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ABSTRACT

Bovine tuberculosis (bTB) is a bacterial and zoonotic disease which is transmitted through;

consumption of unpasteurized milk, raw meat and inhalation of aerosols. This study used a

deterministic mathematical model to assess the impact of each parameter in the transmission

of bTB. The basic reproduction number R0 computed to determine the behaviour of the dis-

ease. The disease-free equilibrium exists and is locally asymptotically stable when R0 < 1,

and it is unstable otherwise. However, there is a possibility for the diseases free equilibrium to

coexist with endemic equilibrium when R0 = 1. The parameters which drive the dynamics of

bTB computed and sensitivity analysis performed. The analysis shows that the basic reproduc-

tion number R0 increases proportionally as the most positive sensitive parameters are increases.

However, the rate of animal deaths due to the disease mortality, the rate of natural animal deaths

and the rate of leaking for unused dairy products are conversely proportional to the basic repro-

duction number R0. Numerical analysis performed to analyse how sensitive each parameter is

to the disease. Results show that bTB will increase when we increase rates of consuming dairy

products and contacts with infected humans and animals, respectively. The basic model then

extended by including control parameters to reduce bTB transmission. The effective reproduc-

tion number Re decreases as we increase treatment of infected humans, quarantine of infected

animals and inspection of the dairy product. However, the standard requirement of effective

reproduction number Re to be less than a unit for the disease to clear is not enough because the

model undergoes backward bifurcation when Re = 1. Numerical analysis carried out to study

the long term behaviour of bTB. Simulations show that when control parameters increase, the

number of susceptible humans and animals increases, while the number of infected humans and

animals decreases. To contained Bovine tuberculosis, there should be the treatment of infected

humans, are quarantine of infected animals and dairy products should be inspected.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

Tuberculosis (TB) is a global health problem which is among the top 10 diseases which lead

by causing deaths of many people (WHO, 2018). World Health Organization (WHO) have

conducted several meeting on how to end TB, but still, the disease is leading by taking the lives

of many people. According to the WHO report of 2018, TB kills 1.3 million people among

HIV negative, and there were an additional of 300 000 people with HIV who died with TB.

The estimation shows that annually 10 million people get ill with TB, of which 5.8 million are

men, 3.2 million are women, and 1.0 million are children (WHO, 2018). Africa reported to have

the highest number of cases, followed by India, China and Indonesia, with percentages: 72%,

27%, 9% and 8% respectively (WHO, 2018). Although TB is a worldwide health problem,

other kinds of TB, including zoonotic tuberculosis, are still neglected especially in developing

countries.

Bovine tuberculosis (bTB) is a bacterial and zoonotic disease which was initially transmitted

to cattle from wild animals especially buffalo and badger, and then spread to other domestic

animals like cows, goats, pigs, horses, and sheep (WHO, 2016). The disease has a tremendous

negative economic impact due to the death of livestock when they acquire bTB Durnez et al.

(2011); Ramos et al. (2015) and it causes human health problems which cost their lives. The

disease can lead to loss of self-employment for some workers, especially those who depend

on livestock keeping as their primary source of income (De Garine-Wichatitsky et al., 2013).

Bovine tuberculosis is transmitted from animal to animal through inhalation of aerosols when

there is close contact (Menzies, 2000). The infections occur when the salivary, faeces and

urine of infected animal drop on grasses, since bTB is a bacterial disease once animals eat

grasses which contain bacteria they acquire bTB infection (Tschopp et al., 2009). The disease

is also transmitted from animal to human beings through inhalation of aerosols, drinking of

unpasteurized milk, eating infectious dairy products or when the blood of infected animal gets

into someone who is having scratches (Katale et al., 2012; Kilale, 2016).

Bovine tuberculosis is a threatening disease to the economy, human and animal health in Euro-

pean countries. The study conducted in England from 2002-2014 shows that 357 human bTB

new cases are reported annually (Davidson et al., 2017). A large number of people, about 74%

were at risk to be exposed to bTB due to the consumption of unpasteurized milk frequently

(Davidson et al., 2017; Menzies, 2000). In Britain, 50 000 new cases of people reported
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whereby 2500 people die with bTB due to the consumption of unpasteurized milk (McCul-

loch, 2017). However, European countries succeeded to contain the spread of bTB by reducing

the transmission from 4.8% to 2% collaborative efforts between veterinarians and public health

workers (Pavlik, 2006). In Ethiopia, many people acquire bTB due to the consumption of in-

fectious raw milk (Ameni et al., 2000, 2007; Demelash et al., 2009; Gumi et al., 2011). The

study conducted by Regassa et al. (2008) in Ethiopia revealed that about 16% of cattle owners

reported having M. bovis which cause bTB due to the consumption of unpasteurized milk while

46% of cattle had M. bovis which cause bTB. The availability of bTB data in African countries

is still a problem since there is no surveillance information. Most of the African countries have

no bTB surveillance data, Phepa et al. (2016), although the disease is a threat to human and

animal health. Disease control in developing countries is still a challenge due to limited data

and expensive control options (Dejene et al., 2016).

Symptoms of bovine tuberculosis for livestock include reduced productivity, weight loss and

lack of appetite, while for some animals lymph nodes may expand gradually and sometimes

may burst (Centers for Disease Control & Prevention, 2011; Phepa et al., 2016). Sometimes it

may take up to one month for livestock to develop symptoms of bTB, and most of the time they

might be latent for few years or when they are under stress or at old age (Michel et al., 2006;

Hassan et al., 2014; Phepa et al., 2016). In human, bTB has the following symptoms: loss of

weight, general body weakness, poor appetite, fever, a productive cough, and night sweats. It

mostly affects extra-pulmonary sites such as lymph nodes, joints, backbone and neck (Bowong,

2010; Centers for Disease Control & Prevention, 2011).

Mycobacterium bovis (M. bovis), which cause bovine tuberculosis (bTB) to animals can sur-

vive in various places depending on weather condition (Ramos et al., 2015). These bacteria

can survive in cold and dark places where there is a moist condition (Jemal, 2016). From the

fact that bTB is a neglected disease, it has received little attention, and this makes the control

of disease to be weak despite its negative impact to the society and close interaction between

wild animals, domestic animals and humans which makes its transmission easier (Katale et al.,

2012). Bovine tuberculosis is neglected despite being among the diseases which take the lives

of many people and causing the economic problem. This study aims to formulate a mathemat-

ical model to study the transmission dynamics of the disease and suggest ways of controlling

the transmissions.

Globally, the estimation shows that 147 000 new cases of bTB in humans reported whereby

12 000 people die annually due to bTB (WHO, 2016). In Uruguay bTB in livestock reported

to increases in the average of 19% of animals in the herds annually. Besides, at least 70%

of the world population, especially in sub-Sahara African countries such as Ethiopia, South

2



Africa, Tanzania and Kenya, are at risk of being infected with bovine tuberculosis due to closer

interaction between human and livestock (WHO, 2016; De Garine-Wichatitsky et al., 2013).

In Tanzania, the disease prevalence varies from region to region depending on the number of

livestock in a particular place, and it ranges from 0.2%-13.3% (Shirima et al., 2003; Katale

et al., 2013). Places where bTB is likely to exist, include Northern Tanzania (Arusha, Kiliman-

jaro, and Manyara), dairy farms in Kibaha and some areas in Morogoro districts (Durnez et al.,

2011; Katale et al., 2013).

The diagnosis of bTB helps to know the dynamics of the disease and identify ways of con-

trolling the transmission factors before it becomes endemic. Several methods used to diagnose

bTB, including Tuberculin skin test, interferon-gamma test Assembly (2009), polymerase chain

reaction (PCR) and gene sequencing of culture isolate (Mathews et al., 2006; Kilale, 2016), are

widely and commonly used diagnostic methods in developed countries compared to developing

countries. Post mortem examination, which focuses on lymph nodes, is also used since bTB

affects lymph nodes parts (OIE, 2016). Single intradermal comparative cervical test (SICCT)

is another diagnostic tool for the early stages of bTB in cattle (OH́agan et al., 2015). From the

external examination, it shows that there is a possibility of carcasses from slaughtered cattle to

contain bTB pathogens (Biet et al., 2005).

Various organisations such as World Health Organization (WHO), World Organization for An-

imal Health (OIE), Food and Agriculture Organization (FAO) joined together to fight against

transmission of bTB in order to eradicate the disease (WHO, 2016). Most of the European

countries managed to eliminate the transmission of bTB while countries like Britain and Ire-

land still the disease is a problem (Allen et al., 2018). Though different approaches such as

“one health approach, together we can save lives and secure lively-hoods” are used to control

the transmission, but bTB is a problem. Although bTB controlled by treating livestock using

various medicines such as pyrazinamide, it develops resistance to pyrazinamide because it used

to treat patients with pulmonary TB (WHO, 2016).

Mathews et al. (2006), Agusto et al. (2011), Phepa et al. (2016) and Liu et al. (2016) devel-

oped mathematical models to study the transmission dynamics of bTB and its control strategies.

Most of these studies did not consider the impacts of dairy products in the transmission dynam-

ics of bTB. According to WHO (2016), it is crucial to conduct more research on bTB to find

good ways of controlling the transmission of the disease. This study uses a mathematical model

to study the transmission dynamics of bTB in human beings and livestock by considering dairy

products as a risk factor for the transmission of bTB.
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1.2 Statement of the Problem

Various studies such as those by Wilkinson et al. (2004), Agusto et al. (2011), Phepa et al.

(2016) Liu et al. (2016), Mathews et al. (2006) and Brooks-Pollock and Danon (2017), have

been conducted to investigate the transmission dynamics of bTB and suggested ways of con-

trolling the disease. Results from these studies show the existence of bTB and recommended

slaughtering as the best way of controlling the disease. However, none of these studies con-

sidered dairy products as the risk factor for disease transmission. Dairy products is among the

factor which drive the transmission of bTB since these products consumed with a large number

of people worldwide (Bonsu et al., 2000; Perez et al., 2002). Dairy products in one among the

factors which lead in the spread of bTB as some of the findings reported the products to contain

M. bovis (Ramos et al., 2015). This study investigated the transmission dynamics of bTB in

humans and animals by taking into consideration dairy products as a risk factor for disease

transmission and suggested control strategies for disease transmission.

1.3 Rationale of the Study

Bovine tuberculosis is a significant disease to humans and animals health and the economy

of many countries. The disease has a tremendous negative impact on many dairy products

industries worldwide since many cattle slaughtered due to bTB (Ramos et al., 2015). Many

people from Ethiopia get infected with bTB when they consume unpasteurized infectious dairy

products (Jemal, 2016). Also, bTB reported to found in dairy farms in Uruguay (Perez et al.,

2002; Picasso et al., 2017). Therefore there is a need to investigate the contribution of dairy

products on the transmission of bovine tuberculosis.

1.4 Research Objectives

1.4.1 General Objective

The general objective of this study is to develop and analyze a mathematical model for the

transmission dynamics of bovine tuberculosis in livestock and human with control parameters.

1.4.2 Specific Objectives

This study has the following specific objectives:

(i) To formulate a mathematical model for transmission dynamics of bTB in human and

livestock that include dairy product.
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(ii) To compute the basic reproduction number and determine the relative impact of each

parameter in the basic reproduction number.

(iii) To determine the conditions for existence and stability of equilibrium points.

(iv) To determine how control parameters can help to contain the disease.

1.5 Research Questions

The research objectives achieved by analyzing and answering the following questions:

(i) How can a mathematical model for the transmission dynamics of bovine tuberculosis in

human and livestock be formulated?

(ii) How can basic reproduction number be computed and which parameters are sensitive to

the disease?

(iii) What are the conditions for existence and stability of equilibrium points?

(iv) Which are the effective control parameters for bTB?

1.6 Significance of the Research

(i) The outcome of the study will help public health workers and veterinarian to determine

if the inspection of dairy products can help to reduce the transmission of bTB.

(ii) This study will help to know how the quarantine of infected animals can help to reduce

the transmission of the disease.

1.7 Delineation of the Study

This study conducted to investigate the transmission dynamics of bTB in humans and ani-

mals before controls and after controls. The chapters organized as follows; chapter one which

consists of a general introduction and background of the problem, statement of the problem,

rationale of the study, research objectives, significance of the study and delineation of the study.

Chapter two contains a literature review whereby the author relates other studied to this work

and address what they did not do in their work. Chapter three consists of material and meth-

ods. This chapter discusses the methodology used, model analysis, numerical simulation for

the basic model and conclusion. Chapter four discussed the extended model from the basic

model. The chapter contains a brief introduction, extension of the basic model, analysis of the

model, numerical simulation and conclusion. Chapter five includes a summary of the study,

conclusion, and future works. Also, reference and appendices which contain codes and output

of this work.
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CHAPTER TWO

LITERATURE REVIEW

Many studies have been conducted to investigate the transmission dynamics of bovine tubercu-

losis. To provide a base for this study, few studies are reviewed in this section to point out what

has been done and what has been left out. This will help to delineate the research gap that this

study is addressing.

Liu et al. (2016) formulated a mathematical model for transmission dynamics of bTB in hu-

mans and cows in Urumqi, Xingjian China. In their study, the results show that the existence

of bTB is not only a critical world health problem but also hinders the development of dairy

products industries. They recommended test and slaughter to be the effective control strategies

for the transmission of the disease. However, in their formulated model, they did not include

dairy products as a factor for disease transmission.

Palmer et al. (2012) investigated the transmission dynamics of bTB when the interaction be-

tween livestock-wildlife and humans is considered. The study recommends that for bTB to be

eradicated the interaction between wildlife, livestock and human beings should be controlled.

On the contrary, controlling the interaction between animal and human populations is difficult,

especially for pastoralists who tend to move from one place to another, searching for pastures.

Phepa et al. (2016) formulated a mathematical model to assess the transmission dynamics of

bTB in buffalo and cattle populations in South Africa. Model analysis shows that buffaloes

are the carrier of M. bovis and can spread the infection to animal species, which is a threat to

animals and human beings as well. The study did not consider dairy products as an essential

factor for the transmission of the disease, although many people consume these products. This

study includes dairy products as a risk factor for disease transmission.

Durnez et al. (2011) investigated the possibility of small mammals like rodents and insects in

carrying M. bovis to cattle. Data analysis shows that bTB can be transmitted to cattle from

other species easily compared to small mammals. However, high preference of M. bovis to

these small mammals impose a high risk to human health, especially those with HIV positive

(Durnez et al., 2011). Though their interest was to study whether small mammals and insects

can be the carriers of M. bovis, they did not think whether dairy products can be the carrier of

M. bovis. Also, they did not give contributions to how the transmission of the disease can be

controlled. The fascinating thing from their study is the confirmation of the presence of bTB

in cattle.

Wilkinson et al. (2004) developed a spatial stochastic model for controlling the transmission of
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bTB in badger and cattle using different vaccination strategies. Their model was effective for

about 75% on the group of badgers while in cattle, it did not work. The study calls for more

mathematical models that will give out the cost-effective way of controlling the disease in

cattle. Their study, however, was based on cattle and badger only and did not include humans.

This study intended to study the dynamics of bTB in the presence of human beings.

Ssematimba et al. (2015) conducted a study on the transmission Dynamics of Contagious

Bovine Pleuropneumonia. A mathematical modelling approach was employed to assess the

effects of the vaccine on cattle during their early stage of development. The model simu-

lation shows that vaccination is the most effective way of controlling bovine for at least 18

months. Additionally, the study suggested that regular checkups will play a big role in con-

trolling bovine tuberculosis. However, the model failed to give out the contribution of dairy

products as a risk factor for the transmission of the disease. They also did not include humans

in the transmission dynamics of bTB.

Agusto et al. (2011) developed a deterministic model that incorporates the imported infected

cattle to investigate the transmission dynamics of bTB in a single cattle herd. In their study,

they found out that the importation of infected cattle may lead to the endemic condition of the

disease. However, dairy products are neglected, although they are factors for bTB transmission.

Hence this study developed a mathematical model that incorporated dairy products as a risk

factor.

Leo and Natalini (2015) investigated bTB transmission dynamics using a stochastic model to

assess the presence of M. bovis in dairy cattle. The study based on three ways which are; rou-

tine test on each farm carried out after every three years, tuberculin skin test, test and slaughter

method. Among all three methods, slaughtering suggested as the best way of controlling dis-

ease transmissions. However, they did not consider the economic impact of slaughtering since

it is practised mostly in developed countries where there is a good economy. Also, they did

not take into consideration whether the method is affordable for those who depend on livestock

activities.

Griffin et al. (2000) investigated the presence of M. bovis within a herd. Their results showed

strong evidence that transmission of bTB may occur within a herd and then spread easily to

other species, including human beings. However, the study did not pay attention on dairy prod-

ucts as the factors for disease transmission. Also, they did not suggest the way of controlling

the disease as they were just making a numerical estimation of the importance of within-herd

transmission. So this study concentrated on dairy products as one among the important factor

for disease transmission and suggesting an effective way of controlling bTB.

7



Though researches have conducted to investigate the dynamics of bTB and controls, most of

the studies did not include dairy products as a factor for disease transmission. Most of these

studies recommended the slaughtering of animals as a way of controlling the spread of the dis-

ease. However, this method is commonly practised in developed countries than in developing

countries. This study has investigated the transmission dynamics of bTB by including dairy

products as a significant factor for disease transmission. The study also has proposed ways of

controlling the spread of the disease.
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CHAPTER THREE

MATERIALS AND METHODS

This section describes the methods that are used to achieve the stated objectives and the area

where data are collected. Justification for selecting the area for data collection is also provided

in this section.

3.1 Methodology

To achieve objective one, a mathematical model which includes humans and animals popula-

tions formulated with the aid of ordinary differential equations.

The basic reproduction number R0 computed by the next-generation matrix method, and for-

ward normalized sensitivity index is applied to determine the sensitivity index of each param-

eter with respect to basic reproduction number R0.

Linearization method, which also involves trace and determinant, is used to deduce local stabil-

ity of the disease free-equilibrium. The model is analyzed to determine whether it undergoes

backward bifurcation when R0 = 1. To determine whether the model undergoes backward

bifurcation when R0 = 1, we used centre manifold theory.

To determine the dynamics of bTB, the model is solved numerically by using the Runge-Kutta

method. Simulation of the model results is carried out using MATLAB or Mapple software.

3.1.1 Model Formulation

The model formulated by modifying the tuberculosis model for human and cows in Urumqi,

Xinjiang China which was developed by Liu et al. (2016).

The current model includes animal and human populations. Human population is divided into:

Susceptible Sh, Exposed Eh and Infected Ih, (SEI) and animal population is divided into Sus-

ceptible Sa, Exposed Ea and Infected Ia compartments. The variable D represents Dairy prod-

ucts which are produced by infected animals. The proposed model does not include recovery

class because it assumed that, there is no natural recovery (Assembly, 2009).

Susceptible humans recruited through birth and migration at a rate Λh, and they acquire bovine

tuberculosis latent infection following contacts with infected human, animals and after con-

suming dairy products from infected animals at a rate: λh =
(β1Ih +β2Ia +β3D)

Nh
.

Exposed compartment Eh increases following latent infection of susceptible humans Sh at a

rate of λh and it decreases due to progression to the infectious stage at a rate of γh. Infectious
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humans Ih increase at a rate γh and diminish due to disease-induced mortality at a rate αh. All

individual compartments suffer natural mortality at a rate of µh.

Susceptible animals Sa are recruited through birth and migration at a rate Λa and acquire bovine

tuberculosis latent infection following contacts with infectious humans and animals, and after

consuming dairy products at rates: λa =
β4Ih +β5Ia +β6D

Na

Exposed animals Ea increase following latent infection of susceptible animals Sa at a rate λa.

However, they decrease due to progression to the infectious stage at a rate of γa.

Infectious animals Ia increase at a rate γa and diminish due to disease-induced mortality at a

rate of αa. All animal compartments suffer natural mortality at a rate of µa. Dairy products are

produced by infectious animals at a rate of ρ and the remaining products leak at rate ω .

In the model, we assume all humans and animals are susceptible to the disease. Susceptible

human Sh contact bTB when they consume dairy products D such milk and meat from infected

animals; when they inhale aerosols from infected animals and human, and direct contact with

the dairy product from infected animals through scratches (Dejene et al., 2016). Susceptible

animal acquires infection when they interact with infected animals and humans, through breast-

feeding from infectious animals and inhalation of aerosols. There is constant natural death to

both animals and human beings. There is no natural recovery for infected individuals.

Figure 1 demonstrates the interaction of state variables, Tables 1 and 2 describe state variables

and parameters, respectively.
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Figure 1: Model flow diagram

Table 1: Basic Model Variables Description
Symbol Description

Sh(t) Number of susceptible human at time t.

Sa(t) Number of susceptible animal at time t.

Eh(t) Number of Exposed human beings at time t.

Ea(t) Number of Exposed animals at time t.

Ih(t) Number of infected human at time t.

Ia(t) Number of infected animals at time t

D(t) Amount of dairy products produced at time t

11



3.1.2 Model Equations

Basing on the assumption during model formulation and compartmental diagram we have the

following system of differential equations:

dSh

dt
= Λh−

(
β1Ih +β2Ia +β3D

Nh

)
Sh−µhSh. (3.1a)

dEh

dt
=

(
β1Ih +β2Ia +β3D

Nh

)
Sh− (γh +µh)Eh. (3.1b)

dIh

dt
= γhEh− (µh +αh)Ih. (3.1c)

dSa

dt
= Λa−

(
β4Ih +β5Ia +β6D

Na

)
Sa−µaSa. (3.1d)

dEa

dt
=

(
β4Ih +β5Ia +β6D

Na

)
Sa− (γa +µa)Ea. (3.1e)

dIa

dt
= γaEa− (µa +αa)Ia. (3.1f)

dD
dt

= ρIa−ωD. (3.1g)

Subject to their initial conditions:

Sh(0)> 0;Eh(0)≥ 0; Ih(0)≥ 0;Sa(0)> 0;Ea(0)≥ 0; Ia(0)≥ 0;D(0)≥ 0.

Table 2: Basic Model Parameters’ Descriptions
Parameter Descriptions

Λh Human recruitment rate.

Λa Animals recruitment rate.

µh Human natural death rate.

γh Progression rate from Eh to Ih.

αh Human disease induced death rate.

β1,β2,β3 Humans infection rate from Ih, Ia, and D

respectively.

µa Animal natural death rate.

γa Progression rate from Ea to Ia.

αa Animals disease induced death rate.

ρ Rate of producing dairy products from

infected animals.

ω Amount of decaying dairy products.

β4,β5,β6 Animals infection rate from Ih, Ia, and D

respectively.
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3.2 Model Analysis

To determine whether the model is mathematically meaningful, we find the invariant region

and test positivity of the solution. The model is biologically and mathematically meaningful

when its solutions are positive and bounded.

3.2.1 Invariant Region

Invariant region shows the feasibility of the model solutions. To find the invariant region, we

denote humans and livestock populations by Nh and Na respectively. Beginning with human

population we have:

Nh = Sh +Eh + Ih,

dNh

dt
≤ Λh−µhNh,

(3.2)

From (3.2), we have:

dNh

dt
≤ Λh−µhNh,

which gives

Nh(t)≤
Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht ,

(3.3)

Analysis of Nh consider two cases:

when Nh(0)>
Λh

µh
and when Nh(0)<

Λh

µh
,

When Nh(0)> 0:

Nh(t)≤
Λh

µh
≤ Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht , (3.4)

and when Nh(0)< 0:

Nh(t)≤
Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht ≤ Λh

µh
,

since lim
t→∞

(
Nh(0)−

Λh

µh

)
e−µht → 0,

(3.5)

For all two cases, we have:

0≤ Nh ≤
Λh

µh
. (3.6)

Animals population is given by:

Na = Sa +Ea + Ia,
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where:

dNa

dt
≤ Λa−µaNa,

dNa

dt
≤ Λa−µaNa,

whose solution is

Na(t)≤
Λa

µa
+

(
Na(0)−

Λa

µa

)
e−µat ,

(3.7)

The analysis of Na consider two cases:

When Na(0)>
Λa

µa
and when Na(0)<

Λa

µa
,

For

Na(0)>
Λa

µa
: Na(t)≤

Λa

µa
+

(
Na(0)−

Λa

µa

)
e−µat , (3.8)

and for

Na(0)≤
Λa

µa
: Na(t)≤

Λa

µa
+

(
Na(0)−

Λa

µa

)
e−µat ≤ Λa

µa
,

As lim
t→∞

(
Na(0)−

Λa

µa

)
e−µat → 0,

(3.9)

all two cases gives:

0≤ Na ≤
Λa

µa
. (3.10)

For the case of dairy products when we have:

dD
dt
≤ ρ

Λa

µa
−ωD. (3.11)

From (3.11) we have:

dD
dt

+ωD≤ ρ
Λa

µa
,

whose solution is given by:

D≤ Λa

µa

(
ρ

ω

)
+

(
D(0)− Λa

µa

(
ρ

ω

))
e−ωt .

(3.12)

But as t→ ∞, we obtain:

D(t)≤ Λa

µa

(
ρ

ω

)
. (3.13)

Therefore the model (3.1) is positive invariant at the region:

Z =

{
(Sh,Eh, Ih,Sa,Ea, Ia,D) ∈ R7

+ : 0≤ Nh ≤
Λh

µh
;0≤ Na ≤

Λa

µa
;0≤ D≤ Λa

µa

(
ρ

ω

)}
.

(3.14)

The model (3.1) is mathematically and epidemiologically meaningful, therefore we can con-

sider the flow generated by the model for analysis.
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3.2.2 Positivity of Solutions

Theorem 1: Let the initial values for the state variables for the model (3.1) be

Sh(0)> 0,Eh(0)≥ 0, Ih(0)≥ 0,Sa(0)> 0,Ea(0)≥ 0, Ia(0)≥ 0 and D≥ 0 then the solutions

of the model (3.1) are positive ∀t > 0.

Proof: Let’s consider the equations (3.1a) of the model system (3.1) which is:

dSh

dt
= Λh−

(
β1Ih +β2Ia +β3D

Nh

)
Sh−µhSh,

dSh

dt
≥−

(
β1Ih +β2Ia +β3D

Nh

)
Sh−µHSh.

(3.15)

By separating variables (3.15) and integrating we get:

dSh

Sh
≥−

(
β1Ih +β2Ia +β3D

Nh
+µh

)
dt,∫ dSh

Sh
≥−

∫ t

0

(
β1Ih(s)+β2Ia(s)+β3D(s)

Nh(s)
+µh

)
ds,

lnSh ≥−
∫ t

0

(
β1Ih(s)+β2Ia(s)+β3D(s)

Nh(s)
+µh

)
ds+C,

Sh ≥Ce

∫ t

0
−
(

β1Ih(s)+β2Ia(s)+β3D(s)
Nh(s)

+µh

)
ds
.

(3.16)

At initial condition we get:

Sh(t)≥ Sh(0)e

∫ t

0
−
(

β1Ih(s)+β2Ia(s)+β3D(s)
Nh(s)

+µh

)
ds
.

(3.17)

Then Sh(t)≥ 0, ∀ t ≥ 0.

From equation (3.1b) of the model (3.1) we have:

dEh

dt
=

(
β1Ih +β2Ia +β3D

Nh

)
Sh− (γh +µh)Eh,

dEh

dt
≥−(γh +µh)Eh.

(3.18)

By separating variables and integrating equation (3.18) we get:

dEh

Eh
≥−(γh +µh)dt,∫ dEh

Eh
≥
∫ t

0
−(γh +µh)ds+C,

lnEh ≥
∫ t

0
−(γh +µh)ds+C,

Eh(t)≥Ce−(γh +µh)t .

(3.19)
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At initial condition we get:

Eh(t)≥ Eh(0)e−(γh +µh)t . (3.20)

Then Eh ≥0 ∀ t ≥0.

From equation (3.1c) of the model (3.1) we have:

dIh

dt
= γhEh− (µh +αh)Ih,

dIh

dt
≥−(µh +αh)Ih.

(3.21)

By separating variables and solving equation (3.21) we get:

dIh

Ih
≥−(µh +αh)dt.∫ dIh

Ih
≥
∫ t

0
−(µh +αh)ds+C,

ln Ih ≥
∫ t

0
−(µh +αh)ds+C,

Ih(t)≥ Ih(0)e−(µh +αh)t .

(3.22)

Then, Ih ≥0 ∀ t ≥0.

Consider model equation (3.1d) from the model system (3.1):

dSa

dt
= Λa−

(
β4Ih +β5Ia+β6ID

Na
+µa

)
Sa,

dSa

dt
≥−

(
β4Ih +β5Ia +β6D

Na
+µa

)
Sa.

(3.23)

By separating variables and integrating equation (3.23) we get:

dSa

Sa
≥−

(
β4Ih +β5Ia +β6D

Na
+µa

)
ds,∫ dSa

Sa
≥
∫ t

0
−
(

β4Ih(s)+β5Ia(s)+β6D(s)
Na(s)

+µa

)
ds+C,

lnSa ≥
∫ t

0
−
(

β4Ih(s)+β5Ia(s)+β6D(s)
Na(s)

+µa

)
ds+C,

Sa ≥Ce

∫ t

0
−
(

β4Ih(s)+β5Ia(s)+β6D(s)
Na(s)

+µa

)
ds
.

(3.24)

At initial condition we get:

Sa(t)≥ Sa(0)e

∫ t

0
−
(

β4Ih(s)+β5Ia(s)+β6D(s)
Na(s)

+µa

)
ds
.

(3.25)

So, Sa ≥0 ∀ t ≥0.

Consider equation (3.1e) of the model system (3.1) which is:

dEa

dt
=

(
β4Ih +β5Ia +β6D

Na

)
Sa− (γa +µa)Ea,

dEa

dt
≥−(γa +µa)Ea.

(3.26)
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Separate variables and integrate equation (3.26) to get:

dEa

Ea
≥−(γa +µa)dt,∫ dEa

Ea
≥
∫ t

0
−(γa +µa)ds+C,

lnEa ≥
∫ t

0
−(γa +µa)ds+C,

Ea(t)≥Ce−(γa +µa)t .

(3.27)

At initial we get:

Ea(t)≥ Ea(0)e−(γa +µa)t . (3.28)

Hence Ea ≥ 0 ∀ t ≥ 0.

Again from the model equation (3.1f) of the model (3.1) we have:

dIa

dt
= γaEa− (µa +αa)Ia,

dIa

dt
≥−(µa +αa)Ia.

(3.29)

By solving the differential equation (3.29) we get:

dIa

Ia
≥−(µa +αa)dt,∫ dIa

Ia
≥
∫ t

0
−(µa +αa)ds+C,

ln Ia ≥
∫ t

0
−(µa +αa)ds+C,

Ia(t)≥Ce−(µa +αa)t .

(3.30)

Initially we get:

Ia(t)≥ Ia(0)e−(µa +αa)t . (3.31)

Then, Ia ≥0 ∀ t ≥0.

Lastly from the equation (3.1g) of the model (3.1) we have:

dD
dt

= ρIa−ωD,

dD
dt
≥−ωD.

(3.32)

By solving the equation (3.32) we get:

dD
D
≥−ωdt,∫ dD

D
≥
∫ t

0
−ωdt +C,

lnD≥
∫ t

0
−ωds+C,

D(t)≥Ce−ωt .

(3.33)
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At time zero we get:

D(t)≥ D(0)e−ωt . (3.34)

Then, D≥ 0 ∀ t ≥ 0.

Therefore all solutions are positive ∀t > 0.

3.3 Disease free equilibrium

The disease-free equilibrium point is the state when there is no disease in the population. When

there is no bTB in human and animal populations, the disease-free equilibrium is given by:

DF0 = (Sh,Eh, Ih,Sa,Ea, Ia,D) =

(
Λh

µh
,0,0,

Λa

µa
,0,0,0

)
. (3.35)

3.3.1 The Basic Reproduction Number R0

The basic reproduction number refers to the average number of new cases that single infectious

individual causes when introduced into an entirely susceptible population (Diekmann et al.,

1990). It determines whether the disease persists or clears out in the population. When the

basic reproduction number R0 < 1, the disease clears out in the population. It persists when the

basic reproduction number R0 > 1. When an infectious individual introduced into an entirely

susceptible population, he/she infects more than one individuals hence the disease persists

(Diekmann et al., 1990; Van, 2002). To compute the basic reproduction number R0, we use the

next generation matrix method where we consider new infections and transfer terms as used by

Diekmann et al. (1990) and Van (2002). If bTB new infectious and transfer terms are denoted

by Fi and Vi respectively, then the basic reproduction number R0 is given as the maximum

eigenvalue. That is:

R0 = ρ(FV−1), (3.36)

where:

F =
∂Fi

∂X j

(
DF0) and V =

∂Vi

∂X j
(DF0).
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From the model system (3.1), Fi and Vi are defined as:

Fi =



(
β1Ih +β2Ia +β3D

Nh

)
Sh

0(
β4Ih +β5Ia +β6D

Na

)
Sa

0

0


, (3.37)

(3.38)

and

Vi =



(µh + γh)Eh

γhEh− (µh +αh) Ih

(γa +µa) Ia

γaEa− (µa +αa) Ia

ρIa−ω


. (3.39)

Jacobian of Fi and Vi at disease free equilibrium is given by:

F =



0 β1 0 β2 β3

0 0 0 0 0

0 β4 0 β5 β6

0 0 0 0 0

0 0 0 0 0


, (3.40)

and

V =



µh + γh 0 0 0 0

−γh µh +αh 0 0 0

0 0 γa +µa 0 0

0 0 −γa µa +αa 0

0 0 0 −ρ ω


. (3.41)
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Inverse of the matrix (3.41) works out to be:

V−1 =



1
(γh +µh)

0 0 0 0

γh

(γh +µh)(αh +µh)

1
(αh +µh)

0 0 0

0 0
1

(γa +µa)
0 0

0 0
γa

(γa +µa)(αa +µa)

1
(αa +µa)

0

0 0
ρ γa

(γa +µa)(αa +µa)ω

ρ

(αa +µa)ω

1
ω


,

(3.42)

and the product of matrices (3.40) and (3.42) is:

FV−1 =



β1γh

(γh +µh)(αh +µh)
q

β2γa

(αa +µa)(γa +µa)
+

β3ρ γa

(αa +µa)(γa +µa)ω
d

β3

ω

0 0 0 0 0

β4γh

(γh +µh)(µh +αh)
f

β5γa

(γa +µa)(αa +µa)
+

β6ρ γa

(αa +µa)(γa +µa)ω
h

β6

ω

0 0 0 0 0

0 0 0 0 0


.

(3.43)

where

q =
β1

αh +µh
,

d =
β2

αa +µa
+

β3ρ

(αa +µa)ω
,

f =
β4

αh +µh
,

h =
β5

αa +µa
+

β6ρ

(αa +µa)ω
.

(3.44)

Therefore the basic reproduction number R0 is given by:

R0 =
1
2

(
γa (ω β5 +ρ β6)

(γa +µa)(µa +αa)ω
+

β1γh

(µh + γh)(µh +αh)

)

+
1
2

√( γa (ω β5 +ρ β6)

(γa +µa)(µa +αa)ω
− β1γh

(µh + γh)(µh +αh)

)2

+4ce

 .

(3.45)

where, ce =
γhγa(ωβ2 +ρβ3)

ω(γh +µh)(αh +µh)(γa +µa)(αa +µa)
.
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The terms:

(i)
1

γh +µh
is the average period an individual human spent in exposed class.

(ii)
1

γa +µa
the average period an individual animal spends in exposed class.

(iii)
1

αh +µh
is the average period an infectious human spends in their infectious class.

(iv)
1

αa +µa
is the average period an infectious animal spends in their infectious class.

(v)
β1γh

(γh +µh)(αh +µh)
and

β4γh

(γh +µh)(αh +µh)
are the proportions of Eh that move into Ih.

(vi)
(ωβ5 +ρβ6)γa

ω (γa +µa)(αa +µa)
is the sum of proportions of infected animals that progress from

Ea to Ia after coming into contact with infectious animals

and after consuming infectious dairy products.

(vii)
γhγa(ωβ2 +ρβ3)

ω(γh +µh)(αh +µh)(γa +µa)(αa +µa)
is the sum of proportions of infected humans

who develop bTB by contacting infectious animals and after consuming infec-

tious

dairy products.

3.3.2 Sensitivity Analysis of basic Reproduction number R0

According to Fellin et al. (2005) and Silva and Torres (2013) sensitivity analysis of R0 helps to

understand effects of each parameter on the model output and their influence in the spread of

disease in the population. We adopted normalized forward sensitivity index as used by Chitnis

et al. (2008) and Silva and Torres (2013) to perform sensitivity analysis of R0. A normalized

forward index of variable β with respect to basic reproduction number R0 is defined as:

ϒ
R0
β

=
∂R0

∂β
× β

R0
. (3.46)

Using estimated parameters and from related literature, sensitivity index of each parameter

with respect to basic reproduction number R0 is computed and summarized in Table 3.
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Table 3: Sensitivity Indices for R0

Parameter Index value

β1 0.0271.

β2 0.0530.

β3 0.1177.

β4 0.1708.

β5 0.3601.

β6 0.2713.

γh 0.0892.

µh -0.2728.

αh -0.0144.

γa 0.1671.

αa -0.5793.

µa -0.3898.

ρ 0.3890.

ω -0.3890.

Sensitivity analysis shows that humans infection rate due to the consumption of dairy products

β3 and contact rate with infected animals β2, animal infection rates due to contact with infec-

tious animals β5, and the rate at which animal consume dairy product β6 drive the dynamics of

bTB. Generally, the most sensitive parameter is the rate of producing dairy products, ρ . The

sensitivity indices of R0 with respect to ρ , β5 and β6 are 0.3898, 0.3601 and 0.2713, respec-

tively. The increases of these parameters by 10%, lead to an increase in basic reproduction

number R0 by 38.9%, 36% and 27.1%, respectively. However, when animals mortality rate

due to disease αa, the natural death rate for animals µa, humans disease-induced death rate αh,

the natural death rate for humans µh and dairy products decaying rate ω increase, the basic

reproduction number R0 decreases consequently.

3.3.3 Stability Analysis for Disease Free Equilibrium (DFE)

In this section, we use the linearization method to establish local stability of disease-free equi-

librium since the model has the possibility of undergoing backward bifurcation when R0 = 1,

therefore global stability of DFE is not considered.

Disease-free equilibrium is locally asymptotically stable when R0 < 1. Negative eigenvalues

from the linearized system at disease-free equilibrium show that the disease-free equilibrium

is locally stable. By using the linearization method, the Jacobian of the system (3.1) at DFE is

given by;
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J =



−µh 0 −β1 0 0 −β2 −β3

0 −µh− γh β1 0 0 β2 β3

0 γh −µh−αh 0 0 0 0

0 0 −β4 −µa 0 −β5 −β6

0 0 β4 0 −µa− γa β5 β6

0 0 0 0 γa −µa−αa 0

0 0 0 0 0 ρ −ω



. (3.47)

From first and fourth columns, the eigenvalues are −µh and −µa. Matrix (3.47) now reduces

to

K =



−µh− γh β1 0 β2 β3

γh −µh−αh 0 0 0

0 β4 −µa− γa β5 β6

0 0 γa −µa−αa 0

0 0 0 ρ −ω


. (3.48)

We analyze matrix K by using trace tr and determinant det. Disease free equilibrium is locally

stable if trace is negative tr(K)< 0 and det(K)> 0. From (3.48) trace of the matrix K is given

by

tr(K) =−((µh + γh)+(µh + γh)+(µa + γa)+(µa +αa)+ω)< 0. (3.49)

Determinant det(K) is given by

det(K) =(γh +µh)(αh +µh)ω β5γa +(γh +µh)(µh +αh)ρ β6γa

+(γa +µa)(αa +µa)ω β1γh +ω β2β4γhγa +ρ β3β4γhγa

−ρ β1β6γhγa(γh +µh)(αh +µh)(γa +µa)(αa +µa)ω +ω β1β5γhγa.

(3.50)

det(K)> 0 if

β1γh

(µh + γh)(µh +αh)
+

γa (ω β5 +ρ β6)

ω (γa +µa)(µa +αa)
+

β4γH(ωβ2γa +ρβ3γa)

ω(γh +µh)(αh +µh)(γa +µa)(αa +µa)

− γhγaβ1(ωβ5 +ρβ6)

ω(γh +µh)(αh +µh)(γa +µa)(αa +µa)
> 1.

(3.51)

Theorem 2: The disease free equilibrium is locally asymptotically stable if R0 < 1 and condi-

tion (3.51) holds.
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However, the disease-free equilibrium may not be globally asymptotically stable due to the

possibility of the model (3.1) to undergo backward bifurcation when R0 = 1.

Since the trace of matrix K is negative, and its determinant is positive provided condition (3.51)

holds, then DFE is locally asymptotically stable.

3.4 Endemic Equilibrium

Endemic equilibrium is a state when the disease prevails in the population. To compute en-

demic equilibrium, right side of each equation in model system (3.1) is set to zero. That is:

Λh−
(

β1Ih +β2Ia +β3D
Nh

)
Sh−µhSh = 0. (3.52a)(

β1Ih +β2Ia +β3D
Nh

)
Sh− (γh +µh)Eh = 0. (3.52b)

γhEh− (µh +αh)Ih = 0. (3.52c)

Λa−
(

β4Ih +β5Ia +β6D
Na

)
Sa−µaSa = 0. (3.52d)(

β4Ih +β5Ia +β6D
Na

)
Sa− (γa +µa)Ea = 0. (3.52e)

γaEa− (µa +αa)Ia = 0. (3.52f)

ρIa−ωD = 0. (3.52g)

Solving system (3.52) in terms of force of infection, we obtain;

S∗h =
Λh

λ ∗h +µh

E∗h =
λhΛh

(µh + γh)
(
λ ∗h +µh

)
I∗h =

γhλ ∗h Λh

(µh +αh)(µh + γh)
(
λ ∗h +µh

)
S∗a =

Λa

λ ∗a +µa

E∗a =
λ ∗a Λa

(µa + γa)(λ ∗a +µa)

I∗a =
γaλ ∗a Λa

(µa +αa)(µa + γa)(λ ∗a +µa)

D∗ =
ρ γaλ ∗a Λa

ω (µa +αa)(µa + γa)(λ ∗a +µa)
.

(3.53)
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3.4.1 Bifurcation Analysis

To determine the possibility of model (3.1) to undergo backward bifurcation when R0 = 1,

we rename the state variables Sh,Eh, Ih,Sa,Ea, Ia,D to be x1,x2,x3,x4,x5,x6,x7 respectively,

where Nh = x1 + x2 + x3 and Na = x4 + x5 + x7. By introducing the vector notations X =

(x1,x2,x3,x4,x5,x6,x7)
T , the model system (3.1) is now written as

dX
dt

= F(X), where F(X) =

( f1, f2, f3, f4, f5, f6, f7)
T . The model system (3.1) is then re-written as:

dx1

dt
= f1 = Λh−

(
β1x3 +β2x6 +β3x7

x1 + x2 + x3

)
x1−µhx1,

dx2

dt
= f2 =

(
β1x3 +β2x6 +β3x7

x1 + x2 + x3

)
x1− (γh +µh)x2,

dx3

dt
= f3 = γhx2− (µh +αh)x3,

dx4

dt
= f4 = Λa−

(
β4x3 +β5x6 +β6x7

x4 + x5 + x6

)
x4−µax4,

dx5

dt
= f5 =

(
β4x3 +β5x6 +β6x7

x4 + x5 + x6

)
x4− (γa +µa)x5,

dx6

dt
= f6 = γax5− (µa +αa)x6,

dx7

dt
= f7 = ρx6−µDx7.

(3.54)

The Jacobian of the system (3.1) at disease free equilibrium is given by:

J =



−µh 0 −β1 0 0 −β2 −β3

0 −µh− γh β1 0 0 β2 β3

0 γh −µh−αh 0 0 0 0

0 0 −β4 −µa 0 −β5 −β6

0 0 β4 0 −µa− γa β5 β6

0 0 0 0 γa −µa−αa 0

0 0 0 0 0 ρ −ω



. (3.55)

To determine whether the system (3.1) undergoes backward bifurcation at R0 = 1, we adopt the

theorem in Gumel and Song (2008) which is restated as follows;

Theorem 3: Consider the following general system of ordinary differential equations with a

parameter β ∗.
dx
dt

= f (x,β ∗), f : ℜ×ℜn 7→ ℜn and f ∈C2(ℜn×ℜ) where 0 is an equilibrium point of the

system (that is f (0,β ∗)≡ 0 ∀β ∗ and

1. A = Dx f (0,0) =
∂ fi

∂x j
(0,0) is a linearization matrix of the system around the equilibrium

0 with β ∗ at 0.
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2. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts.

3. Matrix A has a right eigenvectors w and left eigenvectors v corresponding to the zero

eigenvalues.

Let fk be the kth component of f and

a =
n

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0), (3.56)

b =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂β ∗
(0,0). (3.57)

Then, the local dynamics of the system around the equilibrium point is totally determined by

the signs of a and b. Particularly if a > 0 and b > 0 then a backward bifurcation occurs at

β ∗ = 0.

The local dynamics at (3.54) around 0 are totally determined by signs of a and b.

i. a > 0, b > 0. When β ∗ < 0 with |β ∗|<< 1, 0 is locally asymptotically stable, and there

exists a positive unstable equilibrium; when 0 < β ∗ << 1, 0 is unstable and there exists

a negative and locally asymptotically stable equilibrium;

ii. a < 0, b < 0. When β ∗ < 0 with |β ∗|<< 1, 0 is unstable; when 0 < β ∗ << 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When β ∗ < 0 with |β ∗| << 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0< β ∗<< 1, 0 is stable, and a positive

unstable equilibrium appears;

iv. a < 0, b > 0. When β ∗ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive

and locally asymptotically stable.

Suppose we choose the bifurcation parameter to be β3 = β ∗ when R0 = 1. Now, solving for

β3 = β ∗ when R0 = 1 we get:

β3 =β
∗ = M

(
2− β4γh

(γh +µh)(αh +µh)
− γa(ρβ6 +ωβ2)

(γa +µa)(αa +µa)

)2

+M
(

β1γh

(γh +µh)(αh +µh)
− γa(ρβ6 +ωβ2)

(γa +µa)(αa +µa)

)2

.

(3.58)
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where;

M =
(γa +µa)(αa +µa)(γh +µh)(αh +µh)ω

γhγaρβ4
.

From (3.55), right eigenvectors w = (wi)
T where i = 1,2...7 are:

w5 =
ω(αa +µa)w7

γaρ
, w6 =

ωw7

ρ
,

w3 =

(
ω(γa +µa)(αa +µa)− γa(ωβ5 +ρβ6)

γaρβ4

)
w7,

w4 =

(
ω(γa +µa)(αa +µa)−2(ωβ5 +ρβ6)γa

γaµaρ

)
w7,

w1 =−
(

ωM1 +(ωβ5 +ρβ6)+ γaβ4(ωβ2 +ρβ3)

β4γaµhρ

)
w7,

w2 =

(
ω(γa +µa)(αa +µa)− γa(ωβ5 +ρβ6)(αh +µh)

γhγaβ4ρ

)
w7.

where w7 > 0 is free right eigenvector and M1 = (γa +µa)(αa +µa).

(3.59)

The left eigenvectors v = (vi)
T where i = 1,2...7 are:

v1 = v4 = 0. v2 =
γhv3

γh +µh
,

v5 =

(
(γh +µh)(αh +µh)− γhβ2

β4(γh +µh)

)
v3,

v6 =

(
(γa +µa)((γh +µh)(αh +µh)− γhβ2)

γaβ4(γh +µh)

)
v3,

v7 =

(
(γhβ3β4 +β6((γh +µh)(αh +µh)− γhβ2)

ω(γh +µh)β4

)
v3.

where v3 > 0 is free left eigenvector.

(3.60)

Computation of a

From the model system (3.1) the associated non-zero partial derivatives of F at disease free

equilibrium are given by:

∂ 2 f2

∂x2
3
=−2β1µh

Λh
,

∂ 2 f2

∂x2∂x3
=−β1µh

Λh
,

∂ 2 f2

∂x2∂x6
=−β2µh

Λh
,

∂ 2 f2

∂x2∂x7
=
−β ∗µh

Λh
,

∂ 2 f2

∂x3∂x6
=−β2µh

Λh
,

∂ 2 f2

∂x3∂x7
=
−β ∗µh

Λh
,
∂ 2 f5

∂x2
6
=−2β5µa

Λa

∂ 2 f5

∂x3∂x5
=−2β4µa

Λa
,

∂ 2 f5

∂x3∂x6
=−β4µa

Λa
,

∂ 2 f5

∂x5∂x6
=
−β5µa

Λa
,

∂ 2 f5

∂x5∂x7
=
−β6µa

Λa
,

∂ 2 f5

∂x6∂x7
=
−β6µa

Λa
.

(3.61)

Since v1 = v4 = 0 it follows that,

a = v2

n

∑
i, j=1

wiw j
∂ 2 f2

∂xi∂x j
+ v5

n

∑
i, j=1

wiw j
∂ 2 f5

∂xi∂x j
. (3.62)
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To compute the values of a we substitute the partial derivatives from (3.61) into (3.62) to get:

a =

(
2µhΛhw3M2β1γa(ωβ5 +ρβ6)

ΛhγhΛaγaρβ4

)
w7v2

−
(

2µhΛaw3M1(β1ωM1 + γaβ4(ωβ2 +ρβ3))

ΛhγhΛaγaρβ4

)
w7v2

−
(

2Λhγhωβ4µa(w5 +w6)M1

ΛhγhΛaγaρβ4

)
w7v5.

where M2 = αh +µh + γh.

To analyze the sign of a we consider two cases.

Case I:

a < 0 if

γa(ωβ5 +ρβ6)

ω(γa +µa)(αa +µa)
< 1

and
Λhγhµaωβ4(w5 +w6)M1v5 +Λaµhw3(ωM1β1 +(ωβ2 +ρβ3)γaβ4)M1v2

ΛhγaµhM2β1(ωβ5 +ρβ6)w3v2
> 1 (3.63)

Case II:

a > 0 if

γa(ωβ5 +ρβ6)

ω(γa +µa)(αa +µa)
> 1

and
Λhγhµaωβ4(w5 +w6)M1v5 +Λaµhw3(ωM1β1 +(ωβ2 +ρβ3)γaβ4)M1v2

ΛhγaµhM2β1(ωβ5 +ρβ6)w3v2
< 1 (3.64)

Computation of b

Recall from (3.60) since v1 = v4 = 0, b becomes:

b = v2

n

∑
i=1

wi
∂ 2 fk

∂xi∂β ∗
(0,0),

b = v2w7
∂ 2 f2

∂x7∂β ∗
,

b =
γhw7v3

γH +µh
> 0.

(3.65)

From the computation of a and b we can establish the following results.

Theorem 4: If

γa(ωβ5 +ρβ6)

ω(γa +µa)(αa +µa)
> 1
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and

Λhγhµaωβ4(w5 +w6)M1v5 +Λaµhw3(ωM1β1 +(ωβ2 +ρβ3)γaβ4)M1v2

ΛhγaµhM2β1(ωβ5 +ρβ6)w3v2
< 1

then the model system (3.1) undergoes backward bifurcation when R0 = 1.

3.5 Numerical Simulation

In this section, we discuss the dynamics of bTB in humans and animal population by con-

sidering parameters which drive the transmission dynamics of bTB. The initial condition we

assumed to be Sh = 530,Eh = 15, Ih = 4,Sa = 500,Ea = 25, Ia = 10 and D = 13. We use esti-

mated parameters and some from related literature as summarized in Table 4.
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Table 4: Parameter Values of the Model system (3.1)
Parameter Interpretation Value yr−1 Source.

β2 human infection rate

from infected

animals

0.55 Hassan et al. (2014).

β5 rate of cow infected

via animal

0.6 Agusto et al. (2011).

β6 rate of animals

infected via dairy

products

0.34 Estimated.

γh progression rate

from Eh to Ih

0.15 Dye and Williams

(2008).

µh human natural death

rate

0.01 Liu et al. (2016).

αh human death rate

due to disease

induced

0.139 Liu et al. (2016).

γa progression rate

from Ea to Ia

0.18 Ssematimba et al.

(2015).

αa animal death due to

disease induced

0.0304 Agusto et al. (2011).

µa animal natural death

rate

0.05 Mariner et al.

(2006).

ρ dairy production rate 0.69 Estimated.

ω rate of decaying

dairy products

0.4 Estimated.

β3 human infection rate

from infected dairy

products

0.999 Estimated.

β4 rate of cow infected

via human

0.25 Estimated.

β1 human infection rate

from infected human

0.35 Estimated.
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Figure 2: Dynamics of humans and animals populations

Susceptible humans and animals decrease after acquiring bTB when they come into contact

with infectious humans and animals, and after consuming infectious dairy products, as shown

in Fig. 2. However, infectious classes increase as individuals from susceptible class acquire

bTB and move to the exposed class and then to infectious class.
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Figure 3: Variation of Sh and Sa due to consumption of dairy products

Figures 3 (a) and (b) show the variations in the rate of producing infectious dairy products. The

increase in the rate of consumption of contaminated products leads to a decrease in the number

of susceptible humans and susceptible animals. For example at t = 10 years an increase in the

contaminated dairy products from 10% to 50% leads to a decrease in the number of susceptible

humans from 800 to 700.

31



0 5 10 15 20 25 30

Time[years]

0

50

100

150

200

250

300

350

400

450

500
In

fe
c
te

d
 h

u
m

a
n

s
=0.1

=0.2

=0.3

=0.4

=0.5

(a) Infected Humans

0 5 10 15 20 25 30

Time[years]

0

50

100

150

200

250

300

350

400

In
fe

c
te

d
 a

n
im

a
ls

=0.1

=0.2

=0.3

=0.4

=0.5

(b) Infected animals

Figure 4: Variation of Ih and Ia due to consumption of dairy products

As the rate of producing contaminated dairy products increased, infected classes were increas-

ing proportionally. For instance at t = 15 years, when the rate at which contaminated dairy

products increased from 10% to 50%, the infected human class increased from 50 to 150 in-

dividuals while infected animals class increase from 100 to 150 as displayed in Fig. 4. This

means that one infected animal double the number of infected humans.
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Figure 5: Variations of Sh and Sa when they interact with infected animals

Figure 5 shows the effects of varying human and animal transmission rates from infected an-

imals. The increase in the interaction between infected animals with susceptible humans and

animals leads to decreases in susceptible classes, as shown in Fig. 5. For example, Fig. 5(a)

shows that susceptible human class decreases as the interaction rate increases form 10%-90%.

Also, Fig. 5(b) shows that susceptible animal class decreases as the interaction rates increase

from 10%-80%.
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Figure 6: Variation of Ih and Ia classes when they interact with infected animals

Infected human and animal classes increase over time as we vary infection rates. When the

infection rate increased from 10% to 90% infected human class decreases, as shown in Fig.

6(a). Also, the infected animal class decreases as the rate of infection increased from 10% to

80%, as shown in Fig. 6(b).
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Figure 7: The impact of rates of transmission from dairy products to Sh and Sa.

Figure 7 shows the impacts of transmission rates due to the consumption of infectious dairy

products β3 and β6. Susceptible human and animal classes decrease as the consumption rate

increases from 10% to 80%, as shown in Fig. 7.
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Figure 8: The impact of rates of transmission from dairy products to Ih and Ia.

Figure 8(a) and (b) show the impacts of increasing the consumption of infectious dairy products

on infected human and animals. Infected human and animal classes increases as consumption

of infectious dairy products increase from 10% to 90%, as shown in Fig. 8.

3.6 Conclusion

A deterministic model for transmission dynamics of bTB was developed and analyzed to de-

termine parameters that drive the disease. We computed basic reproduction number R0 and

determined the sensitivity index for each parameter with respect to R0. The sensitivity analysis

shows that the animal infection rate from infectious animals β5, production of infectious dairy

products ρ , the human infection rate from dairy products β3, and humans infection rate from

infectious animals β2, drive the dynamics of bTB. The stability of equilibrium states investi-

gated, whereby disease-free equilibrium DFE is locally asymptotically stable when the basic

reproduction number R0 < 1. However, both disease-free and endemic equilibria are not glob-

ally stable due to the possibility of the model to undergo backward bifurcation when the basic

reproduction number R0 = 1. The disease can be contained if control strategies would target to

reduce the most sensitive parameter values to the spread of the disease.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Bovine Tuberculosis Model with Control Strategies

Bovine tuberculosis is a form of zoonotic tuberculosis that has received little attention despite

its impacts on human health and the economy. Pastoral communities, especially in Africa,

do not know how bovine tuberculosis is transmitted and controlled. In such communities, the

interaction between human beings and animals like cows, goats, sheep, and pigs is common.

On top of that, the consumption of raw dairy products like unpasteurized milk and raw meat is

a common practice. As if that is not enough, there are frequent contacts between domestic and

wild animals like buffalo and badger, which occurs in communities that live around the national

parks like Masai, Datooga, and Hadzabe to mention the few. Under these circumstances, when

a domestic animal like cow, goat or sheep infected with bTB, it is easy to spread the disease to

human beings, and other domestic and wild animals and vice versa. Through contacts between

domestic and wild animals, bTB has spread from buffalo and badger to cattle, goats, pigs,

horses and sheep (WHO, 2016). Domestic animals as well have spread bTB to human beings.

In order to contain the spread of bTB as recommended in chapter three, early diagnosis of the

disease is essential. When an individual diagnosed with bTB, he/she advised undergoing treat-

ment. The treatment which cures pulmonary tuberculosis (TB) also used to treat bTB. Liu et al.

(2016), Cousins and Roberts (2001) in their study they suggested that quarantine and slaughter-

ing of infected animals that is to remove infected animals from the herd reducing contacts with

a human being and other animals and pasteurization of milk are the ways of controlling the

transmission. In this study, we propose an inspection of dairy products, quarantine of infected

animals and the treatment of infected humans to contain the transmission of bTB.

In this chapter, we extend the basic model by introducing control parameters and discuss how

they can control the transmission of bTB. Treatment of infected humans and quarantine of

infected animals helps to prevent the transmission of bTB from infected to susceptible indi-

viduals; hence the rates of transmission will be reduced. Also, an inspection of dairy products

helps to know whether meat or milk is infected to take precautions.

4.2 Model Formulation

The model of bTB in human and livestock is extended by including controls. Dynamics of bTB

is grouped into human population and animals population. Human population is divided into

susceptible class Sh exposed class Eh and infected class Ih. Animals population is divided into

susceptible class Sa, exposed/latent class Ea and infectious class Ia.
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Susceptible class Sh increases through birth and recovery at rates Λh and Πh respectively.

However, they acquire disease and become latent after coming into contact with infec-

tious humans, infectious animals and by consuming infectious dairy products at a rate Xh =
(1− τh)β1Ih +(1− τa)β2Ia +β3(1− ε)D

Nh
. Parameters τh,τa and ε represent the rates at which

infected humans treated, infected animals quarantined, and dairy products inspected, respec-

tively.

Exposed human class Eh increases when susceptible class acquire bTB and moves into class at

the rate of Xh. However, individuals in the class decrease by dying naturally at the rate of µh,

and when they develop symptoms and progress into infectious class at the rate of γh.

Infectious class increases when an individual from exposed class progress into infectious class

at a rate of γh. However, they decrease due to disease-induced and by dying naturally at rates

αh and µh respectively. They also decrease following the quarantine of infected animals at the

rate of τa.

Susceptible animals Sa increase through birth and migration at a rate Λa. They acquire bovine

tuberculosis latent infection following contacts with infectious humans and animals, and after

consuming infectious dairy products at a rate Xa =
β4(1− τh)Ih +β5(1− τa)Ia +β6(1− ε)D

Na
.

Exposed animals Ea increase following latent infection of susceptible animals Sa at a rate Xa.

However, they decrease as they develop symptoms and progress into an infectious state at a

rate of γa and by dying naturally at a rate of µa.

Infectious animals Ia increase at a rate γa and diminish due to disease-induced mortality at a

rate αa and by quarantine of infected animals at a rate τa. In this class animals also suffer

natural mortality at a rate of µa.

Infectious animals produce dairy products at a rate of ρ the remaining products leak at rate ω .

In the control model, we assumed that there is no interaction between susceptible animals

and quarantined animals. Treatment of infected human and permanent quarantine of infected

animals helps to reduce the transmission rate of the disease. Inspection of dairy products helps

to reduce the production of infectious dairy products; hence the rate of transmission from the

dairy product can be reduced since the consumption of infectious dairy products decreases. On

recovery, humans become susceptible to the disease again.

Figure 9 demonstrates the interaction of state variables, Tables 5 and 6 describe state variables

and parameters, respectively.
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Figure 9: Model Flow Diagram Extended

Table 5: Model Variables Description
Symbol Description

Sh(t) Number of susceptible human at time t.

Sa(t) Number of susceptible animal at time t.

Eh(t) Number of Exposed human beings at time t.

Ea(t) Number of Exposed animals at time t.

Ih(t) Number of infected human at time t.

Ia(t) Number of infected animals at time t

D(t) Amount of producing dairy products at time

t
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4.2.1 Model Equations

The bTB model with controls is governed by the following system of differential equations:

dSh

dt
= Λh +ΠhIh−

(
β1(1− τh)Ih +β2(1− τa)Ia +β3(1− ε)D

Nh

)
Sh−µhSh. (4.1a)

dEh

dt
=

(
β1(1− τh)Ih +β2(1− τa)Ia +β3(1− ε)D

Nh

)
Sh− (γh +µh)Eh. (4.1b)

dIh

dt
= γhEh− (µh +αh + τh)Ih. (4.1c)

dSa

dt
= Λa−

(
β4(1− τh)Ih +β5(1− τa)Ia +β6(1− ε)D

Na

)
Sa−µaSa. (4.1d)

dEa

dt
=

(
β4(1− τh)Ih +β5(1− τa)Ia +β6(1− ε)D

Na

)
Sa− (γa +µa)Ea. (4.1e)

dIa

dt
= γaEa− (µa +αa + τa)Ia. (4.1f)

dD
dt

= ρ(1− ε)Ia− (ω +θ)D. (4.1g)

Subject to their initial conditions:

Sh(0)> 0;Eh(0)≥ 0; Ih(0)≥ 0;Sa(0)> 0;Ea(0)≥ 0; Ia(0)≥ 0;D(0)≥ 0.

Table 6: Parameters’ Descriptions
Parameter Descriptions

Λh Human recruitment rate.

µh Human natural death.

γh Progression rate from Eh to Ih.

αh Human death rate due to disease induced.

ε Rate of inspecting dairy products.

β1,β2,β3 Humans infection rate from Ih, Ia, and D

respectively.

τa Rate of quarantine infected animals.

µa Animal natural death rate.

γa Progression rate from Ea to Ia.

αa Mortality of animals due to disease

ρ Rate of dairy products produced from Ia.

ω Rate of decaying unconsumed dairy

products.

β4,β5,β6 Animals infection rate from Ih, Ia, and D

respectively.

τh Rate of treating infected humans.

Πh Human recovery rate.
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4.3 Model Analysis

To show that the model is mathematically meaningful, we find the invariant region and test pos-

itivity of the solution. The model is biologically and mathematically meaningful if its solutions

are positive and bounded.

4.3.1 Invariant Region

The invariant region shows the feasibility of the model solutions. To find the invariant region,

we denote humans and livestock populations by Nh and Na respectively. Beginning with the

human population, we have:

Nh = Sh +Eh + Ih, (4.2)

From (4.2), we have:

dNh

dt
≤ Λh−µhNh, (4.3)

whose solution when t = 0 is:

Nh(0)≤
Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht . (4.4)

Analysis of Nh consider two cases:

when Nh(0)>
Λh

µh
and when Nh(0)<

Λh

µh
.

For

Nh(0)> 0 : Nh(t)≤
Λh

µh
≤ Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht , (4.5)

and for

Nh(0)< 0 : Nh(t)≤
Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht ≤ Λh

µh
,

Since lim
t→∞

(
Nh(0)−

Λh

µh

)
e−µht → 0,

(4.6)

then,

0≤ Nh ≤
Λh

µh
. (4.7)

Animals population is given by:

Na = Sa +Ea + Ia,
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Thus
dNa

dt
≤ Λa−µaNa. (4.8)

Using initial condition, the solution is:

Na(t)≤
Λa

µa
+

(
Na(0)−

Λa

µa

)
e−µat . (4.9)

The analysis of Na consider two cases:

When Na(0)>
Λa

µa
and when Na(0)<

Λa

µa
,

For,

Na(0)>
Λa

µa
: Na(t)≤

Λa

µa
+

(
Na(0)−

Λa

µa

)
e−µat . (4.10)

and for

Na(0)≤
Λa

µa
: Na(t)≤

Λa

µa
+

(
Na(0)−

Λa

µa

)
e−µat ≤ Λa

µa
,

As lim
t→∞

(
Na(0)−

Λa

µa

)
e−µat → 0.

(4.11)

All the two cases give:

0≤ Na ≤
Λa

µa
. (4.12)

For dairy products we have:

dD
dt
≤ ρ(1− ε)Ia− (ω +θ)D,

Since

Ia ≤
Λa

µa
then,

dD
dt
≤ ρ(1− ε)

Λa

µa
− (ω +θ)D, (4.13)

From (4.13) we have:
dD
dt

+(ω +θ)D≤ ρ(1− ε)
Λa

µa
, (4.14)

By using initial conditions we get:

D(t)≤ Λa

µa

(
1− ε

ω +θ

)
ρ +

(
D(0)− Λa

µa

(
1− ε

ω +θ

)
ρ

)
e−(ω+θ)t ,

But as t→ ∞, we obtain:

D(t)≤ Λa

µa

(
1− ε

ω +θ

)
ρ. (4.15)

Therefore the model (4.1) is positive invariant in the region:

Z =

{
(Sh,Eh, Ih,Sa,Ea, Ia,D) ∈ R7

+ : 0≤ Nh ≤
Λh

µh
;0≤ Na ≤

Λa

µa
;0≤ D≤ Λa

µa

(
1− ε

ω +θ

)
ρ

}
.

(4.16)

The model (4.1) is mathematically and epidemiologically meaningful, therefore we can con-

sider the flow generated by the model for analysis.
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4.3.2 Positivity of Solutions

Theorem 5: Let the initial values for the state variables for the model (4.1) be Sh(0) >

0,Eh(0) ≥ 0, Ih(0) ≥ 0,Sa(0) > 0,Ea(0) ≥ 0, Ia(0) ≥ 0 and D ≥ 0 then the solutions of the

model (4.1) are positive ∀t ≥ 0.

Proof: Let’s consider the equations (3.64a) of the model system (4.1) which is:

dSh

dt
= Λh +ΠhIh−

(
β1(1− τh)Ih +β2(1− τa)Ia +β3(1− ε)D

Nh

)
Sh−µhSh, (4.17)

From (4.17) we get the inequality:

dSh

dt
≥−

(
β1(1− τh)Ih +β2(1− τa)Ia +β3(1− ε)D

Nh

)
Sh−µhSh. (4.18)

Solving differential equation (4.18) and apply initial condition, we get:

Sh(t)≥ Sh(0)e

∫ t

0
−
(

β1(1− τh)Ih(s)+β2(1− τa)Ia(s)+β3(1− ε)D
Nh(s)

+µh

)
ds
.

(4.19)

Then Sh(t)≥ 0, ∀ t ≥ 0.

From equation (3.64b) of the model (4.1) we have:

dEh

dt
=

(
β1(1− τh)Ih +β2(1− τa)Ia +β3(1− ε)D

Nh

)
Sh− (γh +µh)Eh, (4.20)

Equation (4.20) gives the inequality

dEh

dt
≥−(γh +µh)Eh. (4.21)

Separating variables, integration and application of initial condition, equation (4.21) gives:

Eh(t)≥ Eh(0)e−(γh +µh)t . (4.22)

Then Eh ≥0 ∀ t ≥0.

From equation (3.64c) of the model (4.1) we have:

dIh

dt
= γhEh− (µh +αh + τh)Ih, (4.23)

whose inequality is:

dIh

dt
≥−(µh +αh + τh)Ih. (4.24)

By separating variable and solving equation, (4.24) we get:

Ih(t)≥ Ih(0)e(µh +αh + τh)t . (4.25)
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Then, Ih ≥0 ∀ t ≥0

Consider model equation (3.64d) from the model system (4.1):

dSa

dt
= Λa−

(
β4(1− τh)Ih +β5(1− τa)Ia +β6(1− ε)D

Na
+µa

)
Sa, (4.26)

from the equation (4.26) we get the inequality:

dSa

dt
≥−

(
β4(1− τh)Ih +β5(1− τa)Ia +β6(1− ε)D

Na
+µa

)
Sa. (4.27)

Separate variable and integrate equation (4.27) and apply initial conditions to get:

Sa(t)≥ Sa(0)e

∫ t

0
−
(

β4(1− τh)Ih(s)+β5(1− τa)Ia(s)+β6(1− ε)D(s)
Na(s)

+µa

)
ds
.

(4.28)

So, Sa ≥0 ∀ t ≥0.

Consider equation (3.64e) of the model system (4.1) which is:

dEa

dt
=

(
β4(1− τh)Ih +β5(1− τa)Ia +β6(1− ε)D

Na

)
Sa− (γa +µa)Ea, (4.29)

which gives the inequality:

dEa

dt
≥−(γa +µa)Ea. (4.30)

Separating variables, integrating and applying initial condition (4.30) gives:

Ea(t)≥ Ea(0)e−(γa +µa)t . (4.31)

Hence Ea ≥ 0 ∀ t ≥ 0.

Again from the model equation (3.64f) of the model (4.1) we have the inequality:

dIa

dt
≥−(µa +αa + τa)Ia. (4.32)

By solving the differential equation (4.32) we get:

Ia(t)≥ Ia(0)e−(µa +αa + τa)t . (4.33)

Then, Ia ≥0 ∀ t ≥0.

Lastly from the equation (3.64g) of the model (4.1) we have the inequality:

dD
dt
≥−(ω +θ)D. (4.34)

By solving the equation (4.34) we get:

D≥Ce−(ω +θ)t .

D(t)≥ D(0)e−(ω +θ)t .
(4.35)

Then, D≥ 0 ∀ t ≥ 0.

Therefore solutions of the model system (4.1) are positive and bounded since Sh(t)> 0,Eh(t)>

0, Ih(t)> 0,Sa(t)> 0,Ea(t)> 0, Ia(t)> 0,D(t)> 0 ∀t > 0.
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4.3.3 Effective Reproduction Number Re

To determine effective reproduction number if control parameters are administered, we use

next generation approach by (Van, 2002). The control strategies are effective when the ef-

fective reproduction number Re < 1 and they are ineffective if reproduction number Re > 1.

If new infections and transfer terms are denoted by Hi and Pi respectively, then the effective

reproduction number Re is given as the maximum eigenvalue. That is:

Re = ρ(HP−1), (4.36)

where

H =
∂Hi

∂X j
(DF0) and P =

∂Pi

∂X j
(DF0).

From the model system (4.1) Hi and Pi are:

Hi =



((1− τh)β1Ih +(1− τa)β2Ia +β3 (1− ε)(D))Sh

Nh

0

(1− τh)β4Ih +(1− τa)β5Ia +(1− ε)β6 (D)

Na

0

0


, (4.37)

and

Pi =



(µh + γh)Eh

γhEh− (µh +αh + τh) Ih

(γa +µa) Ia

γaEa− (µa +αa + τa) Ia

ρ (1− ε) Ia− (ω +θ)(D)


. (4.38)

Jacobian of matrices Hi and Pi are therefore given by:

H =



0 (1− τh)β1 0 (1− τa)β2 (1− ε)β3

0 0 0 0 0

0 (1− τh)β4 0 (1− τa)β5 (1− ε)β6

0 0 0 0 0

0 0 0 0 0


. (4.39)
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and

P =



µh + γh 0 0 0 0

−γh µh +αh+τh 0 0 0

0 0 γa +µa 0 0

0 0 −γa µa +αa + τa 0

0 0 0 ρ (1− ε) ω +θ


. (4.40)

The inverse of the matrix V is:

P−1 =



1
(µh + γh)

0 0 0 0

K1
1(

µh +αh+τh

) 0 0 0

0 0
1

(γa +µa)
0 0

0 0 K2
1

(µa +αa + τa)
0

0 0 K3 K4
1

(ω +θ)


, (4.41)

where,

K1 =
γh

(µh + γh)
(
µh +αh+τh

) , K2 =
γa

(γa +µa)(µa +αa + τa)
,

K3 =
ρ (1− ε)γa

(µa +αa + τa)(γa +µa)(ω +θ)
, K4 =

ρ (1− ε)

(µa +αa + τa)(ω +θ)
.

The product HP−1 is given by:

HP−1 =



n
(1− τh)β1

µh +αh + τa
t

(1− τh)β2γa

µa +αa + τa
− (1− ε)2

β3ρ γa

(µa +αa + τa)(ω +θ)

(1− ε)β3

ω +θ

0 0 0 0 0

r
(1− τh)β4

µh +αh + τh
m

(1− τa)β5

µa +αa + τa
− ρ (1− ε)2

β6

(µa +αa + τa)(ω +θ)

(1− ε)β6

ω +θ

0 0 0 0 0

0 0 0 0 0


.

(4.42)

The effective reproductive number Re is given by:

Re =
1
2

(
(1− τa)(ω +θ)β5γa +(1− ε)2

β6ρ γa

(γa +µa)(µa +αa + τa)(ω +θ)
+

β1 (1− τh)γh

(µh + γh)(µh +αh + τh)

)

+
1
2


√√√√((1− τa)(ω +θ)β5γa +(1− ε)2

β6ρ γa

(γa +µa)(µa +αa + τa)(ω +θ)
− β1 (1− τh)γh

(µh + γh)(µh +αh + τh)

)2

+4rt

 .

(4.43)
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where,

n =
(1− τ)β1γh

(µh + γh)(µh +αh + τ)
,

r =
(1− τh)β4γh

(µh + γh)(µh +αh + τh)
,

t =
(1− τa)(ω +θ)β2γa +β3 (1− ε)2

ρ γa

(γa +µa)(µa +αa + τa)(ω +θ)
,

m =
(1− τa)(ω +θ)β5γa +(1− ε)2

β6ρ γa

(γa +µa)(µa +αa + τa)(ω +θ)
,

rt =
(1− τa)(ω +θ)(1− τh)β2β4γhγa +(1− τh)(1− ε)2

β3β4γhρ γa

(µh + γh)(µh +αh + τh)(γa +µa)(µa +αa + τa)(ω +θ)
.

The effective reproduction number Re decrease as we increase human treatment, quarantine of

infected animals and inspection of dairy products. Bovine tuberculosis contained if infected

humans are diagnosed and treated, infected animals quarantined and dairy products inspected.

When τh = τa = ε = 0, effective reproduction Re becomes basic reproduction number R0, which

is:

R0 =
1
2

(
γa (ω β5 +ρ β6)

(γa +µa)(µa +αa)ω
+

β1γh

(µh + γh)(µh +αh)

)

+
1
2

√( γa (ω β5 +ρ β6)

(γa +µa)(µa +αa)ω
− β1γh

(µh + γh)(µh +αh)

)2

+4ce

 .

where ce =
γhγa(ωβ2 +ρβ3)

ω(γh +µh)(αh +µh)(γa +µa)
.

(4.44)
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Basic and effective reproduction numbers (R0 and Re) are plotted on the same graph in Figure

10 to assess the effect of control strategies.
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Figure 10: Reproduction number without and with controls

The graph in blue represents new infections before control strategies are applied and green

graph when control strategies are applied. Results show that new infections decrease propor-

tionally as control strategies administered.

4.3.4 Stability Analysis

Local stability of disease-free equilibrium investigated by Linearization method. Disease-free

equilibrium is locally asymptotically stable if the matrix of a linearized system has negative

eigenvalues. The Jacobian of the system (4.1) at DFE is given by:
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Jc =



−µh 0 −(1− τh)β1 0 0 −(1− τa)β2 −(1− ε)β3

0 −µh− γh (1− τh)β1 0 0 (1− τa)β2 (1− ε)β3

0 γh −µh−αh− τh 0 0 0 0

0 0 −(1− τh)β4 −µa 0 −(1− τa)β5 −(1− ε)β6

0 0 (1− τh)β4 0 −µa− γa (1− τa)β5 (1− ε)β6

0 0 0 0 γa −µa−αa− τa 0

0 0 0 0 0 ρ(1− ε) −(ω +θ)



.

(4.45)

From the first and the fourth columns, eigenvalues are −µh and −µa. Matrix (4.45) is then

reduced into

Kc =



−µh− γh (1− τh)β1 0 (1− τa)β2 (1− ε)β3

γh −αh−µh− τh 0 0 0

0 (1− τh)β4 −µa− γa (1− τa)β5 (1− ε)β6

0 0 γa −αa−µa− τa 0

0 0 0 ρ(1− ε) −ω−θ .


. (4.46)

Trace tr(Kc) of the matrix (4.46) is:

tr(Kc) =−((γh +µh)+(αh +µh + τh)+(γa +µa)+(αa +µa + τa)+(ω +θ))< 0. (4.47)

Determinant of the matrix (4.46) is given by:

det(Kc) =
γh(1− τh)(γa +µa)(αa +µa + τa)β1 + γaβ5(1− τa)(γh +µh)(αh +µh + τh)

γaβ5(1− τa)(γh +µh)(αh +µh + τh)

+
(1− τh)γhγaβ4 (β2(1− τa)(ω +θ)+(1− ε)(1− ε)β3ρ)

(γh +µh)(αh +µh + τh)(γa +µa)(αa +µa + τa)

−
(

γhγaβ1(β5(1− τa)+β6(1− ε)ρ(1− ε))

(γh +µh)(αh +µh + τh)(γa +µa)(αa +µa + τa)(ω +θ)

)
.

(4.48)

Determinant det(Kc)> 0 if

γh(1− τh)(γa +µa)(αa +µa + τa)β1 + γaβ5(1− τa)(γh +µh)(αh +µh + τh)

γaβ5(1− τa)(γh +µh)(αh +µh + τh)

+
(1− τh)γhγaβ4 (β2(1− τa)(ω +θ)+(1− ε)(1− ε)β3ρ)

(γh +µh)(αh +µh + τh)(γa +µa)(αa +µa + τa)

−
(

γhγaβ1(β5(1− τa)+β6(1− ε)ρ(1− ε))

(γh +µh)(αh +µh + τh)(γa +µa)(αa +µa + τa)(ω +θ)

)
> 1.

(4.49)

The disease free equilibrium is asymptotically stable if condition (4.49) holds.
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4.3.5 Endemic Equilibrium for the Model with Controls

Endemic equilibrium of the model with control are computed in terms of the force of infection

due to the complexity of the model equations. To compute endemic equilibrium, we set the

right part of the model system (4.1) equal to zero.

Λh +Πh−XhSh−µhSh = 0. (4.50a)

XhSh− (γh +µh)Eh−0. (4.50b)

γhEh− (µh +αh + τh)Ih = 0. (4.50c)

Λa +Πa−XaSa−µaSa−0. (4.50d)

XaSa− (γa +µa)Ea = 0. (4.50e)

γaEa− (µa +αa + τa)Ia = 0. (4.50f)

ρ(1− ε)Ia− (ω +θ)D = 0. (4.50g)

Using the forces of infection for humans Xh and animals Xa and solve simultaneous the model

system equations we get

S∗h =
Λh (µh + γh)(τh +αh +µh)

(µh + γh)(τh +αh +µh)
(
X∗h +µh

)
−ΠhX∗h γh

,

E∗h =
ΛhX∗h (τh +αh +µh)

(µh + γh)(τh +αh +µh)
(
X∗h +µh

)
−ΠhX∗h γh

,

I∗h =
ΛhγhX∗h

(µh + γh)(τh +αh +µh)
(
X∗h +µh

)
−ΠhX∗h γh

,

S∗a =
Λa (µa + γa)(τa +αa +µa)

(µa + γa)(τa +αa +µa)(X∗a +µa)−ΠaX∗a γa
,

E∗a =
(τa +αa +µa)ΛaXa

(µa + γa)(τa +αa +µa)(X∗a +µa)−ΠaX∗a γa
,

I∗a =
ΛaγaX∗a

(µa + γa)(τa +αa +µa)(X∗a +µa)−ΠaX∗a γa
,

D∗ =
(1− ε)ΛaγaX∗a

((µa + γa)(τa +αa +µa)(X∗a +µa)−πaX∗a γa)(ω +θ)
.

(4.51)

However, the model system (4.1) has the possibility to undergo backward bifurcation whenRe = 1.

4.3.6 Bifurcation Analysis for the Model with Controls

In this section, bifurcation analysis was performed to determine whether the model

(4.1) undergoes backward bifurcation when Re = 1. If we rename the state variables

SH ,Eh, Ih,Sa,Ea, Ia,D to be y1,y2,y3,y4,y5,y6,y7 and introduce the vector notations Y =

(y1,y2,y3,y4,y5,y6,y7)
T , then the model system (4.1) can be written as

dY
dt

= G(Y ), where

G(Y ) = (g1,g2,g3,g4,g5,g6,g7)
T as follows:

48



dy1

dt
= g1 = Λh +Πhy6−

(
β1(1− τh)y3 +β2(1− τa)y6 +β3(1− ε)y7

y1 + y2 + y3

)
y1−µhy1.

dy2

dt
= g2 =

(
β1(1− τh)y3 +β2(1− τa)y6 +β3(1− ε)y7

y1 + y2 + y3

)
y1− (γh +µh)y2.

dy3

dt
= g3 = γhy2− (µh +αh + τh)y3.

dy4

dt
= g4 = Λa−

(
β4(1− τh)y3 +β5(1− τa)y6 +β6(1− ε)y7

y4 + y5 + y6

)
y4−µay4.

dy5

dt
= g5 =

(
β4(1− τh)y3 +β5(1− τa)y6 +β6(1− ε)y7

y4 + y5 + y6

)
y4− (γa +µa)y5.

dy6

dt
= g6 = γay5− (µa +αa + τa)y6.

dy7

dt
= g7 = ρ(1− ε)y6− (ω +θ)y7.

(4.52)

The Jacobian of the system (4.52) at DFE is:

J =



−µh 0 −β1(1− τh) 0 0 −β2(1− τa) −β3(1− ε)

0 −µh− γh β1(1− τh) 0 0 β2(1− τa) β3(1− ε)

0 γh −µh−αh− τh 0 0 0 0

0 0 −β4(1− τh) −µa 0 −β5(1− τa) −β6(1− ε)

0 0 β4(1− τh) 0 −µa− γa β5(1− τa) β6(1− ε)

0 0 0 0 γa −µa−αa− τa 0

0 0 0 0 0 ρ(1− ε) −(ω +θ)



.

(4.53)

Suppose we choose the bifurcation parameter to be β3 = β ∗∗ when Re = 1. Now, solving for

β3 = β ∗∗ when Re = 1 we get:

(2− p−q)2 = (p−q)2 +4

(
(1− τa)(ω +θ)(1− τh)β2β4γhγa +(1− τh)(1− ε)2

β3β4γhρ γa

(µh + γh)(µh +αh + τh)(γa +µa)(µa +αa + τa)(ω +θ)

)

Through simplifications we get:

β3 =((1− s− (p+q)− pq)
(
(µh + γh)(µh +αh + τh)(γa +µa)(µa +αa + τa)(ω +θ)

(1− τa)(ω +θ)(1− τh)β2β4γhγa

)
(4.54)

49



where

q =
β1 (1− τh)γh

(µh + γh)(µh +αh + τh)

p =
(1− τa)(ω +θ)β5γa +(1− ε)2

β6ρ γa

(γa +µa)(µa +αa + τa)(ω +θ)

s =
(1− τa)(ω +θ)(1− τh)β2β4γhγa

(µh + γh)(µh +αh + τh)(γa +µa)(µa +αa + τa)(ω +θ)

From (4.53) we can compute right and left eigenvectors. Beginning with right eigenvectors

which are given by (ri)
T where i = 1,2, ...7 we have:

r2 =
αh +µh + τh

γaβ4(1− τa)

(
N1− γaβ5(1− τa)(ω +θ)−ργaβ6(1− ε)2

ρ(1− ε)

)
r7.

r3 =

(
N1− γaβ5(1− τa)(ω +θ)−ργaβ6(1− ε)2

γaρβ4(1− ε)(1− τh)

)
r7,

r4 =

(
(ω +θ)(γa +µa)(αa +µa + τa)

γaµaρ(1− τa)

)
r7,

r5 =

(
(ω +θ)(αa +µa + τa)

ργa(1− ε)

)
r7,

r6 =

(
ω +θ

ρ(1− ε)

)
r7,

r1 =
r3β1(1− τh)− r6β2(1− τa)− r7β3(1− ε)

µh
,

where r7 > 0 is free right eigenvector

and N1 = (ω +θ)(γa +µa)(αa +µa + τa).

(4.55)

Left eigenvectors is given by (Li)
T where i = 1,2, ...7

L1 = L4 = 0. L3 =

(
γh +µh

γh

)
L2,

L5 =

(
(γh +µh)(αh +µh + τh)− γhβ1(1− τh)

γhβ4(1− τh)

)
L2,

L6 =

(
(γa +µa)((γh +µh)(αh +µh + τh)− γhβ1(1− τh))

γhγaβ4(1− τh)

)
L2,

L7 =

(
(γhβ3β4N2 +β6(1− ε)((γh +µh)(αh +µh + τ)− γhβ1(1−κ))

γhβ4(ω +θ)(1− τh)

)
L2.

where L2 > 0 is free left eigenvector, and N2 = (1− ε)(1− τh).

(4.56)

Computation of ac

From the model system (4.52) the associated non-zero partial derivatives of G at disease free
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equilibrium are given by:

∂ 2g2

∂y2
3
=−2β1(1− τh)µh

Λh
,

∂ 2g2

∂y2∂y3
=−β1(1− τh)µh

Λh
,

∂ 2g2

∂y2∂y6
=−β2(1− τa)µh

Λh
,

∂ 2g2

∂y2∂y7
=
−β ∗(1− ε)µh

Λh
,

∂ 2g2

∂y3∂y6
=−β2(1− τa)µh

Λh
,

∂ 2g2

∂y3∂y7
=
−β ∗(1− ε)µh

Λh
,

∂ 2g5

∂y2
6
=−2β5(1− τa)µa

Λa
,

∂ 2g5

∂y3∂y5
=−2β4(1− τh)µa

Λa
,

∂ 2g5

∂y3∂y6
=−β4(1− τh)µa

Λa
,

∂ 2g5

∂y5∂y6
=
−β5(1− τa)µa

Λa
,

∂ 2g5

∂y5∂y7
=
−β6(1− ε)µa

Λa
,

∂ 2g5

∂y6∂y7
=
−β6(1− ε)µa

Λa
.

(4.57)

Since L1 = L4 = 0 it follows that,

ac = L2

n

∑
i, j=1

rir j
∂ 2g2

∂yi∂y j
+L5

n

∑
i, j=1

rir j
∂ 2g5

∂yi∂y j
. (4.58)

To compute the values of ac we substitute the partial derivatives from (4.57) into (4.58) to get:

ac =

(
2µhXhr3(αh +µh + γh)β1(1− τh)γa((ω +θ)β5(1− τa)+ρβ6(1− ε))

XhγhXaγaρβ4(1− τh)(1− ε)

)
r7L2

−
(

2µhXar3Ψ1(β1(1− τh)(ω +θ)Ψ1 + γaβ4(1− τh)(Ψ2 +ρβ ∗∗(1− ε)))

XhγhXaγaρβ4(1− τh)(1− ε)

)
r7L2

−
(

2Xhγh(ω +θ)β4(1− τh)µa(r5 + r6)Ψ1

XhγhXaγaρβ4(1− τh)(1− ε)

)
r7L5.

where Ψ1 = (γa +µa)(αa +µa + τa), Ψ2 = β2(ω +θ)(1− τa).

To analyze the sign of ac we consider two cases.

Case I:

ac < 0 if

γa((1− τa)(ω +θ)β5 +ρβ6(1− ε)2)

(ω +θ)(γa +µa)(αa +µa + τa)
< 1

and
Ψ2β1(1− τh)(ω +θ)+ γaβ4(1+ τh)(Ψ2 +ρβ ∗∗(1− ε))

(αh +µh + τh)β1(1− τh)γa(ω +θ)β5(1− τa)+ρβ6(1− ε)

+
γa(ω +θ)β4(1− τh)µa(r5 + r6)

r3(αh +µh + τh)β1(1− τh)γa(ω +θ)β5(1− τa)+ρβ6(1− ε)
> 1

(4.59)

Case II:
ac > 0 if

γa((1− τa)(ω +θ)β5 +ρβ6(1− ε)2)

(ω +θ)(γa +µa)(αa +µa + τa)
> 1
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and
Ψ2β1(1− τh)(ω +θ)+ γaβ4(1+ τh)(Ψ2 +ρβ ∗∗(1− ε))

(αh +µh + τh)β1(1− τh)γa(ω +θ)β5(1− τa)+ρβ6(1− ε)

+
γa(ω +θ)β4(1− τh)µa(r5 + r6)

r3(αh +µh + τh)β1(1− τh)γa(ω +θ)β5(1− τa)+ρβ6(1− ε)
< 1

(4.60)

Computation of bc

Recall from (4.56) since L1 = L4 = 0, r7 > 0 is free right eigenvector and L2 > 0 is free left

eigenvector then, bc becomes:

bc = L2

n

∑
i=1

ri
∂ 2gk

∂yi∂β ∗∗
(0,0),

bc = L2r7
∂ 2g2

∂y7∂β ∗∗
,

bc = (1− ε)L2r7 > 0.

(4.61)

From the computation of ac and bc we can establish the following results.

If ac < 0,bc > 0 when β ∗∗ changes from negative to positive, disease-free equilibrium changes

its stability from stable to unstable. correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Theorem 6: If

γa((1− τa)(ω +θ)β5 +ρβ6(1− ε)2)

(ω +θ)(γa +µa)(αa +µa + τa)
> 1

and

Ψ2β1(1− τh)(ω +θ)+ γaβ4(1+ τh)(Ψ2 +ρβ ∗∗(1− ε))

(αh +µh + τh)β1(1− τh)γa(ω +θ)β5(1− τa)+ρβ6(1− ε)

+
γa(ω +θ)β4(1− τh)µa(r5 + r6)

r3(αh +µh + τh)β1(1− τh)γa(ω +θ)β5(1− τa)+ρβ6(1− ε)
< 1.

the model system (4.1) undergoes backward bifurcation when Re = 1.

4.4 Numerical Simulation for the Model with Controls

Numerical simulations are performed to discuss how bTB can be eliminated from the pop-

ulation using treatment of infected humans, quarantine of infected animals, and inspection of

dairy products. The initial condition we assumed to be Sh = 530;Eh = 15; Ih = 4;Sa = 500;Ea =

25; Ia = 10 and D = 13. Some of the parameters are estimated because the disease is neglected

and there is no surveillance data. The parameters are summarized in Table 7 as follows:
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Table 7: Parameter Values of the Model system (4.1)
Parameter Interpretation Value yr−1 Source.

γa Progression rate

from Ea to Ia

0.18 Ssematimba et al.

(2015).

Πh Human recovery rate 0.00271 Hassan et al. (2014).

µh Human natural death

rate

0.01 Liu et al. (2016)

β5 Rate of cow infected

via animal

0.6 Agusto et al. (2011).

µh Human natural death

rate

0.01 Liu et al. (2016)

αh Human death rate

due to disease

induced

0.139 Liu et al. (2016).

τh Treatment rate for

infected human

0.58 Liu et al. (2016) .

ρ Rate of producing

infected dairy

products

0.69 Estimated.

β2 Human infection

rate from infected

animals

0.55 Hassan et al. (2014).

ω rate of decaying

dairy products

0.4 Estimated.

β3 Human infection

rate from infected

dairy products

0.999 Estimated.

β4 rate of cow infected

via human

0.25 Estimated.

µa Animal natural death

rate

0.1 Mariner et al.

(2006).

β6 rate of animals

infected via dairy

products

0.34 Estimated.
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Parameter Interpretation Value yr−1 Source.

γh Progression rate

from Eh to Ih

0.15 Dye and Williams

(2008).

β1 Human infection

rate from infected

human

0.35 Estimated.

αa Animal death due to

disease induced

0.0304 Agusto et al. (2011).

τa Quarantine rate for

infected animals

0.85 Liu et al. (2016).

ε dairy products

inspection rate

0.5 Estimated.
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Figure 11: The impacts of control parameters on Sh and Sa

Figure 11 shows the impacts of dairy products inspection on the transmission of bTB in humans

and animals. The results show that inspection of dairy products helps to reduce the spread of

the disease to both humans and animals. The blue line graph indicated susceptible humans and

susceptible animals before controls of bTB. Susceptible human and animal class increases as

inspection of dairy products increase from 1% to 15%.
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Figure 12: Infected humans and animals after controls

Infected humans and animals classes decrease when we introduce dairy products inspection as

a control for the transmission of the disease, as shown in Fig. 12 (a) and (b), respectively. If

inspection of dairy product is applied effectively the infection of bTB from these products can

be reduced; hence infected classes decrease as indicated in Fig. 12.
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(a) Effect of human treatment on Sh
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(b) Effect of animals quarantine on Sa

Figure 13: Sh and Sa after treatment of Ih and quarantine of Ia

Figure 13 (a) shows the effects of human treatment, and Fig. 13 (b) shows the effects of animals

quarantine on susceptible humans and animals classes, respectively. Simulation shows that if

infected humans are treated and infected animals are quarantined once they diagnosed with

bTB, the transmission of the disease from infected classes decrease. For example, susceptible

classes increase when human treatment rate increases from 1 to 15% as shown in Fig. 13(a).
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(a) Treatment on infected humans
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(b) Quarantine on infected animals

Figure 14: Ih and Ia after treatment of Ih and quarantine of Ia

The infected human class tends to decrease as infected human treatment rate increases from

1% to 15% as shown in Fig. 14(a) and (b). Furthermore, the quarantine of infectious animals

from 1% to 15% lead to the decreases of infectious animal class as shown in Fig. 14(b).

0 5 10 15 20 25 30

Time[years]

0

5

10

15

20

25

C
o

n
ta

m
in

a
te

d
 D

a
ir
y
 p

ro
d

u
c
ts

=0.1

=0.3

=0.5

(a) Influence of dairy products inspection (ε) on

the production of dairy products
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(b) Influence of quarantine of infected animals

(τa) on the production of dairy products

Figure 15: The impacts of control parameters on the production of dairy products

Figure 15 shows that quarantine of infected animals and dairy products inspection. As infected

animals quarantined for about 20% to 60%, and dairy products inspected for about 10% to

50%, the rate of producing infectious dairy products decreases. So the strict inspection of dairy

products and quarantine of infected animals helps to reduce the production of contaminated

products as show on Fig. 15.

4.4.1 Conclusion

Bovine Tuberculosis model was formulated and analyzed to determine the proposed controls

can help to contain the disease. Disease-free is asymptotically stable when the effective re-
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production number is less than unit Re < 1 and unstable otherwise. The bTB model undergoes

backward bifurcation when effective reproduction number Re = 1. In the numerical simulation,

when we increase the rates of treatment of infected humans, quarantine of infected animals and

inspection of dairy product, the effective reproduction number Re decreases proportionally.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This study used mathematical modelling to investigate the transmission dynamics of bTB in

human and animals before and after including controls. The basic reproduction number R0

computed and analyzed. The disease-free equilibrium was proved to be locally asymptotically

stable when R0 < 1 and endemic equilibrium is stable when R0 > 1. However, disease-free

and endemic equilibria coexist when R0 = 1. Sensitivity analysis shows that, production of

dairy products ρ , the animal infection rate from infected animals β5, infection rate due to the

consumption of dairy products to animals β6, the human infection rate from the consumption

of infectious dairy products β3 and human infection rate due to the interaction with infected an-

imals β2 all drives the spread of bTB. Numerical simulations show that before the introduction

of the controls, susceptible individuals decreased with an increase in infectious individuals.

However, after introducing control strategies, the number of susceptible humans and animals

increases while the number of infected humans and animals diminishes. Therefore the pro-

posed control parameters can help to contain bTB if they implemented effectively.

5.2 Recommendations

In this work, we have accomplished our objectives. However, the work is not exhaustive hence

the study can be extended by including the following:

(i) Role of the environment on transmission dynamics of bovine tuberculosis between wild

animals and domestic animals.

(ii) Impacts of weather condition on the persistence of bovine tuberculosis.

(iii) Optimal control for bovine tuberculosis on human treatment, animals quarantine, an in-

spection of dairy products and education campaign.
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APPENDICES

Appendix 1: MATLAB CODES FOR CHAPTER THREE

A.1 MATLAB codes for Figure 2

1 %Defining function 'Teddy.m' and it's corresponding equations
as follows

2 function dy=Teddy_1(˜,y)
3 dy=zeros(size(y));
4
5 %parameter declaration
6 beta_1=0.35;beta_2=0.55;Lambda_h=60;beta_3=0.999;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;omega=0.4;
7 beta_4=0.25;beta_5=0.6;beta_6=0.34;gamma_a=0.18;Lambda_a=65;

mu_a=0.05;alpha_a=0.12;rho=0.69;
8
9 %Variable description

10 Sh=y(1);Eh=y(2);Ih=y(3);Sa=y(4);Ea=y(5);Ia=y(6);D=y(7);
11 Nh=y(1)+y(2)+y(3);
12 Na=y(4)+y(5)+y(6);
13
14 %Equation of the model
15 dy(1)=Lambda_h -((beta_1*Ih+beta_2*Ia+beta_3*D)*Sh)/Nh-mu_h*Sh

;
16 dy(2)=((beta_1*Ih+beta_2*Ia+beta_3*D)*Sh)/Nh- (gamma_h+mu_h)*

Eh;
17 dy(3)=gamma_h*Eh-(alpha_h+mu_h)*Ih;
18 dy(4)=Lambda_a-((beta_4*Ih+beta_5*Ia+beta_6*D)*Sa)/Na-mu_a*Sa;
19 dy(5)=((beta_4*Ih+beta_5*Ia+beta_6*D)*Sa)/Na-(mu_a+gamma_a)*Ea

;
20 dy(6)=gamma_a*Ea-(alpha_a+mu_a)*Ia;
21 dy(7)=rho*Ia-omega*D;
22
23 RUNNING FILE
24 clear all
25 clc
26 tspan =0:0.1:30 ; %Time in yrs ,
27 y0=[500, 10, 3, 500, 11, 5, 5];
28 [t,y]=ode45(@Teddy_1,tspan,y0);
29
30 figure(2a)
31 set(gca,'FontSize',10)
32 set(legend,'FontSize',10)
33 plot(t,y(:,1),'g',t,y(:,2),'b',t,y(:,3),'r',t,y(:,7),'y','

LineWidth',1.5);
34 ylim([0 1000])
35 legend('S_h','E_h','I_H','D');
36 xlabel('Time[years]');
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37 ylabel('Human Populations');
38 % title('Human Population Vs Time');
39 grid off
40 hold off
41 hold on
42
43 figure(2b)
44 set(gca,'FontSize',10)
45 set(legend,'FontSize',10)
46 plot(t,y(:,4),'k',t,y(:,5),'m',t,y(:,6),'c',t,y(:,7),'y','

LineWidth',1.5);
47 ylim([0 1000])
48 legend('S_a','E_a','I_a','D');
49 xlabel('Time[years]');
50 ylabel('Animal Populations');
51 %title('Animal Population Vs Time');
52 grid off
53 hold off
54 hold on

A.2 MATLAB codes for Figure 3 and 4

1 %Defining function 'Teddy_D1.m' and it's corresponding
equations as follows

2 function dy=Teddy_D1(˜,y)
3 dy=zeros(size(y));
4
5 %parameter declaration
6 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.018;alpha_h=0.139;
7 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.34;gamma_a=0.195;

mu_a=0.05;alpha_a=0.12;
8 rho=0.1;omega=0.4;
9

10 %Defining function 'Teddy_D2.m' and it's corresponding
equations as follows

11 function dy=Teddy_D2(˜,y)
12 dy=zeros(size(y));
13
14 %parameter declaration
15 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.018;alpha_h=0.139;
16 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.34;gamma_a=0.195;

mu_a=0.05;alpha_a=0.12;
17 rho=0.2;omega=0.4;
18
19 %Defining function 'Teddy_D3.m' and it's corresponding

equations as follows
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20 function dy=Teddy_D3(˜,y)
21 dy=zeros(size(y));
22
23 %parameter declaration
24 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.018;alpha_h=0.139;
25 beta_4=0.35;beta_5=0.59;beta_6=0.34;gamma_a=0.195;Lambda_a=65;

mu_a=0.05;alpha_a=0.12;
26 rho=0.3;omega=0.4;
27
28 %Defining function 'Teddy_D4.m' and it's corresponding

equations as follows
29 function dy=Teddy_D4(˜,y)
30 dy=zeros(size(y));
31
32 %parameter declaration
33 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.018;alpha_h=0.139;
34 beta_4=0.35;beta_5=0.59;beta_6=0.34;gamma_a=0.195;Lambda_a=65;

mu_a=0.05;alpha_a=0.12;
35 rho=0.5;omega=0.4;
36
37 %Defining function 'Teddy_D5.m' and it's corresponding

equations as follows
38 function dy=Teddy_D5(˜,y)
39 dy=zeros(size(y));
40
41 %parameter declaration
42 beta_1=0.35;beta_2=0.55;Lambda_h=60;beta_3=0.999;gamma_h=0.18;

mu_h=0.018;alpha_h=0.139;
43 beta_4=0.35;beta_5=0.59;beta_6=0.34;Lambda_a=65;gamma_a=0.195;

mu_a=0.05;alpha_a=0.12;
44 rho=0.6;omega=0.4;
45
46 %Variable description
47 Sh=y(1);Eh=y(2);Ih=y(3);Sa=y(4);Ea=y(5);Ia=y(6);D=y(7);
48 Nh=y(1)+y(2)+y(3);
49 Na=y(4)+y(5)+y(6);
50 %Equation of the model
51 dy(1)=Lambda_h -((beta_1*Ih+beta_2*Ia+beta_3*D)*Sh)/Nh-mu_h*Sh

;
52 dy(2)=((beta_1*Ih+beta_2*Ia+beta_3*D)*Sh)/Nh- (gamma_h+mu_h)*

Eh;
53 dy(3)=gamma_h*Eh-(alpha_h+mu_h)*Ih;
54 dy(4)=Lambda_a-((beta_4*Ih+beta_5*Ia+beta_6*D)*Sa)/Na-mu_a*Sa;
55 dy(5)=((beta_4*Ih+beta_5*Ia+beta_6*D)*Sa)/Na-(mu_a+gamma_a)*Ea

;
56 dy(6)=gamma_a*Ea-(alpha_a+mu_a)*Ia;
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57 dy(7)=rho*Ia-omega*D;
58
59 %RUNNING FILE
60 tspan =0:0.1:30 ; %Time in yrs ,
61 y0=[530, 9, 2, 500, 10, 2, 5];
62 [t1,y1]=ode45(@Teddy_D1,tspan,y0);
63 [t2,y2]=ode45(@Teddy_D2,tspan,y0);
64 [t3,y3]=ode45(@Teddy_D3,tspan,y0);
65 [t4,y4]=ode45(@Teddy_D4,tspan,y0);
66 [t5,y5]=ode45(@Teddy_D5,tspan,y0);
67
68 figure(3a)
69 plot(t1,y1(:,1),'g',t2,y2(:,1),'b',t3,y3(:,1),'r',t4,y4(:,1),'

k',t5,y5(:,1),'m','LineWidth',2)
70 legend('\rho=0.1','\rho=0.2','\rho=0.3','\rho=0.4','\rho=0.5')
71 xlabel('Time[years]')
72 ylabel('Susceptible humans')
73 hold on
74
75 figure(3b)
76 plot(t1,y1(:,4),'g',t2,y2(:,4),'b--',t3,y3(:,4),'r',t4,y4(:,4)

,'k--',t5,y5(:,4),'m','LineWidth',3)
77 legend('\rho=0.1','\rho=0.2','\rho=0.3','\rho=0.4','\rho=0.5')
78 xlabel('Time[years]')
79 ylabel('Susceptible animals')
80 hold on
81
82 figure(4a)
83 plot(t1,y1(:,3),'g',t2,y2(:,3),'b',t3,y3(:,3),'r',t4,y4(:,3),'

k',t5,y5(:,3),'m','LineWidth',2)
84 legend('\rho=0.1','\rho=0.2','\rho=0.3','\rho=0.4','\rho=0.5')
85 xlabel('Time[years]')
86 ylabel('Infected humans')
87 hold on
88
89 figure(4b)
90 plot(t1,y1(:,6),'g',t2,y2(:,6),'b--',t3,y3(:,6),'r',t4,y4(:,6)

,'k--',t5,y5(:,6),'m','LineWidth',3)
91 legend('\rho=0.1','\rho=0.2','\rho=0.3','\rho=0.4','\rho=0.5')
92 xlabel('Time[years]')
93 ylabel('Infected animals')
94 hold off

A.4 MATLAB codes for Figure 7 and 8

1 %Defining function 'Teddy_B31.m' and it's corresponding
equations as follows

2 function dy=Teddy_B31(˜,y)
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3 dy=zeros(size(y));
4
5 %parameter declaration
6 beta_1=0.35;beta_2=0.55;beta_3=0.1;Lambda_h=60;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
7 beta_4=0.35;beta_5=0.59;beta_6=0.34;Lambda_a=65;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
8 rho=0.69;omega=0.4;
9

10 %Defining function 'Teddy_B32.m' and it's corresponding
equations as follows

11 function dy=Teddy_B32(˜,y)
12 dy=zeros(size(y));
13
14 %parameter declaration
15 beta_1=0.35;beta_2=0.55;beta_3=0.3;Lambda_h=60;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
16 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.34;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
17 rho=0.69;omega=0.4;
18
19 %Defining function 'Teddy_B33.m' and it's corresponding

equations as follows
20 function dy=Teddy_B33(˜,y)
21 dy=zeros(size(y));
22
23 %parameter declaration
24 beta_1=0.35;beta_2=0.55;beta_3=0.5;Lambda_h=60;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
25 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.34;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
26 rho=0.69;omega=0.4;
27
28 %Defining function 'Teddy_B34.m' and it's corresponding

equations as follows
29 function dy=Teddy_B34(˜,y)
30 dy=zeros(size(y));
31
32 %parameter declaration
33 beta_1=0.35;beta_2=0.55;Lambda_h=60;beta_3=0.7;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
34 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.34;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
35 rho=0.69;omega=0.4;
36
37 %Defining function 'Teddy_B35.m' and it's corresponding

equations as follows
38 function dy=Teddy_B35(˜,y)
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39 dy=zeros(size(y));
40
41 %parameter declaration
42 beta_1=0.35;beta_2=0.55;Lambda_h=60;beta_3=0.9;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
43 beta_4=0.35;beta_5=0.59;beta_6=0.34;Lambda_a=65;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
44 rho=0.69;omega=0.4;
45
46 %Defining function 'Teddy_B61.m' and it's corresponding

equations as follows
47 function dy=Teddy_B61(˜,y)
48 dy=zeros(size(y));
49
50 %parameter declaration
51 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
52 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.1;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
53 rho=0.69;omega=0.4;
54
55 %Defining function 'Teddy_B62.m' and it's corresponding

equations as follows
56 function dy=Teddy_B62(˜,y)
57 dy=zeros(size(y));
58
59 %parameter declaration
60 beta_1=0.35;beta_2=0.55;Lambda_h=60;beta_3=0.999;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
61 beta_4=0.35;beta_5=0.59;beta_6=0.3;Lambda_a=65;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
62 rho=0.69;omega=0.4;
63
64 %Defining function 'Teddy_B63.m' and it's corresponding

equations as follows
65 function dy=Teddy_B63(˜,y)
66 dy=zeros(size(y));
67
68 %parameter declaration
69 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
70 beta_4=0.35;beta_5=0.59;beta_6=0.5;Lambda_a=65;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
71 rho=0.69;omega=0.4;
72
73 %Defining function 'Teddy_B64.m' and it's corresponding

equations as follows
74 function dy=Teddy_B64(˜,y)
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75 dy=zeros(size(y));
76
77 %parameter declaration
78 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
79 beta_4=0.35;beta_5=0.59;Lambda_a=65;beta_6=0.7;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
80 rho=0.69;omega=0.4;
81
82 %Defining function 'Teddy_B65.m' and it's corresponding

equations as follows
83 function dy=Teddy_B65(˜,y)
84 dy=zeros(size(y));
85
86 %parameter declaration
87 beta_1=0.35;beta_2=0.55;Lambda_h=60;beta_3=0.999;gamma_h=0.18;

mu_h=0.01;alpha_h=0.139;
88 beta_4=0.35;beta_5=0.59;beta_6=0.9;Lambda_a=65;gamma_a=0.18;

mu_a=0.05;alpha_a=0.12;
89 rho=0.69;omega=0.4;
90
91 %Variable description
92 Sh=y(1);Eh=y(2);Ih=y(3);Sa=y(4);Ea=y(5);Ia=y(6);D=y(7);
93 Nh=y(1)+y(2)+y(3);
94 Na=y(4)+y(5)+y(6);
95
96 %Equation of the model
97 dy(1)=Lambda_h -((beta_1*Ih+beta_2*Ia+beta_3*D)*Sh)/Nh-mu_h*Sh

;
98 dy(2)=((beta_1*Ih+beta_2*Ia+beta_3*D)*Sh)/Nh- (gamma_h+mu_h)*

Eh;
99 dy(3)=gamma_h*Eh-(alpha_h+mu_h)*Ih;

100 dy(4)=Lambda_a-((beta_4*Ih+beta_5*Ia+beta_6*D)*Sa)/Na-mu_a*Sa;
101 dy(5)=((beta_4*Ih+beta_5*Ia+beta_6*D)*Sa)/Na-(mu_a+gamma_a)*Ea

;
102 dy(6)=gamma_a*Ea-(alpha_a+mu_a)*Ia;
103 dy(7)=rho*Ia-omega*D;
104
105 %RUNNING FILES
106 clc
107 clear all
108 tspan =0:0.1:30 ; %Time in yrs ,
109 %y0=[200, 30, 90, 8000, 5500, 4500, 200];
110 y0=[530, 9, 2, 500, 10, 2, 5];
111 [t1,y1]=ode45(@Teddy_B31,tspan,y0);
112 [t2,y2]=ode45(@Teddy_B32,tspan,y0);
113 [t3,y3]=ode45(@Teddy_B33,tspan,y0);
114 [t4,y4]=ode45(@Teddy_B34,tspan,y0);

70



115 [t5,y5]=ode45(@Teddy_B35,tspan,y0);
116
117 figure(7a)
118 plot(t1,y1(:,1),'g',t2,y2(:,1),'b',t3,y3(:,1),'r',t4,y4(:,1),'

k',t5,y5(:,1),'m','LineWidth',2)
119 legend('\beta_3=0.1','\beta_3=0.3','\beta_3=0.5','\beta_3=0.7'

,'\beta_3=0.8')
120 xlabel('Time[years]')
121 ylabel('Susceptible humans')
122 hold on
123
124 figure(8a)
125 plot(t1,y1(:,3),'g',t2,y2(:,3),'b',t3,y3(:,3),'r',t4,y4(:,3),'

k',t5,y5(:,3),'m','LineWidth',2)
126 legend('\beta_3=0.1','\beta_3=0.3','\beta_3=0.5','\beta_3=0.7'

,'\beta_3=0.9')
127 xlabel('Time[years]')
128 ylabel('Infected humans')
129 hold on
130 hold off
131
132 clc
133 clear all
134 tspan =0:0.1:30 ; %Time in yrs ,
135 y0=[530, 9, 2, 500, 10, 2, 5];
136 [t1,y1]=ode45(@Teddy_B61,tspan,y0);
137 [t2,y2]=ode45(@Teddy_B62,tspan,y0);
138 [t3,y3]=ode45(@Teddy_B63,tspan,y0);
139 [t4,y4]=ode45(@Teddy_B64,tspan,y0);
140 [t5,y5]=ode45(@Teddy_B65,tspan,y0);
141
142 figure(7b)
143 plot(t1,y1(:,4),'g',t2,y2(:,4),'b--',t3,y3(:,4),'r',t4,y4(:,4)

,'k--',t5,y5(:,4),'m','LineWidth',3)
144 legend('\beta_6=0.1','\beta_6=0.3','\beta_6=0.5','\beta_6=0.7'

,'\beta_9=0.9')
145 xlabel('Time[years]')
146 ylabel('Susceptible animals')
147 hold on
148
149 figure(8b)
150 plot(t1,y1(:,6),'g',t2,y2(:,6),'b--',t3,y3(:,6),'r',t4,y4(:,6)

,'k--',t5,y5(:,6),'m','LineWidth',3)
151 legend('\beta_6=0.01','\beta_6=0.3','\beta_6=0.5','\beta_6=0.7

','\beta_9=0.9')
152 xlabel('Time[years]')
153 ylabel('Infected animals')
154 hold on
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155 hold off

Appendix B: MATLAB CODES FOR CHAPTER FOUR
B.1 MATLAB codes for Figure 10

1 close all
2 Lambda_H=36;beta_1=0.35;beta_2=0.55;beta_3=0.999;gamma_H=0.35;

mu_H=0.01;alpha_H=0.139;
3 Lambda_a=58;gamma_a=0.34;mu_a=0.05;alpha_a=0.12;omega=0.1;rho

=0.569;
4 beta_6=0.134;beta_4=0.25;%;beta_5=0.6
5
6 Lambda_h=36;beta_1=0.35;beta_2=0.035;beta_3=0.0999;gamma_h

=0.35;mu_h=0.01;alpha_h=0.139;
7 Lambda_a=58;beta_4=0.25;beta_6=0.34;gamma_a=0.34;mu_a=0.05;

alpha_a=0.12;
8 rho=0.569;omega=0.45;epsilon=0.75;theta=0;Pi_h=0.000271;tau_a

=0.22;tau_h=0.58;%beta_5=0.6;
9

10 beta_5=0:0.01:5;
11 beta_5=0:0.01:5;
12 R_0=((beta_1 * gamma_H)/((gamma_H+mu_H)*(alpha_H+mu_H))+(

gamma_a*(omega*beta_5+rho*beta_6))/((gamma_a+mu_a)*(alpha_a+
mu_a)*omega)+sqrt(((gamma_a*(omega*beta_5+rho*beta_6))/((
gamma_a+mu_a)*(alpha_a+mu_a)*omega)-(beta_1 * gamma_H)/((
gamma_H+mu_H)*(alpha_H+mu_H))).ˆ2+4*(omega*beta_2+rho*beta_3
)*(gamma_a*beta_4*gamma_H)/((gamma_a+mu_a)*(alpha_a+mu_a)*(
gamma_H+mu_H)*(alpha_H+mu_H)*omega)))./2;

13
14 R_e=((1-tau_a).*(omega+theta).*beta_5.*gamma_a+(1-epsilon)

.ˆ2.*beta_6.*rho.*gamma_a)./((gamma_a+mu_a).*(mu_a+alpha_a+
tau_a).*(omega+theta))+beta_1.*(1-tau_h).*gamma_h./((mu_h+
gamma_h).*(mu_h+alpha_h+tau_h))+sqrt((((1-tau_a).*(omega+
theta).*beta_5.*gamma_a+(1-epsilon).ˆ2.*beta_6.*rho.*gamma_a
)./((gamma_a+mu_a).*(mu_a+alpha_a+tau_a)*(omega+theta))-
beta_1.*(1-tau_h).*gamma_h./((mu_H+gamma_h).*(mu_h+alpha_h+
tau_h))).ˆ2+(4.*((1-tau_a).*(omega+theta).*(1-tau_h).*beta_2
.*beta_4.*gamma_h.*gamma_a+(1-tau_h).*(1-epsilon).ˆ2.*beta_3
.*beta_4.*gamma_h.*rho.*gamma_a))./((mu_h+gamma_h).*(mu_h+
alpha_h+tau_h).*(gamma_a+mu_a).*(mu_a+alpha_a+tau_a).*(omega
+theta)))./2;

15
16 plot(beta_5,R_0,'b',beta_5,R_e,'g','lineWidth',2);
17 grid on
18 grid minor
19 ax = gca;
20 %ax.GridColor = [.5 .5 .5];
21 ax.GridLineStyle = '--';
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22 ax.GridAlpha = 0.5;
23 xlabel('Years')
24 ylabel('Reproduction Numbers')
25 legend('Basic Reproduction Number R_0','Effective Reproduction

Number R_e')

B.2 MATLAB codes for Figure 11, 12 and 15

1 %Defining function 'Co_Teddy_E1.m' and it's corresponding
equations as follows

2 function dy=Co_Teddy_E1(˜,y)
3 dy=zeros(size(y));
4
5 %parameter declaration
6 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.35;

mu_h=0.01;alpha_h=0.139;
7 beta_4=0.25;beta_5=0.6;Lambda_a=65;beta_6=0.34;gamma_a=0.34;

mu_a=0.05;alpha_a=0.12;
8 rho=0.569;omega=0.459;epsilon=0.1;tau_a=0.79;theta=0;tau_h

=0.58;Pi_h=0.01;Pi_a_a=0.03;
9

10 %Defining function 'Co_Teddy_E2.m' and it's corresponding
equations as follows

11 function dy=Co_Teddy_E2(˜,y)
12 dy=zeros(size(y));
13
14 %parameter declaration
15 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.35;

mu_h=0.01;alpha_h=0.139;
16 beta_4=0.25;beta_5=0.6;Lambda_a=65;beta_6=0.34;gamma_a=0.34;

mu_a=0.05;alpha_a=0.12;
17 rho=0.569;omega=0.459;epsilon=0.3;tau_a=0.79;theta=0;tau_h

=0.58;Pi_h=0.01;Pi_a_a=0.03;
18
19 %Defining function 'Co_Teddy_E3.m' and it's corresponding

equations as follows
20 function dy=Co_Teddy_E3(˜,y)
21 dy=zeros(size(y));
22
23 %parameter declaration
24 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=65;gamma_h=0.35;

mu_h=0.01;alpha_h=0.139;
25 beta_4=0.25;beta_5=0.6;Lambda_a=65;beta_6=0.34;gamma_a=0.34;

mu_a=0.05;alpha_a=0.12;
26 rho=0.569;omega=0.459;epsilon=0.5;tau_a=0.79;theta=0;tau_h

=0.58;Pi_h=0.01;Pi_a_a=0.03;
27
28 %Defining function 'Co_Teddy_E4.m' and it's corresponding
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equations as follows
29 function dy=Co_Teddy_E4(˜,y)
30 dy=zeros(size(y));
31
32 %parameter declaration
33 beta_1=0.35;beta_2=0.55;beta_3=0.999;Lambda_h=60;gamma_h=0.35;

mu_h=0.01;alpha_h=0.139;
34 beta_4=0.25;beta_5=0.6;Lambda_a=65;beta_6=0.34;gamma_a=0.34;

mu_a=0.05;alpha_a=0.12;
35 rho=0.569;omega=0.459;epsilon=0.7;tau_a=0.79;theta=0;tau_h

=0.58;Pi_h=0.01;Pi_a_a=0.03;
36
37 %Defining function 'Teddy_ENOCO.m' and it's corresponding

equations as follows
38 function dy=Teddy_ENOCO(˜,y)
39 dy=zeros(size(y));
40
41 %parameter declaration
42 Lambda_H=36;beta_1=0.35;beta_2=0.55;beta_3=0.999;gamma_H=0.35;

mu_H=0.01;alpha_H=0.139;
43 Lambda_a=58;beta_4=0.25;beta_5=0.6;beta_6=0.34;gamma_a=0.34;

mu_a=0.05;alpha_a=0.12;
44 rho=0.569;omega=0.45;
45
46 %Variable description
47 Sh=y(1);Eh=y(2);Ih=y(3);Sa=y(4);Ea=y(5);Ia=y(6);D=y(7);
48 Nh=y(1)+y(2)+y(3);
49 Na=y(4)+y(5)+y(6);
50
51 %Equation of the model
52 dy(1)=Lambda_h+Pi_h*Ih -((beta_1*(1-tau_h)*Ih+beta_2*(1-tau_a)

*Ia+beta_3*(1-epsilon)*D)*Sh)/Nh-mu_h*Sh;
53 dy(2)=((beta_1*(1-tau_h)*Ih+beta_2*(1-tau_a)*Ia+beta_3*(1-

epsilon)*D)*Sh)/Nh- (gamma_h+mu_h)*Eh;
54 dy(3)=gamma_h*Eh-(alpha_h+mu_h+tau_h)*Ih;
55 dy(4)=Lambda_a+Pi_a_a*Ia-((beta_4*(1-tau_h)*Ih+beta_5*(1-tau_a

)*Ia+beta_6*(1-epsilon)*D)*Sa)/Na-mu_a*Sa;
56 dy(5)=((beta_4*(1-tau_h)*Ih+beta_5*(1-tau_a)*Ia+beta_6*(1-

epsilon)*D)*Sa)/Na-(mu_a+gamma_a)*Ea;
57 dy(6)=gamma_a*Ea-(tau_a+alpha_a+mu_a)*Ia;
58 dy(7)=rho*(1-epsilon)*Ia-(omega+theta)*D;
59
60 %RUNNING FILE
61 tspan =0:0.1:30 ; %Time in yrs ,
62 y0=[501, 9, 2, 400, 10, 2, 25];
63 [t,y]=ode45(@Ma_Teddy_2ENOCO,tspan,y0);
64 [t1,y1]=ode45(@Co_Teddy_E1,tspan,y0);
65 [t2,y2]=ode45(@Co_Teddy_E2,tspan,y0);
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66 [t3,y3]=ode45(@Co_Teddy_E3,tspan,y0);
67 [t4,y4]=ode45(@Co_Teddy_E4,tspan,y0);
68 [t5,y5]=ode45(@Co_Teddy_E5,tspan,y0);
69
70 figure(11a)
71 plot(t,y(:,1),'b', t1,y1(:,1),'k',t2,y2(:,1),'r',t3,y3(:,1),'g

','LineWidth',2)
72 %ylim([0 1000])
73 legend('No Control','\epsilon=0.1','\epsilon=0.3','\epsilon

=0.5')
74 xlabel('Time[years]')
75 ylabel('Susceptible humans')
76 hold on
77 hold off
78
79 figure(11b)
80 plot(t,y(:,4),'b',t1,y1(:,4),'g',t3,y3(:,4),'r--',t5,y5(:,4),'

k','LineWidth',2)
81 legend('No Control','\epsilon=0.1','\epsilon=0.3','\epsilon

=0.9')
82 xlabel('Time[years]')
83 ylabel('Susceptible animals')
84 hold on
85
86 figure(12a)
87 plot(t1,y1(:,3),'b',t2,y2(:,3),'r',t3,y3(:,3),'k','LineWidth'

,2)
88 %ylim([0 1000])
89 legend('\epsilon=0.1','\epsilon=0.3','\epsilon=0.5')
90 xlabel('Time[years]')
91 ylabel('Infected humans')
92 hold on
93 hold off
94
95 figure(12b)
96 plot(t1,y1(:,6),'g',t2,y2(:,6),'r',t3,y3(:,6),'k','LineWidth'

,2)
97 %ylim([0 1000])
98 legend('\epsilon=0.1','\epsilon=0.3','\epsilon=0.5')
99 xlabel('Time[years]')

100 ylabel('Infected animals')
101 hold on
102 hold off
103
104 figure(15a)
105 plot(t1,y1(:,7),'m',t2,y2(:,7),'r',t3,y3(:,7),'g','LineWidth'

,2)
106 %ylim([0 1000])
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107 legend('\epsilon=0.1','\epsilon=0.3','\epsilon=0.5')
108 xlabel('Time[years]')
109 ylabel('Dairy products')
110 hold on
111 hold off
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