdoor malaria transmission is well-advocated (Govella & Ferguson, 2012; Killeen, 2014; 

Russell et al., 2011; Sherrard-Smith et al., 2019). With the recent reiteration from WHO 

high-level panel on malaria eradication (WHO, 2019a) and the Lancet commission on 

malaria eradication (Feachem et al., 2019), this call for the new innovative malaria vector 

control tools to complement LLINs and IRS. As people stay outdoors in early evenings 

before they go to sleep, they may be disproportionately exposed to potentially-infectious 

mosquito bites. Peri-domestic spaces are the common outdoor premises commonly used by 

community members for different activities, notably resting, cooking and eating, and this 

behavior coincides with peak mosquito bites (Matowo et al., 2013). To date, data on 

characteristics of these peri-domestic spaces, which may be used as the basis for designing, 

creating and testing malaria vector control tools specific in these settings still poorly 

documented. The use of transfluthrin-treated hessian-based spatial repellent emanators is 

currently growing subject of interest in controlling outdoor-biting mosquitoes (Govella et al., 

2015; Masalu et al., 2017; Mmbando et al., 2018; Mwanga et al., 2019; Ogoma et al., 2012). 

This chapter, review on the global and national malaria burden, national adopted malaria 

control strategies, the threat of insecticides resistance malaria by vectors, early evenings peri-

domestic spaces activities conducted by communities members before they go to sleep and 

the use of transfluthrin-treated chairs and transfluthrin-treated hessian ribbons as potential 

peri-domestic spaces malaria vector control tools.  

2.2 Global Burden of malaria transmission 

In 2017, it was estimated that about 219 million cases and 435 000 deaths occurred globally 

and resulted to an increase of two million cases as compared to 2016 (WHO, 2018b). Even 

though 239 million cases occurred in 2010, the 20 million reduction in cases demonstrated 

that progress in malaria reduction has stalled (WHO, 2018b). The current evidence also show 

that 228 million malaria cases were recorded in 2018, which resulted to an increase of nine 

million cases as compared to 2017 (WHO, 2019). African region alone contributed to about 
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93% of the global malaria cases of which, 19 sub-Saharan countries and India contributed to 

an approximately 85% of global malaria burden (WHO, 2019) .   

Generally, global malaria burden has substantially decreased since 2000, however,  recent 

evidences show that these gains have stalled (WHO, 2017, 2018b, 2019) which  may 

undermine the efforts toward malaria elimination and eradication. 

2.3 Burden of malaria transmission in Tanzania 

In 2011-12, malaria prevalence in Tanzania was estimated to be 10% (NBS, 2012), whereas 

in 2015-16 the prevalence was estimated to be 14% (NBS, 2017), with the lake and southern 

region carrying relatively high burden of the disease. Besides, the goal of Tanzania was to 

reduce malaria prevalence from 10% in 2012 to 5% in 2016 and to the lesser than 1% in 2020 

(MOHSW, 2014). Recent evidence show that malaria prevalence dropped from 14% in 2015-

16 to 7.3% in 2017 (TMIS, 2018).  

 2.4 Malaria control strategies in Tanzania 

In Tanzania, vector control tools include LLINs most of which are distributed by the 

government (Renggli et al., 2013), IRS and larvicide in selected areas as well as preventive 

and treatment strategies including the use intermittent preventive treatment in pregnancy 

(IPTp) in second and third trimesters, intermittent preventive treatment in infants (IPTi), the 

use of artemisinin combination therapy (ACTs) among others. Currently, Tanzania has 

developed a 2019-2024 vector control strategy, of which the use of repellent is one of the 

measures highlighted in the strategic objective one which entails to implement effective 

control measures against vectors to reduce transmission of vector borne diseases. 

2.5 The challenges of malaria vectors resistance to insecticides commonly used in public 

health 

Long-lasting insecticidal nets and indoor residual spraying are key malaria vector control 

tools in sub-Saharan Africa. In Tanzania, LLINs are widely distributed and used as the main 

malaria vectors control tools (Renggli et al., 2013). Due to the dermal toxicity safety of 

pyrethroid in mammals, this is the only class of insecticide used to impregnate these nets. 

Similarly, this class of insecticide is also widely used in control of crop pests in agriculture, 

as a result, insecticides contaminated water can permeates ground water which contain 
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mosquitoes larval, thereby exacerbating insecticides resistance in malaria vectors (Ranson et 

al., 2009). The wide-scale spread of insecticide resistance in malaria vectors compromise the 

efforts toward malaria control and elimination (Cook et al., 2018; Protopopoff et al., 2018; 

Tiono et al., 2018). To achieve malaria elimination and eradication targets, routine 

monitoring of this public health threat on the current mainstay malaria control tools such as 

LLINs and IRS is required in order to preserve and maintain the fragile gains accrued after 

the scale-up of these interventions (WHO, 2012). 

2.6 Peri-domestic space activities conducted by household’s members before bed time 

In many malaria-endemic communities, people spend several hours cooking, eating and socializing 

outdoors in the early evenings before they go to sleep, and also in the early mornings after they wake 

up (Monroe et al., 2019), when malaria vectors may be active and mediate transmission (Durnez & 

Coosemans, 2013). Some of these outdoor activities, as well as sleeping outdoor (Monroe et al., 

2015), are partly attributable to warm climate (Moshi et al., 2017) but also have strong cultural 

determinants (Finda et al., 2019). The importance of outdoor malaria transmission and the outdoor 

human activities that facilitate it is now well-established (Finda et al., 2019; Govella & Ferguson, 

2012; Monroe et al., 2019; Russell et al., 2011). However, there are still gaps regarding appropriate 

interventions to address it. The characteristics of the peri-domestic spaces where households conduct 

outdoor activities remain poorly documented, despite being essential for designing, creating and 

testing interventions to complement LLINs and IRS by protecting such outdoor spaces. 

2.7 The use of transfluthrin-treated chairs and hessian ribbon as outdoor-biting malaria 

vector control tools 

Following the scale up of LLINs across Africa to control indoor malaria transmission, approximately 

half of remaining residual transmission occurs outdoors, where it cannot be prevented with additional 

insecticide house spraying or screening methods (Killeen, 2014; Killeen et al., 2013). It has been 

estimated that the Anopheles bites not preventable by LLINs could be causing up to 10 

million additional malaria cases annually (Sherrard-Smith et al., 2019). With this challenge, 

LLINs and IRS require complimentary interventions to achieve the 2030 global targets of 

malaria burden reduction of at least 90% and elimination in 35 endemic countries (WHO, 

2015a).  

Topical repellents applied on human skin offer one widely available option for personal protection, 

but commercially available formulations are limited because  they protect only individual users 

(Moore et al., 2007), have low user compliance rates  and acceptance (Gryseels et al., 2015; Maia et 
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al., 2018; Makungu et al., 2017), and have only short-term efficacy (Sangoro et al., 2014), so they are 

too expensive for repeated use by the low-income populations at greatest risk. However, spatial 

repellents are volatile insecticides that diffuse into the air as vapour, and may protect multiple people 

within the surrounding space against outdoor-biting malaria vectors (Achee et al., 2012) thereby, 

protecting  multiple individuals occupying that space. 

A recently developed long-lasting, low-tech formulation of the widely-used spatial repellent, 

transfluthrin, impregnated it into strips of locally available sacking fabric (Ogoma et al., 2012) (Fig. 

1a), can provides more than 90% protection against wild An. gambiae and Culex spp. for over four 

months (Govella et al., 2015) (Fig. 1b). Besides, this experimental prototype provides up to a year of 

protection (Ogoma et al., 2017), with no diversion to non-users (Ogoma et al., 2017), and is equally 

efficacious for six months with a dosage of only 1 ml transfluthrin (Ogoma et al., 2017). However, 

this experimental prototype is impractical for everyday use, as it requires the user to sit within the 1 

m
2
 perimeter of a strip, suspended on four poles (Fig. 1b). 

This study specifically designed more practical prototypes, notably fitting a locally-popular 

chair (Fig. 1c) with transfluthrin-treated hessian mat underneath the seat (Fig. 1d), where 

there is no physical contact with the user. It is also worth noting that wooden chairs are 

popular across different demographic and socio-economic groups, making them an effective 

means to deploy and scale-up protective mosquito repellents, even in rural and marginalized 

communities. Similarly, as the first lead technology had hessian strip fitted about 1 m from the 

floor on the four poles making a 1 m
2
 perimeter (Ogoma et al., 2012), this way, made it impractical 

for programmatic scale up. With this limitation, this study changed the position of the strip from 

fitting it at 1 m above the floor (which restricted free entry of the user) to about 1.3 m (Figs. 1e and 

1f) on the outdoor kitchen that is relatively convenient and allows free entrance of the user. This 

study therefore used low-tech and, scalable spatial repellents, notably transfluthrin-treated 

chairs and hessian ribbons for creating mosquito-free spaces.  
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Figure 1: Stagewise development on the use of transfluthrin-treated chairs and transfluthrin-

treated hessian ribbons 

Key: a = Illustrating the original transfluthrin-treated hessian ribbon as previous described 

(Ogoma et al., 2012), b = field evaluation of transfluthrin-treated hessian ribbon 

(Govella et al., 2015), c = transfluthrin-treated chairs prototype evaluated in this 

study, d = fitting of transfluthrin-treated hessian mat underneath the chair, e = 

example of outdoor-kitchens installed with transfluthrin-treated hessian ribbon and f 

= example of outdoor-kitchens installed with transfluthrin-treated hessian ribbon 

with a miniaturized double net trap installed about 1.2 m from kitchen (Limwagu et 

al., 2019) 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Hessian materials and the repellents 

Used hessian sacks were purchased from kariakoo market, Dar es Salaam, Tanzania. A 99% 

technical grade of transfluthrin (Bayer CropScience AG, Monhein am Rhein, German), 

acetone from Sigma Aldrich and a domestic liquid detergent, tarmol (Tarmal soap and allied 

industries limited, Dar es Salaam, Tanzania). Timbers, nails and vanish were purchased from 

local hardaware vendors in Lupiro village. 

3.2 Study area 

The study was implemented in Lupiro village (8.385°S, 36.670°E) (Fig. 2), in the Kilombero 

valley, south-eastern Tanzania. Households were selected from four sub-villages namely: (a) 

Ndoro; (b) Libaratula; (c) Mabatini and (d) Lupiro Kati. Most residents here were peasants, 

cultivating rice, maize and other crops. Houses have brick or mud walls, and metal 

(corrugated iron sheets) or grass-thatched roofs. Annual rainfall is 1200-1600 mm, and 

temperatures range between 20.0°C and 32.6° (TMA; World Weather Online). Principal 

malaria vectors in this area are Anopheles funestus and Anopheles arabiensis with the former 

contributing over 80% of transmission (Kaindoa et al., 2017). Both An. arabiensis and An. 

funestus populations in the area have been shown to be resistant to multiple public health 

insecticides including pyrethroids, carbamates and organochlorides (Kaindoa et al., 2017; 

Lwetoijera et al., 2014; Matowo et al., 2017). Long-lasting insecticidal nets are the main 

malaria prevention method, most of which are distributed by the government (Renggli et al., 

2013). 
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3.3 Characterization of peri-domestic spaces 

To achieve this objective, two hundred (200) households were surveyed, including 50 from 

each sub-village (Fig. 2), selected via stratified random sampling. Data were collected using 

electronic tablets using KoboCollect™, an open access software programmed using Open 

Data Kit (ODK) (KoBoToolbox, 2019). A trained research team was assigned to each sub-

village. Written informed consent was obtained from each of the 200 households. For each 

household, the peri-domestic spaces were observed directly to characterize them physically 

based on use, physical setting (location) and whether they were built-up or not. Digital 

pictures were taken of the different peri-domestic environments. The research team also 

administered survey questions to the household heads on: (a) identification information such 

as age, (b) education level, (c) socio-economic data including source of income, possession of 

radio, television, cell phone among others, (d) information on peri-domestic spaces such as 

presence of other peridomestic spaces apart from veranda and their usage, presence of other 

peri-domestic spaces if the house had no veranda and their usage.  

The peri-domestic spaces were classified as either: (a) built-up spaces attached to the main 

houses, i.e. veranda extensions; (b) built-up spaces not attached to the main houses, e.g. 

separate kitchens, and (c) non-built-up or other peri-domestic spaces commonly used for 

various outdoor activities. 
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Figure 2: Map illustrating the study area 

Key: a = Illustration of the location of Ulanga and kilombero district in the map of Tanzania, 

b = the location of Lupiro village in Ulanga district and c = household location in 

Lupiro village showing both surveyed and those did not 

3.4 Making of transfluthrin-treated chairs and hessian ribbons 

For the dry season experiment, six identical chairs made of wood and metal frame were 

constructed by a local carpenter, while for the wet season experiment 15 chairs were made 

(Fig. 3a). The chairs were fitted underneath with four standardized hessian fabric mats: two 

measuring 42 cm × 43 cm and fitted underneath the right and left sides of the chair and other 

two measuring 20 cm × 33 cm, which were fitted underneath the middle part of the chair 

(Fig. 3b). These mats were made by a local seamstress at the Ifakara Health Institute 

fabrication facility (the MozzieHouse). The hessian mats had been treated in emulsified 

solutions containing 2% transfluthrin (Bayer AG, Germany), prepared as previously 

described (Masalu et al., 2017; Ogoma et al., 2012).  

Similarly, the hessian ribbons were prepared as previously described (Mmbando et al., 2018). 

Each ribbon had 15 cm width and 10 m length, made locally at the MozzieHouse and treated 
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in a 2% emulsified solution of transfluthrin. Detailed descriptions of such hessian ribbons and 

treatment procedures have previously been published (Mmbando et al., 2018; Ogoma et al., 

2012). 

3.5 Determination of the efficacy of transfluthrin-treated chairs and ribbons 

The efficacy of transfluthrin-treated chairs and transfluthrin-treated hessian ribbons was 

evaluated as explained in section 3.5.1 and 3.5.2. 

3.5.1 Determine the efficacy of transfluthrin-treated chairs against outdoor-biting 

  mosquitoes 

This assessment was conducted in two seasons: dry and wet seasons, between September to 

October, 2019 and between January to February, 2020 as dry and wet seasons respectively. 

Procedures: to address this objective, six houses with an outdoor kitchen were selected in the 

dry season. The houses were paired and assigned as follows: (a) a control arm, where no 

transfluthrin-treated chair was used, (b) a treatment arm where one transfluthrin-treated chair 

was used, and (c) a second treatment arm where two transfluthrin-treated chairs were used. 

One consenting male volunteer was assigned to each household and collected mosquitoes 

using the exposure-free miniaturized double nets trap (DN-Mini) (Limwagu et al., 2019) 

from 1900 h to 2300 h, totaling 45 min of actively catching mosquitoes in each hour. For the 

households with transfluthrin-emanating chairs, the DN-Mini was installed 0.5 m from the 

chairs (Fig. 3c & 3d). After each experimental night, treatments were moving to the next 

houses using a 4×4 Latin square design for 32 experimental nights. As sections 3.5.1 and 

3.5.2, were conducted at the same experimental night, the 4×4 Latin square design described 

here included other two households as a third treatment arm where transfluthrin-treated 

hessian ribbons were used around the outdoor kitchens as explained in section 3.5.2. As the 

experiments were conducted outdoor with enough airflow, there was no need to break for 

wash out. Similarly, volunteers were changing their position in each experimental night. Each 

morning the collected mosquitoes were sorted and identified using morphological keys 

(Gillies & Coetzee, 1987). The primary outcome was number of mosquitoes of different 

species caught in the DN-Mini light trap per house per night. In the wet season, 15 

households were enrolled making five households in each arm for other 32 nights. The same 

procedure was adopted as described in dry season.  
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3.5.2 Determine the efficacy of transfluthrin-treated hessian ribbons against outdoor-

biting mosquitoes 

Procedures: to address this activity, two addition houses with the outdoor kitchen were 

selected in the dry season. These kitchens were fitted with transfluthrin-treated hessian ribbon 

(Fig. 3e & 3f). The ribbon was fitted about 1.3 m above the floor of the kitchen. A CDC light 

trap was installed within the kitchen to collect host-seeking mosquitoes and the idea was to 

determine if the treated ribbon could offer protection to the active user within the kitchen. 

Additionally, D-Mini trap was installed about 1.2 m outside the kitchen enclosure (Fig. 3f), 

and the rationale for this was to determine if the fitted kitchen could offer protection to 

people sitting adjacent it, defined as general peri-domestic area. Furthermore, the houses 

without intervention (control) were the same as those used in section 3.5.1 above that means 

section 3.5.1 and 3.5.2 were conducted in the same experimental night. All experimental 

procedures were the same as those in section 3.5.1. The primary outcome was number of 

mosquitoes of different species caught in the DN-Mini or the CDC light traps per house per 

night. In the wet season, addition three households were enrolled making five households for 

this treatment arm. The same procedure was adopted as described in dry season. 
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Figure 3: Illustration for efficacy evaluation of transfluthrin-treated chairs and transfluthrin-

treated hessian ribbon  

Key: a = Design and prototyping of the wooden and metal flame chairs at the local carpentry,  

b = fitting tranfluthrin-treated hessian mat underneath the chair, c = one tranfluthrin-

treated chair with the DN-Mini trap (Limwagu et al., 2019) installed about 0.5 m from 

the chair,  d = two tranfluthrin-treated chairs with DN-Mini trap installed about 0.5 m 

from each chair, e = outdoor kitchen fitted with transfluthrin-treated hessian ribbon with 

CDC light trap installed within it and f = outdoor kitchen fitted with transfluthrin-

treated hessian ribbon with DN-Mini trap installed about 1.2 m from it 

3.5.3 Assessing mortality effects of the transfluthrin-treated chairs on mosquitoes 

Procedures: To address this activity, the assay was done using: (a) field-collected An. 

arabiensis and An. funestus of unknown age  which are known to be pyrethroid resistant in 

this setting (Kaindoa et al., 2017; Lwetoijera et al., 2014; Matowo et al., 2017), (b) 

laboratory-reared An. arabiensis from a pyrethroid-susceptible colony of local origin, and c) 

laboratory-reared Aedes aegypti from a pyrethroid-susceptible colony of local origin 

(Kahamba et al., 2020).  

The wild-caught An. arabiensis females were collected using a separate set of eight DN-Mini 

traps (Limwagu et al., 2019) set outdoors at households without any transfluthrin treatments. 

Eight consenting adult male volunteers were involved in these collections each night from 

1900 h to 0100 h. As population densities of An. funestus in this study area were very low, 

CDC light traps were used to collect adult females of this species from another village 

approximately 30 km away.  
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Each morning captured mosquitoes were sorted and An. arabiensis and An. funestus females 

separated in two cages containing 100 mosquitoes per species (four cages in total). Since the 

Anopheles gambiae complex in this area are known to consist exclusively of An. arabiensis 

(Masalu et al., 2017), no molecular identification was required. Similarly, since indoor 

collections of An. funestus sensu lato have consistently been found to be >90% An. funestus 

sensus stricto (Masalu et al., 2017), it was assumed that these were the dominant species in 

the collections. The separated mosquitoes were kept at a field insectary (average temperature: 

26.75 ± 0.09°C; relative humidity: 73.26 ± 0.46%) for acclimatization before testing the next 

evening.  

For the tests, two chairs were placed within open verandas of two separate houses. One of the 

chairs was fitted underneath with transfluthrin-treated hessian mats, while the other was fitted 

with an untreated hessian mat (control). The caged mosquitoes were placed underneath each 

chair overnight (1900 h to 0700 h). A simple water moat was used to prevent ants from eating 

the mosquitoes. Each morning, the cages were returned to the field insectary and monitored 

for further 12 h, totaling 24 h of observation since start of exposure. This procedure was 

repeated 10 times, totaling 1140 mosquitoes for field-collected An. arabiensis and five times, 

totaling 490 mosquitoes for field-collected An. funestus tested in control and treated arms. 

Similar tests were conducted using cages containing 100 laboratory-reared An. arabiensis or 

100 Ae. aegypti. Since Ae. aegypti mosquitoes are active during the day, they were exposed 

from 0800 h to 1900 h each day, as opposed to the Anopheles mosquitoes, which were 

exposed at night. Percentage mortality of mosquitoes was calculated for each species 

separately as a proportion of total exposed. 

3.6 Determine susceptibility of malaria vectors in insecticides commonly used in public 

health and agriculture 

Procedures: In order to determine phenotypic resistance status of local mosquito populations 

to common pesticides, standard discriminatory tests were performed using standard WHO 

susceptibility bioassays (WHO, 2018a). Since transfluthrin is a pyrethroid, the tests also 

provided indication of how the transfluthrin-based interventions evaluated here (transfluthrin-

treated chairs and transfluthrin-treated hessian ribbons) evaluated here would perform against 

wild mosquito populations. The susceptibility tests were done for: (a) 0.1% bendiocarb, a 

carbamate; (b) 4.0% dichlorodiphenyltrichloroethane (DDT), an organochloride; (c) 0.25% 
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pirimiphos methyl, an organophosphate, (d) 0.75% permethrin, a type I pyrethroid; and (e) 

0.05% deltamethrin, a type II pyrethroid. 

Female An. arabiensis mosquitoes were collected from the nearby rice fields as larvae, and 

reared to emergence at Ifakara Health Institute vector biology laboratory. The susceptibility 

tests were done using three days old adult females, using at least 100 mosquitoes per test (25 

per replicate, with at least 4 replicates) as described in the most recent WHO guidelines 

(WHO, 2018a). 

3.7 Data analysis 

The survey data was summarized in ODK analysis module (KoBoToolbox, 2019) to generate 

descriptive statistics of peri-domestic spaces and their usage. Data on efficacy of the 

transfluthrin-treated chairs and ribbons was analyzed using R open-source statistical software 

(Team, 2018), primarily using generalized linear mixed-effects models (Bates, Mächler, 

Bolker, & Walker, 2015), each time modeling the numbers of mosquitoes of a given species 

caught as a function of the treatments (fixed factors) assuming Poisson distributions. 

Volunteer, day and house codes were included as random factors in the models. 

3.8 Ethics approval and consent to participate 

The study was approved by the Institute Review Board of Ifakara Health Institute 

IHI/IRB/No: 02-2019 and Medical Research Coordinated Committee of the National Institute 

for Medical Research of the United Republic of Tanzania (NIMR/HQ/R.8a/Vol.1X/3152). All 

study participants were recruited after signing informed consent forms. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This study aimed at characterizing peri-domestic spaces used by households member for 

various activities and assessed the efficacies of transfluthrin-treated chairs and ribbons in 

creating mosquito-free outdoor spaces. The study specifically characterized these spaces, 

assessed the efficacies of these two interventions and finally, conducted WHO insecticide 

susceptibility test on malaria vectors to pesticide commonly used in public health.  This 

chapter introduces the results from these three tasks and then discussed the meaning of each 

specific result in the general discussion section.  

4.2 Characteristics of households  

The demographic characteristics of household heads, and physical characteristics of all the 

200 houses visited are summarized in Table 1. Most of the household heads were female 

(128/200). The main construction materials were bricks for the walls (153/200) and 

corrugated iron sheets for the roofs (140/200).  

Table 1: Characteristics of the study participants and their houses in 200 surveyed 

households in Lupiro village, Ulanga District, south-eastern Tanzania 

Characteristics Category Total number surveyed (n) 
Proportion 

(%) 

Gender 
Male 72 36.0 

Female 128 64.0 

Age Average 38.5 NA 

Wall type 

Bricks 153 76.5 

Mud & stick 46 23.0 

Others 1 0.5 

Roof type 

Iron-sheets 140 70 

Thatched 56 28.0 

Others 4 2.0 
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4.3 Characteristics of the peri-domestic spaces 

Table 2 provides a summary of the physical characteristics of peri-domestic spaces where 

residents spend time outdoors before bedtime. Of the 200 households observed, 52% 

(103/200) had built-up veranda (Fig. 4), while 48% (97/200) did not have these verandas.  

It was also observed that other than these verandas (Fig. 4), most houses had additional peri-

domestic spaces where members congregated. Of the 103 that had verandas, 69 (67%) also 

had other active peri-domestic spaces, of which 23 were built-up structures and 46, were non-

built up. These structures all had at least physical roofing, and 70% of them also had no wall. 

Two thirds of the built-up structures were used as outdoor kitchens (60% used for cooking) 

(Fig. 5). Many of the non-built structures (63%) were sited under trees (Fig. 6), while 35% 

were in open spaces. The peri-domestic spaces were used for multiple activities, e.g. cooking, 

eating, socializing among others. 

Of 97 houses that did not have veranda extensions, 91 (93.8%) had active peri-domestic 

spaces, of which 32 had built up structures with roofs, and also walls in one third of the cases. 

Of the non-built structures, 42% were under trees. Common uses of these spaces were 

similar, i.e. resting, cooking, and eating etc. 
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Table 2: Peri-domestic space characteristic of the households surveyed in Lupiro village, 

Ulanga district, south-eastern Tanzania 

Key:  n = total number of peridomestic space characterized, and N/A = as not required 

 

House hold with veranda (N=103) Household without veranda (N=97) 

Characterization n Percentage Characterization n Percentage 

      

Open veranda 69 67.0 N/A   

Closed veranda 34 33.0 N/A   

Usage      

Resting 92 42.2 N/A   

Cooking 67 30.7 N/A   

Eating 56 25.7 N/A   

Others 3 1.4 N/A   

Other peri- 

domestic space 

  Other peri- 

domestic space 

  

Yes 69 67 Yes 91 93.8 

No 34 33 No 6 6.2 

Built structure 23  Built structure 32  

Roof 23 100 Roof 31 96.9 

No roof 0 0 No roof 1 3.1 

Wall 7 30.4 Wall 10 31.3 

No wall 16 69.6 No wall 22 68.7 

Average Distance 

from the houses (m) 

6.3  Average Distance 

from the houses (m) 

6.8  

Usage   Usage   

Resting 9 24.3 Resting 19 29.2 

Cooking 22 59.5 Cooking 30 46.2 

Eating 6 16.2 Eating 16 24.6 

Non-built structure 46  Non-built structure 59  

Under the tree 34 62.9 Under the tree 28 42.4 

Open space 19 35.2 Open space 34 51.5 

Others 1 1.9 Others 4 6.1 

Average Distance 

from the houses (m) 

6.8  Average Distance 

from the houses (m) 

6.2  

Usage   Usage   

Resting 32 43.2 Resting 54 38.0 

Cooking 20 27.0 Cooking 48 33.8 

Eating 22 29.7 Eating 40 28.2 
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Figure 4: Illustration of house with veranda extension physically characterized during survey 

Figure 5: Illustration of houses with built-up peridomestic space away from the main house 

commonly used for cooking 
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Figure 6: Illustration of houses with non-built-up peridomestic space physically characterized 

as under the tree 

4.4 Overall collected mosquitoes 

In the dry season, the total number of mosquitoes collected was 4960, including 2604 Culex 

spp; 2264 An. gambiae s.l.; 80 An. coustani; 6 An. funestus; 4 Mansonia spp; and 2 

Coquilettidia mosquitoes. Polymererase chain reaction (PCR) was conducted on 81 samples 

of An. gambiae s.l to distinguish between sibling species. Of the 90.1% (73/81) successfully 

amplified in the PCR assays, all (100%) were identified as An. arabiensis. In the wet season 

the total number of mosquitoes collected was 14303, including 12224 Culex spp; 1978 An. 

gambiae s.l.; 42 An. funestus; 37 Mansonia spp; 15 Ae. aegypti;  6 An. coustani; and 1 An. 

pharoensis. No molecular assay was conducted to identify mosquitos’ species in this 

particular season.  

4.5 Efficacy of transfluthrin-treated chairs and transfluthrin-treated hessian ribbons 

against outdoor-biting mosquitoes in the peri-domestic spaces 

Findings on protective efficacy of the two interventions are summarized in Table 3 and Table 

4. Using two transfluthrin-treated chairs significantly reduced outdoor-biting An. arabiensis

mosquitoes by 76% (Relative rate (RR) = 0.24, 95% confidence interval, CI: 0.19-0.29, 

P<0.001) and by 85% (RR= 0.15, 95% CI: 0.12-0.18, P<0.001) in dry and wet seasons 

respectively. Using one transfluthrin-treated chair also significantly reduced An. arabiensis 

mosquitoes, in this case by 70% (RR = 0.30, 95% CI: 0.25-0.37, P<0.001) and by 75% (RR 

= 0.25, 95% CI: 0.20-0.31, P<0.001) in dry and wet seasons respectively. When the densities 
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of Culex mosquitoes were assessed, both the two-chair and one-chair interventions 

significantly reduced outdoor-biting, achieving 52% (RR = 0.48, CI: 0.37-0.63, P<0.001) and 

58% (RR = 0.42, 95% CI: 0.31-0.56, P<0.001) protection  in dry season respectively. In the 

wet season, both the two-chair and one-chair interventions significantly reduced outdoor-

biting, achieving 51% (RR = 0.49, CI: 0.43-0.56, P<0.001) and 40% (RR = 0.60, 95% CI: 

0.53-0.68, P<0.001) protection respectively. 

Fitting the transfluthrin-treated hessian ribbons around the outdoor kitchens reduced outdoor-

biting An. arabiensis by 81% in the area immediately outside this kitchen enclosure (RR = 

0.19, 95% CI: 0.16-0.24, P<0.001), and by 43% (RR = 0.57, CI: 0.32-1.03, P= 0.065) inside 

the enclosures in the dry season. In the wet season, transfluthrin-treated hessian ribbons 

reduced outdoor-biting An. arabiensis by 77% in the area immediately outside this kitchen 

enclosure (RR = 0.23, 95% CI: 0.18-0.28, P<0.001). The ribbons also reduced outdoor-biting 

Culex spp by 68% (RR = 0.32, CI: 0.24-0.43, P<0.001) near the enclosures and by 77% (RR 

= 0.23, CI: 0.12-0.43, P<0.001) within the enclosures in the dry season. In the wet season, 

the ribbons also reduced outdoor-biting Culex spp by 36% (RR = 0.64, CI: 0.56-0.72, 

P<0.001) near the enclosures and by 48% (RR = 0.52, CI: 0.32-0.86, P<0.001) within the 

enclosures. 
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Table 3: Comparison of nightly outdoor biting per person between houses with or without transfluthrin-treated chairs or ribbons (dry 

season) 

Settings Species Treatment Nights n 
Adjusted-Mean 

(95% CI) 
RR (95% CI) PP (95% CI) P-value 

Outdoor 

peri-

domestic 

space 

Anopheles 

arabiensis 

Control 32 1056 15.05 (12.29-18.44) 1 0 

Two TF-chairs 32 273 3.61 (2.87-4.55) 0.24 (0.19-0.29) 0.76 (071-0.80) <0.001 

TF-treated ribbon 32 211 2.96 (2.33-3.75) 0.19 (0.16-0.24) 0.81 (0.75-0.84) <0.001 

Control 28 910 14.86 (12.07-18.30) 1 0 

One TF-treated chair 28 290 4.54 (3.60-5.73) 0.30 (0.25-0.37) 0.70 (0.62-0.75) <0.001 

Culex spp 

Control 32 889 10.52 (7.98-13.86) 1 0 

Two TF-chairs 32 426 5.12 (3.84-6.83) 0.48 (0.37-0.63) 0.52 (0.36-0.63) <0.001 

TF-treated ribbon 32 299 3.43 (2.55-4.61) 0.32 (0.24-0.43) 0.68 (0.57-0.75) <0.001 

Control 28 744 9.99 (7.43-13.44) 1 0 

One TF-treated chair 28 335 4.20 (3.07-5.75) 0.42 (0.31-0.56) 0.58 (0.43-0.68) <0.001 

Inside 

outdoor 

kitchen 
enclosure 

Anopheles 
arabiensis 

Control 25 152 1.17 (0.56-2.44) 1 

TF-hessian ribbon 25 113 0.56 (0.26-1.22) 0.57 (0.32-1.03) 0.43 (-0.03-0.67) 0.065 

Culex spp 
Control 25 288 2.37 (1.35-4.17) 1 0 

TF-hessian ribbon 25 89 0.56 (0.29-1.06) 0.23 (0.12-0.43) 0.77 (0.56-0.87) <0.001 

Key:  n = total number of mosquito collected, CI = confidence interval, PP = percentage protection, RR = relative rate, TF = 

transfluthrin 1 and 0 = references 
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Table 4: Comparison of nightly outdoor biting per person between houses with or without transfluthrin-treated chairs or ribbons (wet 

season) 

Settings Species Treatment Nights n 
Adjusted-Mean 

(95% CI) 
RR (95% CI) PP(95% CI) P-value 

Outdoor 
peri-

domestic 

space 

Anopheles 

arabiensis 

Control 32 
1116 5.71 (4.89-6.67) 1 0 

One TF-chairs 32 
308 1.42 (1.17-1.72) 0.25 (0.20-0.31) 0.75 (0.69-0.79) <0.001 

Two TF-chairs 32 
189 0.86 (0.69-1.07) 0.15 (0.12-0.18) 0.85 (0.81-0.88) <0.001 

TF-treated ribbon 32 
273 1.32 (1.08-1.60) 0.23 (0.18-0.28) 0.77 (0.71-0.81) <0.001 

Culex spp 

Control 32 4142 21.78 (18.11-26.18) 1 0 

One TF-chairs 32 2598 13.17 (10.93-15.86) 0.60 (0.53-0.68) 0.40 (0.31-0.47) <0.001 

Two TF-chairs 32 2216 10.68 (8.85-12.87) 0.49 (0.43-0.56) 0.51 (0.44-0.57) <0.001 

TF-treated ribbon 32 2794 13.93 (11.56-16.78) 0.64 (0.56-0.72) 0.36 (0.27-0.44) <0.001 

Inside 
outdoor 

kitchen 

enclosure 

Anopheles 

arabiensis 

Control 32 68 Low catches 

TF-hessian ribbon 32 24 Low catches 

Culex spp 
Control 32 

302 0.49 (0.31-0.78) 1 0 

TF-hessian ribbon 32 172 0.26 (0.15-0.43) 0.52 (0.32-0.86) 0.48 (0.13-0.67) 0.011 

Key:  n = total number of mosquito collected, CI = confidence interval, PP = percentage protection, RR = relative rate, TF = 

transfluthrin, 1 and 0 = references 
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4.6 Mortality of field-collected and laboratory-reared mosquitoes exposed to 

   transfluthrin-treated chairs 

Findings on induced mortality of mosquitoes exposed to transfluthrin-treated chairs are 

summarized in Table 5. When field-collected An. arabiensis females and An. funestus 

females were exposed to the transfluthrin-treated chairs, 99.4% and 100% of them died 

within 24 h respectively. All (100%) of the laboratory-reared An. arabiensis or laboratory-

reared Ae. aegypti mosquitoes exposed also died when exposed underneath the transfluthrin-

treated chairs. Mortality of the mosquitoes exposed to untreated chairs however remained low 

(5.2% for field-collected An. arabiensis, 0.0% for field-collected An. funestus, 0.1% for 

laboratory-reared An. arabiensis and 1.1% for laboratory-reared Ae. aegypti). 

Table 5: Comparison of induced mortality to mosquitoes exposed to house with or without 

transfluthrin-treated chairs 

Settings Species Treatment Days Exposed 
Dead 

24hr 

Mortality 

(%) 

Wild 

mosquitoes 

Anopheles 

arabiensis 

Control 10 1142 60 5.2 

TF-treated 

chair 

10 1140 1134 99.4 

Anopheles 

funestus 

Control 5 490 0 0 

TF-treated 

chair 

5 490 490 100 

Lab-reared 

mosquitoes 

Anopheles 

arabiensis 

Control 9 860 10 1.1 

TF-treated 

chair 

9 860 860 100 

Aedes aegypti Control 9 900 3 0.3 

TF-treated 

chair 

9 900 900 100 
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4.7 Insecticide resistance status of mosquitoes in a study area 

Results of the WHO resistance tests are summarized in Table 6. The field populations of An. 

arabiensis were fully susceptible to bendiocarb (100% mortality), pirimiphos methyl (100% 

mortality) and DDT (98.8% mortality). However, they were resistant to both permethrin 

(94.7% mortality) and deltamethrin (80.3% mortality). 

Table 6: Show insecticide resistant status in Anopheles arabiensis mosquitoes to difference 

insecticides at Lupiro village 

Insecticide tested 
Mosquito species 

tested 

Percentage mortality 

(%) 
Resistance status 

Bendiocarb Anopheles arabiensis 100 Susceptible 

Pirimiphos-methyl Anopheles arabiensis 100 Susceptible 

DDT Anopheles arabiensis 98.8 Susceptible 

Permethrin Anopheles arabiensis 94.7 Resistant (After 

confirmation) 

Deltamethrin Anopheles arabiensis 80.3 Resistant 

Key: DDT = dichlorodiphenyltrichloroethane 
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4.8 General discussion of the results 

Several studies in tropical settings have documented that many people stay active outdoors in 

early evenings before they go indoors and then sleep under bed nets (Finda et al., 2019; 

Monroe et al., 2019; Moshi et al., 2017).  To date, this study is the first to characterize the 

peri-domestic spaces used by household members in a malaria-endemic setting for various 

outdoor activities.  

 The key finding was that most houses had active peri-domestic spaces (veranda extensions, 

open general areas and makeshift kitchens) where household members performed different 

activities, usually unprotected from potentially-infectious mosquitoes before they went 

indoors. In some of the peri-domestic spaces, residents constructed structures for cooking, 

eating and socializing, but these too were often open and not protective against mosquito 

bites (Fig. 5).  

The study also demonstrated that the two simple interventions evaluated, i.e. transfluthrin-

emanating chairs and ribbons both considerably reduced outdoor-biting by the important 

residual malaria vector, An. arabiensis. Furthermore, mosquitoes exposed to the chairs were 

killed rapidly, indicating that the interventions could offer not just personal or household 

protection, but also communal protection by reducing mosquito density, survival and malaria 

sporozoite infection prevalence (Mwanga et al., 2019).  

More than half the households surveyed had veranda extensions with roofed enclosing 

structures, mostly used for resting, cooking and eating. All these structures provide 

opportunities for mounting simple interventions in these spaces such as physical screening 

and complementary chemical measures like these transfluthrin emanator formats and turning 

them into mosquito-proof areas as they are predominantly used for early-evening human 

activities, notably resting, cooking and eating.  

The findings that transfluthrin-emanating chairs provided useful levels of protection against 

An. arabiensis and Culex spp. corroborate previous observations with other prototypes in 

outdoor bars (Masalu et al., 2017). Even though the prototype (chair) used in this study 

differs in design from previous studies  (decoration) (Masalu et al., 2017), it emphasizes the 

potential of these technologies for outdoor protection in such communities.   
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Outdoor kitchens were commonly used for cooking in early evening, and were among the 

commonest constructed spaces identified in households, regardless of whether they had 

verandas or not. Early-evening cooking within this space coincides with peak hours of 

mosquito bites (Finda et al., 2019), amplifying the likelihood of malaria transmission in these 

spaces. In this study, the high levels of protection provided against An. arabiensis by  the 

repellent-treated hessian ribbons around these outdoor kitchens  is therefore encouraging and 

consistent with previous studies (Ogoma et al., 2017) which demonstrated that transfluthrin-

treated hessian ribbons protected non-users against An. arabiensis sitting within radius of 5 

m. More recently, transfluthrin-treated hessian ribbons fitted to the eaves of houses prevented 

both indoor and outdoor-biting mosquitoes (Mmbando et al., 2018; Mwanga et al., 2019). 

In addition to the substantial protection against An. arabiensis demonstrated in the areas 

immediately outside the ribbon-fitted kitchen, the catches by CDC light traps placed within 

the kitchens are reduced, albeit more modestly. This modest reduction may be due to the use 

of CDC light traps in these open spaces,  may have resulted in exaggerated catches of 

mosquitoes attracted by the light alone and therefore not deterred by the repellent. It may also 

due to the smoke produced from these kitchens, which may have confounded the results 

observed on An. arabiensis.  Interestingly, this emanator prototype provided much more 

satisfactory protection against nuisance-causing Culex spp. within the kitchens based on the 

same CDC light trap catches. It is not clear why such significant reductions observed for 

Culex spp were not observed for An. arabiensis, but it is nevertheless encouraging that 

reduced Culex spp. densities should motivate user acceptance. It is also encouraging that 

these observations are also broadly consistent with  previous studies (Govella et al., 2015; 

Ogoma et al., 2012) demonstrating that outdoor use of transfluthrin-treated hessian provided 

more than 90% protection against both An. gambiae s.l. and Culex spp mosquitoes (Govella 

et al., 2015; Ogoma et al., 2012).  

Pyrethroid-treated nets divert host-seeking mosquitoes from humans, or kill the mosquitoes 

attempting to feed on the protected persons (Lindsay, Adiamah, Miller & Armstrong, 1991; 

Miller, Lindsay & Armstrong, 1991). With these modes of action, pyrethroid-treated nets not 

only provide personal protection (to users), but also communal protection (to both users and 

non-users) by suppressing vectors population through the mass killing effect (Carnevale et 

al., 1988; Magesa et al., 1991). Transfluthrin, used to treat the hessian mats fitted underneath 

the chairs induced high mortality on caged mosquitoes exposed underneath the experimental 

chairs (100% in most cases). This implies that the chairs may not only provide personal 
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protection, but also community benefit through killing of mosquitoes. This effect was 

particularly important since the field-collected mosquitoes were from villages where 

Anopheles populations were pyrethroid-resistant (Table 6).  

Even though excito-repellency effects maximize person protection by chasing mosquitoes 

away, it may attenuate more important mass killing effects by deterring mosquitoes from 

making fatal contact with lethal doses of the repellent insecticide itself or with 

complementary solid-phase insecticides applied as LLINs or IRS (Killeen, Chitnis, Moore & 

Okumu, 2011; Killeen & Moore, 2012; Killeen et al., 2014). However, these observations of 

mortality amongst wild malaria vectors exposed to transfluthrin suggest that mass population 

suppression could be achieved even without mosquitoes necessarily touching treated 

surfaces. It is also encouraging that (Ogoma et al., 2017) demonstrated that transfluthrin-

treated emanator provided more than 90% biting reduction against An. arabiensis without any 

obvious diversion to non-users (Ogoma et al., 2017). Furthermore another study (Ogoma et 

al., 2014) also observed that transfluthrin-treated coils could protect non-users within 20 m 

radius. More recently, Mwanga and colleague demonstrated that transfluthrin-treated ribbons 

fitted to the eave gaps of houses protected volunteers both inside and outside the houses 

(Mwanga et al., 2019).  

The spread of pyrethroid resistance in malaria vectors clearly compromises ongoing control 

and elimination efforts (Cook et al., 2018; Protopopoff et al., 2018; Tiono et al., 2018), so it 

is obviously a concern that transfluthrin is also a pyrethoid. It is therefore encouraging that 

transfluthrin killed almost all wild-caught An. arabiensis and An. funestus exposed to 

emanated vapour from the chairs, even though local populations of both species are clearly 

resistant to the conventional solid-phase pyrethoids used for LLINs and IRS (Kaindoa et al., 

2017).   

However, one important limitation of this study was that caged mosquitoes were placed 

underneath the transfluthrin-treated chairs for 12 h. This long-time exposure may well greatly 

exceed true exposure levels in the field, where mosquitoes can freely fly around and way 

upon encountering airborne insecticide. Nonetheless, since transfluthrin effects are vapor-

mediated, this initial attempt to quantify possible lethal modes of action is encouraging and 

offers a basis for future improvements in study designs for developing and evaluating these 

technologies. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Most houses in this rural African context had well-used peri-domestic spaces (veranda 

extensions, makeshift kitchens and completely open spaces) where members performed 

different activities before bed time, usually unprotected from potentially-infectious 

mosquitoes before they went indoors. Both the transfluthrin-emanating chairs and ribbons 

reduced outdoor exposure to biting malaria vectors in these peri-domestic spaces and also 

caused significant mortality of caged, field collected malaria vector mosquitoes. The two 

emanator prototypes, may require additional improvements, optimizations and assessments in 

future studies, and could constitute new options for outdoor malaria prevention to 

complement LLINs and IRS in areas where peri-domestic human activities are common.  

5.2 Recommendations 

Based on the findings above, this study provided the following opportunities for the next step 

work 

(i) Conduct additional improvements and optimizations of the two candidate 

interventions. 

(ii) Conduct a small-scale randomized field trail to evaluate epidemiological 

endpoints of these two candidate interventions in term of reducing malaria 

transmission. 

(iii) Evaluate the new intervention in other settings to validate the findings and explore 

options for scaling up the technologies as a complementary malaria control 

interventions. 

(iv) Assess cost-effectiveness of the interventions. 
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