• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The neuroprotective effects of baobab and black seed on the rat hippocampus exposed to a 900-MHz electromagnetic field

    Thumbnail
    View/Open
    abstarcat (299.5Kb)
    Date
    2024-04
    Author
    Mohamed, Hamza
    Deniz, Omur
    Kaplan, Suleyman
    Metadata
    Show full item record
    Abstract
    This study investigated the potential effects on the hippocampus of electromagnetic fields (EMFs) disseminated by mobile phones and the roles of baobab (Adansonia digitata) (AD) and black seed (Nigella sativa) (BS) in mitigating these. Fifty-six male, 12-week-old Wistar albino rats were divided into eight groups of seven animals each. No EMF exposure was applied to the control, AD or BS groups, while the rats in the Sham group were placed in an EMF system with no exposure. A 900-MHz EMF was applied to the EMF+AD, EMF+BS, EMF+AD+BS and EMF groups for 1 hour a day for 28 days. Pyramidal neurons in the hippocampus were subsequently counted using the optical fractionator technique, one of the unbiased stereological methods. Tissue sections were also evaluated histopathologically under light and electron microscopy. The activities of the enzymes catalase (CAT) and superoxide dismutase (SOD) were also determined in blood serum samples. Analysis of the stereological data revealed no statistically significant differences between the EMF and control or sham groups in terms of pyramidal neuron numbers (p>0.05). However, stereological examination revealed a crucial difference in the entire hippocampus between the control group and the AD (p<0.01) and BS (p<0.05) groups. Moreover, exposure to 900-MHz EMF produced adverse changes in the structures of neurons at histopathological analysis. Qualitative examinations suggest that a combination of herbal products such as AD and BS exerts a protective effect against such EMF side-effects.
    URI
    https://doi.org/10.1016/j.jchemneu.2024.102405
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2658
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV