• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method.

    Thumbnail
    View/Open
    Abstract (161.3Kb)
    Date
    2020-09-01
    Author
    Pang, Tianting
    Aye Chan, Thet Su
    Shen, Junjie
    Jande, Yusufu
    Metadata
    Show full item record
    Abstract
    Metal-modified carbon materials have been widely used for fluoride removal, but the traditional impregnation by soaking method suffers from low loading of metals and substantial use of chemicals. This study proposed a new approach to prepare zirconium modified activated carbon fibres (Zr-ACF) by a drop-coating method. Using the same amount of chemicals, the drop-coating method yielded a 5.5 times higher fluoride adsorption capacity than the soaking method due to more effective loading of Zr(IV) onto ACF. The effects of various preparation conditions, including the addition of a complexing agent (oxalic acid) and Zr/ACF mass ratio (0.2-1), were investigated. Zr-ACF prepared by drop-coating was characterised by SEM and BET, and the functional groups involved in the anchoring of Zr(IV) on ACF and the adsorption of fluoride onto Zr-ACF were identified by FTIR and XPS. Adsorption experiments at pH between 3 and 11 revealed that ion exchange and electrostatic attraction were the main adsorption mechanisms at different pH levels. Co-existing anions such as CO, HCO and Cl had an insignificant negative impact (<5%) on fluoride adsorption capacity while SO decreased fluoride adsorption capacity by 11.5%. The adsorption kinetics followed the pseudo-second-order model. The adsorption isotherms followed the Langmuir isotherm model with a maximum fluoride adsorption capacity of 28.50 mg/L at 25 °C, which was higher than other carbon-based materials in the literature. The remarkable improvement of adsorption capacity and reduced chemical consumption demonstrate that Zr-ACF prepared by drop-coating is a promising adsorbent for fluoride removal.
    URI
    https://doi.org/10.1016/j.chemosphere.2020.126950
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/769
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV