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ABSTRACT

The study of fluid flow and heat transfer th rough a cylindrical pipe and channel with porous 

boundaries are important research area due to its wide range of applications in engineering and 

industrial processes. Some practical applications include problems dealing with transpiration 

cooling, gaseous diffusion in order to produce fuel for nuclear reactors, controlling boundary 

layer flow over aircraft wings by injection or suction of fluid out of or into the wing, lubrication 

of porous bearings, petroleum technology, ground water hydrology, seepage of water in river 

beds, purification a nd fi ltration pr ocesses. A na nofluid is the  sus pension of nan oparticles in 

a base fluid. Nanofluids are promising fo r heat tr ansfer enhancement due to  their high ther-

mal conductivity. For practical applications of nanofluids research in nanofluids convection are 

important. Owing to their enhanced properties, nanofluids can be used in a  plethora of tech-

nical and biomedical applications such as nanofluid coolant which include electronics cooling, 

vehicle cooling, transformer cooling, computers cooling and other electronic devices cooling. 

Other applications are medical applications which include magnetic drug targeting, cancer ther-

apy and safer surgery by cooling.

This study considered the detailed analysis of laminar flow behavior and heat transfer using 

this innovative fluid as working fluid through a pipe and channel with porous boundaries for 

both steady and unsteady scenarios. We considered water-based nanofluids where copper and 

alumina were used as nanoparticles. The appropriate mathematical models for the problems 

were derived from the laws of conservation of mass, momentum and energy balance. The gov-

erning nonlinear Partial Differential Equations (PDE) and boundary conditions were converted 

into nonlinear Ordinary Differential Equations (ODE) using appropriate similarity transforma-

tions for the case of steady state formulated model and method of lines when unsteady situation 

was considered. These equations were solved analytically by regular perturbation methods with 

series improvement technique and numerically using an efficient Runge-Kutta-Fehlberg inte-

gration technique coupled with shooting scheme and multidimensional Newton-Raphson root 

finding technique.

In chapter 1, the key concepts and derivations related to fluid flow, the statement of the problem, 

the objectives of the study, Significance of the study and the methodology are given. In chapter 

2, the heat transfer characteristics of Berman flow of water-based nanofluids in a porous chan-

nel with Navier slip, viscous dissipation and convective cooling is investigated. Chapter 3 the 

combined effect of variable viscosity, Brownian motion, thermophoresis and convective cooling

i



on unsteady flow of nanofluid in a cylindrical pipe with permeable wall are analysed. In chap-

ter 4 we investigates the effects of buoyancy force and variable viscosity on unsteady flow and

heat transfer of water-based nanofluid containing Copper and Alumina as nanoparticles. Anal-

ysis of unsteady water-based nanofluid flow in a permeable cylindrical pipe through saturated

porous medium with the effect of buoyancy-driven force, variable viscosity and Navier slip are

examined. The useful results for the velocity, temperature, nanoparticles concentration profiles,

pressure gradient, skin friction and Nusselt number were obtained and discussed quantitatively.

The effects of important governing flow parameters on the entire flow structure were examined.

The conclusion remarks are carried out in chapter 6.
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CHAPTER ONE

Introduction

This chapter describes the general introduction of the study. It mainly focuses on the back-

ground information of the study. The main terminologies and mathematical equations used in

this dissertation are defined and derived. The statement of the problem and research justifica-

tion, aims and objectives of the study, significance of the study and the research methodology

are also explained.

1.1 Background Information

Fluid flow and heat transfer continues to be a field of major interest to engineering and scientific 

researchers, designers, developers as well as manufacturers. Considerable effort has been devot-

ed to research in traditional applications such as chemical processing, general manufacturing, 

and energy devices, including general power systems, heat exchangers and high performance 

gas turbines. In addition, a significant number of papers, address topics that are at the frontiers 

of both fundamental research and important emerging applications, such as microchannel flows, 

bio-heat transfer, electronics cooling, semiconductors and a number of natural phenomena rang-

ing from upwelling currents in the oceans to heat transport in stellar atmospheres (Senthilkumar 

et al., 2012).

Heat transfer fluids s uch a s w ater, m ineral o il a nd e thylene g lycol p lay a  v ital r ole i n many 

industrial processes, but the heat transfer properties of these common fluids are low when com-

pared to most of the solids and it becomes a primary obstacle to the high compactness and 

effectiveness of heat exchangers. The essential initiative is to seek the solid particles having 

thermal conductivities several hundred times higher than those of conventional fluids (Kumar 

et al., 2013).

The conventional method for increasing heat dissipation is to increase the area available for ex-

changing heat with a heat transfer fluid but this approach requires an undesirable increase in the 

size of thermal management system. Therefore an urgent need for new and innovative coolants 

with improved performance (Pawel et al., 2008). From the 1990s, researchers began to apply 

nanomaterial technology to heat transfer and have achieved many meaningful results on heat 

transfer enhancement. Choi (1995) firstly proposed the concept of nanofluid, which is  a fluid 

with some kinds of nanometer-sized particles suspended into a base liquid.
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Nanofluids c an b e c onsidered t o b e t he n ext g eneration h eat t ransfer fl uids be cause th ey of-

fer exciting new possibilities to enhance heat transfer performance compared to pure liquids. 

The thermo-physical and transport properties of the conventional fluids are improved by adding 

the nanoparticles in base fluid. The effective thermal conductivity of nanofluids increases with 

increase in temperature. The heat transfer coefficient d epends n ot o nly o n t he t hermal con-

ductivity but also on other properties, such as the specific heat capacity, density, and dynamic 

viscosity of a nanofluid. At low volume fractions, the density and specific heat of nanofluids 

looks to be very similar to those characterizing the base fluid (Senthilkumar et al., 2012). The 

two most important features of nanofluids are Brownian motion and thermophoresis (Xuan and 

Li, 2003). Brownian motion describes the random movement of nanoparticles in the base fluid. 

This random movement is due to collision of particles into each other. The collision passes on 

the kinetic energy of the particles to the molecules. The impact of particles upon other particles 

is negligible because the concentration of particles in nanofluids is normally low, whereas ther-

mophoresis describes the nanoparticle dispersion in the base fluid due to temperature gradient 

(Motsumi and Makinde, 2012). As a new kind of heat transfer fluid, the nanofluid is a new tech-

nology attempt to use the special properties of this functional fluid to enhance the heat transfer 

systems. It has wide application prospects such as combustion induced gas motion inside a sol-

id rocket motor, flow filtration, isotope separation, surface ablation, pulmonary circulation etc. 

Moreover, the instance of laminar flow through a pipe or channel with porous walls is an ideal-

isation of the flow behaviour that occurs in the real world in corresponding g eometries. It can 

be used to model processes such as transpiration cooling, where the walls of a pipe or channel 

containing heated fluid are protected from overheating by passing cooler fluid over the exterior 

surface of the pipe or channel; another application is to model the fluid flow occurring during 

the separation of isotopes of Uranium-235 and Uranium-238 by gaseous diffusion in order to 

produce fuel for nuclear reactors; controlling boundary layer flow over aircraft wings by injec-

tion or suction of fluid out of or into the wing, or as part of a model for flow past a membrane or 

filter; lubrication of porous bearings; petroleum technology; ground water hydrology; seepage 

of water in river beds; purification and filtration processes et c. Fu rthermore, continuous and 

rapid nano-technological advances in industrial processing require design and operation prob-

lems to be resolved as quickly as possible in order to keep companies competitive, particularly 

in terms of energy efficiency and low c osts. For many years, experiments and empirical anal-

ysis have been the preferred solution tools for industrial analysis. Despite the strongness and
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reliable nature of experimental methodology, certain factors limit its applicability scope. Thus,

mathematical modeling and analysis of fluid flow and heat transfer is quickly becoming a quick

tool in solving many challenges problems in engineering and applied sciences. Normally, it

is the fastest and least expensive way, given that it minimises the number of experiments that

need to be conducted to determine the influence of several parameters on the performance and

efficiency of the process related to cooling and heating phenomena.

In this study, we consider the analysis of rectilinear axisymmetric laminar incompressible

nanofluid flow models of heat transfer with some variable parameters governing the flow. To

describe the behavior of flow dynamics the equations governing flow are solved numerically.

This is what is known as computational simulation. Results of this simulation include the ve-

locity distribution, distribution of temperature and pressure in the entire flow domain, the heat

transfer rate and skin friction in the walls are also presented.

1.1.1 Heat transfer

Heat transfer is defined as thermal energy-in-transit due to spatial temperature difference. Heat

transfer takes place whenever there exist a temperature gradient within a system or whenever

two systems at different temperatures are brought into thermal contact. Heat, which is energy-

in-transit cannot be measured or observed directly, but the effects produced by it can be observed

and measured (Paul and Gorazo, 2007). Since heat transfer involves transfer and/or conversion

of energy, all heat transfer processes must obey the first and second laws of thermodynamics.

Modes of Heat Transfer:

The different types of heat transfer are usually referred as ’mode of heat transfer’. Generally

heat transfer takes place in three modes: conduction, convection and radiation (Figure 1.1).
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Figure 1.1: Heat transfer modes

Conduction

This is energy transfer across a system boundary due to a temperature difference by the

mechanism of inter-molecular interactions. Conduction needs matter and does not require any

bulk motion of matter (Raju, 2011). The conduction rate equation is described by the Fourier

law:

Q = −kA∇T (Blazeki, 2005) (1.1)

where Q is the heat flow vector (W )

k is the thermal conductivity (Wm/K)

A is the cross-sectional area in direction of heat flow (m2)

∇T is the gradient of the temperature (K/m).

Convection

This heat transfer mode is comprised of two mechanisms: random molecular motion which

is termed diffusion and the bulk motion of the fluid. This fluid motion is associated with the

fact, at any instant, large numbers of molecules are moving collectively or as aggregates. In

the presence of a temperature gradient, such motion contributes to the heat transfer. Because

the molecules in the aggregate retain their random motion, the total heat is then due to super-

position of energy transport by the random motion of molecules and by the bulk motion of the

fluid (Blazeki, 2005). We use the term convective when referring to cumulative transport and

advection when referring to transport due to bulk fluid motion.

Convection heat transfer is classified according to the nature of the flow: Forced convection
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when the flow is caused by external means, such as fan, pump, atmospheric winds. In contrast,

free (natural) convection the flow is induced by buoyancy forces, which is due to the density

differences caused by temperature variations in the fluid (refer to Figure 1.2). Regardless of

Figure 1.2: Convection heat transfer process (a) Forced convection (b) Natural convection

the particular nature of the convection heat transfer process. The rate of transfer is given by

Newton’s Law of Cooling.

q
′′

= h(TW − T∞) (1.2)

where

h is the convective heat transfer coefficient (M/m2K)

Tw is the surface temperatures of the wall (0C)

T∞ is the bulk fluid temperature (0C)

The temperature gradient near the wall depends on the rate at which the fluid near the wall can

transport energy into the mainstream. The temperature gradient depends on the flow field, high-

er velocities leads to higher temperature gradients and hence higher heat transfer rates. Thus

determination of convection heat transfer requires the application of laws of fluid mechanics in

addition to the laws of heat transfer. The typical values of heat transfer coefficient are shown in

Table 1.1.
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Table 1.1: Typical values of heat transfer coefficients (W/m2K) (John, 2008)

Free convection air 6− 30

water 20− 100

Forced convection air 30− 300

water 300− 18, 000

oil 60− 1, 800

Boiling Synthetic refrigerant 500− 300

water 3, 000− 60, 000

condensation Synthetic refrigerant 1, 500− 5, 000

water 6, 000− 120, 000

Radiation

This occurs where heat energy is transferred by electromagnetic radiation that arises due to

temperature of the body. The intensity of such energy flux depends upon the temperature of the

body and the nature of its surface (John, 2008). The rate of radiation heat exchange between a

small surface and a large surrounding is given by the expression,

Q = εσA(T 4
s − T 4

sur) (1.3)

where

ε= surface emissivity

A= surface area

Ts = absolute temperature

Tsur =absolute temperature of the surroundings

σ = Stefan-Boltzmann constant

1.1.2 Flow in pipes

Pipe flow is a type of flow within a closed conduit. This is an internal flow where as fluid is

completely confined by inner surfaces of the tubes and there is a limit on how much the bound-

ary layer grows. Flow through pipes is commonly used in heating and cooling applications and
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fluid distribution networks. The fluid velocity in a pipe changes from zero at the surface due to

no-slip condition to a maximum velocity at the center of the pipe. A boundary layer developed

at the entrance. Eventually the boundary layer fills the entire pipe, and the flow is said to be

fully developed. If the flow is laminar a parabolic velocity profile is experienced.

1.1.3 Laminar and turbulent flows

Fluid flow can be grouped into two categories, laminar or turbulent flow. Laminar flow implies

that the fluid moves in sheets that slip relative to each other and it occurs at very low velocities

where there are only small disturbances and little or no local velocity variations. In laminar flow,

the motion of the fluid particles is very orderly and can be characterized by high momentum

diffusion and low momentum convection. The Reynolds number is used to characterize the flow

regime.

The Reynolds number, Re, is a dimensionless number that represents the ratio of inertial

forces to viscous forces; and is defined as:

Re =
intertial forces

viscousforces
=
V L

ν
, (1.4)

where,

V is a mean velocity (m/s),

L is a characteristic linear dimension(m),

ν = µ
ρ

is a kinematics viscosity (m2/s).

The Reynolds number helps quantify the relative importance of inertial and viscous forces for

given flow conditions. For internal flow, such as within a pipe, laminar flow occurs at a Reynolds

number less than 2300.

Opposite of laminar, turbulence is a flow regime characterized by chaotic and stochastic

changes. Turbulent flows involve large Reynolds numbers and contain three dimensional vortic-

ity fluctuations. The flow is considered as laminar if (Re < 2000) and Turbulent if Re > 4000

(Blazeki, 2005). The laminar and turbulent flow in a fluid is illustrated in Figure 1.3.
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Figure 1.3: Laminar and Turbulent flows

1.1.4 Porous pipe/channel

This consists of pipe/channel with permeable walls. The walls are made up of a solid matrix

with void space filled with the fluids. The walls are interconnected in such a way that fluid can

flow through medium.

1.1.5 Porous media

A porous medium can be defined as a solid body which contains void spaces or pores that

are distributed randomly; without any conceivable pattern throughout the structure of the solid

body. Extremely small voids are called molecular interstices and very large ones are called

caverns. Pores are intermediate between caverns and molecular interstices. Fluid flow can only

take place in the inter-connected pore space of the porous media this pore is called the effective

pore space.

1.1.6 Nanofluids

The heat rejection requirements are continually increasing due to trends toward faster speeds 

and smaller features for microelectronic devices, more power output for engines, and brighter 

beams for optical devices. Cooling becomes one of the top technical challenges facing 

high-tech industries such as microelectronics, transportation, manufacturing, and metrology. 

The conventional methods for increase cooling rates are extended surfaces such as fins and 

increasing flow rates. However, current design solutions already push available technology 

to its limits (Eastman et al., 2004).

New technologies and new advanced fluids w ith p otential t o i mprove fl ow an d thermal 

characteristics are of critical importance. Nanofluids are a new class of advanced heat-transfer
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fluids engineered by dispersing nanoparticles smaller than 100nm (nanometer) in diameter and 

fibres in conventional heat transfer fluids.

The key incentive to utilize this new type of fluid i n e ngineering d evices i s i ts c apability of 

enhancing heat transfer and having the same Newtonian behavior of other fluids i n s pite of 

containing solid particles. This is due to fact that solids materials have thermal conductivities 

several times larger than those of conventional heat transfer fluids ( see T able1.2). S ince the 

introduction of the term nanofluid, there have been remarkable experiments done to shed some 

light on the behavior of this novel fluid. (Kamyar et al., 2012; Wen and Ding, 2005).

Table 1.2: Thermal conductivity of selected typical materials (Choi, 1995; Eastman et al., 2004)

Materials Thermal conductivity

(W/mK)

Carbon Diamond 2300

Carbon nanotubes ∼ 2000

Graphite 110-190

Metallic materials Silver 429

copper 401

Aluminum 237

Non-metallic materials Silicon 148

Silicon Carbide 120

Alumina 40

Heat transfer fluid Water 0.613

Ethylene glycol 0.253

Engine oil 0.145

1.1.7 Materials for nanoparticles and base fluids

The common materials used for nanoparticles and base fluids are:

1. Nanoparticle materials including:

• Oxides (e.g. Al2O3, CuO, TiO2, SiO2).
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• Metals (e.g. Al, Ag, Au, Cu, Fe).

• Nitrides (e.g. AlN , SiN ).

• Nonmetals (e.g., graphite, carbon, nanotubes).

• Layered (e.g. Al + Al2O3, Cu+ C).

2. The base fluid which is usually a conductive fluid includes: water; ethylene or tri-

ethylene-glycols and other coolants; oil and other lubricants; bio-fluids; polymer solu-

tions and other common fluids.

Figure 1.4: Nanoparticles and base fluid illustration

1.1.8 Nanofluids synthesis

In general, there are two methodologies used to produce nanofluids, namely:

Single-step method, where nanoparticles are produced and dispersed simultaneously into the

base fluid. The single-step method is a process combining the preparation of nanoparticles with

the synthesis of nanofluids, for which the nanoparticles are directly prepared by physical vapor

deposition technique or a liquid chemical method. This process is best for metallic nanofluids

(Wang and Mujumdar, 2007)

Two-step Process, nanoparticles are produced by evaporation and inert-gas condensation pro-

cessing, and then dispersed (mixed, including mechanical agitation and sonification) in base

fluid, this is method is best for oxide nanoparticles. Figure 1.5 illustrates the nanoparticles

produced using single step and two step methods.
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Figure 1.5: Nanoparticles produced by single step and two step methods

1.1.9 Characteristic features of nanofluids

Nanofluids have an unprecedented combination of characteristic features desired in fluid and

heat transfer systems which make them suitable for next generation flow and heat transfer fluids.

These features are:

• Increased thermal conductivity at low nanoparticles concentrations.

• Strongly temperature-dependent and size dependent.

• Nonlinear increase in conductivity with nanoparticles concentrations.

• Increase in boiling critical heat flux.

Detailed explanation of these features can be seen from (Wen and Ding, 2005; Das et al., 

2003b,a; You et al., 2003; Yang and Han, 2003)

1.1.10 Thermophysical characteristics of nanofluids

Density

The density of any fluid is defined as the mass per unit volume. The density of nanofluid is

based on the physical principle of the mixture rule. As such it can be represented as (Khanafer

and Vafai, 2011):

ρeff =

(
M

V

)
eff

=
Mf +Ms

Vf + Vs
=
ρfVf + ρsVs
Vf + Vs

= (1− ϕ)ρf + ϕρs. (1.5)

To examine the validity of equation (1.5), a number of experiments have been done and 

excellent agreement results has been obtained (Pak and Cho, 1998; Ho et al., 2010). 
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Heat capacity

We can determine the effective specific heat of nanofluid by assuming thermal equilibrium

between the nanoparticles and the base fluid phase as follows:

(ρcp)eff = ρeff

(
Q

M∆T

)
eff

= ρeff
Qf +Qs

(Mf +Ms)∆T

= ρeff
(Mcp)f∆T + (Mcp)s∆T

(Mf +Ms)∆T
= ρeff

(ρcp)fVf + (ρcp)sVs
ρfVf + ρsVs

= (1− ϕ)(ρcp)f + ϕ(ρcp)s ⇒ (cp)eff =
(1− ϕ)(ρcp)f + ϕ(ρcp)s

(1− ϕ)ρf + ϕρcf
,

(1.6)

where, f and s refer to the base fluid and solid nanoparticle respectively and ϕ = Vs
Vf+Vs

is the

volume fraction of the nanoparticles (Khanafer and Vafai, 2011).

Thermal expansion coefficient

The thermal expansion coefficient of nanofluids can be estimated utilizing the volume fraction 

of the nanoparticles on a weight basis as presented by (Khanafer et al., 2003):

γeff =
(1− ϕ)(ργ)f + ϕ(ργ)s

ρeff
(1.7)

However, Hwang et al. (2007) suggested a very simple model for the thermal expansion 

coefficient, the model equation is given by:

γeff = (1− ϕ)γf + ϕγs, (1.8)

where γf represents the thermal expansion coefficient of base fluid and γs represents the

thermal expansion coefficient of nanoparticles.

Thermal conductivity

Several theoretical and experimental studies have been published in the literature to model

thermal conductivity of nanofluids. However there are no existing theoretical studies that

predicts accurately the thermal conductivity of the fluids. Maxwell’s model (Maxwell, 1881)

was one of the first models proposed for solid-liquid mixture. The model is based on the

solution of heat conduction equation through a stationary random suspension of spheres. This

model predicts thermal conductivity reasonably well for dilute mixtures of relatively large

particles in fluids. The effective thermal conductivity is given by:
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keff
kf

=
(ks + 2kf ) + 2ϕ(ks − kf )
(ks + 2kf ) + 2ϕ(ks − kf )

= 1 +
3ϕ(ks − kf )

2kf + ks − ϕ(ks − kf )
,

(1.9)

where kf and ks represents the thermal conductivity of base fluid and nanoparticles respectively.

Viscosity

Generally, we can define viscosity as the ratio of shear stress to the velocity. It is regarded as

the resistance that the fluid offer against deforming under influence of shear stress. viscosity

transforms kinetic energy of (macroscopic) motion into heat energy. Regarding viscosity in

nanofluid different analytical models have been presented by researcher to model the effective

viscosity of nanofluid as a function of volume fraction. Einstein (1906) presented a simple

model for fluids with a low concentration of spherical particles as follows:

µeff
µf

= 1 + 2.5ϕ. (1.10)

Brinkman (1952) generalized the Einstein correlation for higher concentrations:

µeff
µf

=
1

(1− ϕ)2.5
= 1 + 2.5ϕ+ 4.375ϕ2 + . . . . (1.11)

Batchelor (1977) studied the effect of the Brownian motion on the effective viscosity in a sus-

pension of rigid and spherical particles and developed the following correlation:

µeff
µf

= 1 + 2.5ϕ+ 6.5ϕ2. (1.12)

Temperature dependent viscosity

When the viscosity of the fluid t ends t o decrease with t he i ncrease of t emperature ( and vice 

versa) then it is referred to as temperature dependence viscosity. When the temperature 

of the fluid i ncreases, t he t he r ate o f m olecular i nterchange m oves f aster a nd f ar away 

from other which causes the cohensive forces to decrease rapidly. As cohensive forces 

are decreasing, the shear stress will decrease as well. Similarly, as the rate of molecular 

interchange is increasing, there will be increase of shear stress. The temperature dependent vis-

cosity considered in this study is an exponential function as presented by Klemp et al. (1990) as,

µf (T ) = µ0exp (−m(T − Ta)) . (1.13)
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1.1.11 Finite control volume

Consider a general flow field as represented by the streamlines in Figure 1.6. Let us imagine a

closed volume drawn within a finite region of the flow. This volume defines a control volume, V ,

and a control surface, S, is defined as the closed surface which bounds the volume (Alexandre

and Jerrold, 1992). The control volume may be fixed in space with the fluid moving through

it, as shown on the left of Figure 1.6. Alternatively, the control volume may be moving with

the fluid such that the same fluid particles are always inside it, as shown on the right of Figure

1.6. In either case, the control volume is a reasonably large, finite region of the flow. The

fundamental physical principles are applied to the fluid inside the control volume, and to the

fluid crossing the control surface (if the control volume is fixed in space). Therefore, instead of

looking at the whole flow field at once, with the control volume model we use the fluid in the

finite region of the volume itself.

Figure 1.6: Finite control volume
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1.1.12 Gauss divergence theorem

Let Ω ∈ R3 and n be the outward unit normal to the boundary Γ. Then for any differentiable

function f(x)

∫
Ω

∇ · fdx =

∫
Γ

f · n (Alexandre and Jerrold, 1992) (1.14)

1.1.13 Streamline

A streamline is a curve which is tangent to the velocity vector V = (vx, vy, vz) at every point.

It is given by the relation

dx

vx
=
dy

vy
=
dz

vz
(Alexandre and Jerrold, 1992)

Streamlines can be visualized by injecting tracer particles into the flow field.

1.1.14 Material derivative

The continuity equation contains the time-derivative of the fluid density. For any physical quan-

tity f = f(x, t) (density, temperature, each velocity component, etc.), we must actually take

care to distinguish two different time derivatives. ∂f
∂t

, we mean the rate of change of f at a

particular point that is fixed in space. But the rate of change of f in a given element of fluid as

it moves along its trajectory x = x(t) in the flow defines the material (substantial) derivative

df

dt
=

d

dt
f(x(t), y(t), z(t), t)

=
∂f

∂t
+
dx

dt

∂f

∂x
+
dy

dt

∂f

∂y
+
dz

dt

∂f

∂z

=
∂f

∂x
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
df

dt
=
∂f

∂t
+ ~q · ~∇f

(1.15)

The substantial derivative = local derivative + convective derivative

where, ∂
∂t

is the local derivative, ~q·~∇ is the convective derivative and d
dt

is the material derivative.

1.1.15 Reynold’s transport theorem

Let u = u(x, t), where x = x(x0, t). The rate of change in a moving volume is equal to the rate

of change in a fixed volume plus convective transfer through the surface. Mathematically this
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can be written as (Alexandre and Jerrold, 1992):

d

dt

∫
Vt

u(x, t)dV =

∫
V≡Vt

∂u(x, t)

∂t
dV +

∫
S≡St

u(x, t)q · ndS

1.1.16 Basic Governing equations for the problem

The cornerstone of computational fluid dynamics is the fundamental governing equations of

fluid dynamics viz; the continuity, momentum and energy equations. They are the mathematical

statements of three fundamental physical principles upon which all of fluid dynamics is based:

(a) mass is conserved

(b) Newton’s 2nd law (~F = m~a)

(c) energy is conserved

1.1.17 Continuity equation

The continuity equation represents the law of conservation of mass which states that mass can-

not be created nor destroyed; that is

the total mass in the system = original mass + mass added - mass removed

or

the rate of increase of mass = net flux of mass.

We consider differential and integral approaches to derive the continuity equation.

Differential Approach

Consider a stationary differential volume element of length ∆x, width ∆y and height ∆z in

cartesian coordinates as shown in Figure 1.7. The conservation of mass for this control volume

element (∆x∆y∆z) can expressed as:

Rate of change = Rate of mass −Rate of mass

of mass in∆V convected into ∆V convected out of ∆V

 .

Mathematically this can be expressed as;

∆x∆y∆z
∂ρ

∂t
= ∆y∆z [(ρu)|x − (ρu)|x+∆x]

+ ∆x∆z [(ρv)|y − (ρv)|y+∆y] + ∆x∆y [(ρw)|z − (ρw)|z+∆z] (1.16)

where ρ is the fluid density in ∆V . Dividing both side of the equation (1.16) by ∆V , taking the

limit lim ∆V → 0 and invoking the definition of partial derivative we have;
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Figure 1.7: An arbitrary differential volume element

∂ρ

∂t
= −

[
∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw)

]
(1.17)

The term in the bracket in the equation (1.17) is simply ∇ · (ρ~q). Thus equation (1.17) can

written as;
∂ρ

∂t
= −~∇ · (ρ~q) (1.18)

where ~q is the velocity vector i.e. ~q = (u, v, w) and ∇ is called ”del” or ”gradient” operator. In

rectangular coordinates∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

. Equation (1.18) is called the differential form of

the continuity equation. For incompressible flow, i.e., the density of the flow is constant hence

ρ is a function of neither time nor space. The continuity equation (1.18) is reduced to:

dρ

dt
= ~∇ · ~q = 0 (Alexandre and Jerrold, 1992) (1.19)

Integral Approach

In similar manner, it is possible to derive the continuity equation over an arbitrary, spatially

fixed region of microscopic size (see Figure 1.8). The closed volume is called control volume.

d

dt

∫
V

ρdV = −
∮
s

ρ~q · ~ndS (1.20)

The equivalence of equations (1.16) and equation (1.20) are demonstrated through the diver-

gence theorem. The divergence Gauss’ theorem states that if V is a volume bounded by a

closed surface S and ~A is a continuous vector field, then:∫
V

(~∇ · ~A)dV = −
∮
s

( ~A · ~n)dS (1.21)
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Figure 1.8: An arbitrary macroscopic control volume

Thus the surface integral in equation (1.20) may be converted to volume integral:

d

dt

∫
V

ρdV = −
∫
V

(~∇ · ρ~q)dV (1.22)

Since the control volume is fixed in space, the ordinary derivative may be brought inside of

the integral and changed into a partial derivative, allowing both sides of the equation to be

consolidated within the integral:∫
V

[
∂ρ

∂t
+ ~∇ · (ρ~q)dV

]
= 0 (Alexandre and Jerrold, 1992) (1.23)

Because this equation holds for an arbitrary volume V , the integrand must vanish, leading to

the same expression which was derived from differential approach.

The equation of continuity may be equivalently obtained in any appropriate coordinate system.

Figure 1.9: Cylindrical Coordinate system

Its expansion in cylindrical coordinate (r, θ, z) (see Figure 1.9) is given as:

∂ρ

∂t
+

1

r

∂

∂r
(ρru) +

1

r

∂

∂θ
(ρv) +

∂

∂z
(ρw) = 0 (1.24)
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For incompressible flow the equation becomes:

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z
= 0 (Alexandre and Jerrold, 1992) (1.25)

1.1.18 Momentum Equation (Navier-Stokes equation)

The Navier-Stokes equations, developed by Claude-Louis Navier and George Gabriel Stokes in

1822, are equations which can be used to determine the velocity vector field that applies to a

fluid, given some initial conditions. They arise from the application of Newton’s second law

in combination with a fluid stress (due to viscosity) and a pressure term. For almost all real

situations, they result in a system of nonlinear PDE which makes them difficult or impossible

to solve.

Physical principle: ~F = m~a (Newton’s second law).

Consider the forces acting on a small element of sides δx, δy and δz, Figure 1.10. When the

Figure 1.10: Stresses acting on a fluid element

fluid is at rest, the forces acting on the element will be only normal to the surface and will be

in the form of pressure. When the real fluid is in motion, in additional to the normal stresses,

shear stresses will also act on the surfaces as shown in the Figure 1.10. Calling our Newton’s

second law of motion

~F = m~a (1.26)

The total force ~F is composed in two forces namely:

• Body forces, which act directly on the volumetric mass of the fluid element. Examples

are gravitational, electromagnetic forces.
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• Surface forces, which act directly on the surface of the fluid element. They are due to two

sources viz: the pressure distribution acting on the surface and viscous stress.

Allowing for the total force ~F = ~b and substituting density for mass, we get a similar equation

~b = ρ
dq

dt
(x, y, z, t). (1.27)

We substitute density for mass because we are operating with a fixed control volume and in-

finitesimal fluid parcels. The force b is a force that acts throughout the body of fluid (as opposed

a shear force, which acts parallel to a plane). Now applying chain rule of the derivative of ve-

locity we get

~b = ρ

(
∂~q

∂t
+
∂~q

∂x

∂x

∂t
+
∂~q

∂y

∂y

∂t
+ +

∂~q

∂z

∂z

∂t

)
(1.28)

= ρ(
∂~q

∂t
+ ~q · ∇~q) (1.29)

We assumed that the body force on the fluid parcels is due to two components, fluid stresses

and other external forces, that is:

~b = ∇ · σ + ~fb, (1.30)

where σ represents stress tensor and ~fb represents external forces. The fluid stress is repre-

sented as the divergence of the stress tensor because the divergence is the extent to which the

tensor acts like a sink or source. The tensor can be represented as (Alexandre and Jerrold, 1992):

σ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz,


The stress tensor σ denoted above is often divided into two terms of interest in the general form

of the Navier-Stokes equation. The two terms are the volumetric stress tensor, which tends to

change the volume of the body, and the stress deviator tensor, which tends to deform the body

(see Figure 1.10). The volumetric stress tensor represents the force which sets the volume of

the body (namely, the pressure forces). The stress deviator tensor represents the forces which

determine body deformation and movement, and is composed of the shear stresses on the fluid.
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Thus, σ is broken down into

σ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (1.31)

= −


p 0 0

0 p 0

0 0 p

+


σxx + p τxy τxz

τyx σyy + p τyz

τzx τzy σzz + p

 (1.32)

Denoting the stress deviator tensor as Υ, we can make the substitution in equation (1.32)

σ = −pI + Υ (1.33)

Substituting this into equation (1.30), we arrive at the most general form of the Navier-Stokes

equation:

ρ(
∂~q

∂t
+ ~q · ∇~q) = −∇p+∇ ·Υ + fb (1.34)

If we assume the fluid is Newtonian and incompressible. The basis for the Newtonian fluid

equations is the assumption about the nature of the stress tensor. For a Newtonian fluid, the

stress is proportional to the rate of deformation (the change in velocity in the directions of the

stress). In other words,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(Alexandre and Jerrold, 1992) (1.35)

where µ is the the viscosity of the fluid which defines how easily the fluid flows when subjected

to body forces. The Navier-Stokes equation uses the divergence of stress, ∇ · Υ. We can

calculate the stress term

∇ · σ = µ∇ ·


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz



= µ


2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z

 (1.36)
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Calculating the x term of the divergence:

(∇ · σ)i = µ
∂

∂x
(2
∂u

∂x
) +

∂

∂y

(
∂u

∂y
+
∂v

∂x

)
= µ

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

= µ∇2u+ µ
∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= µ∇2u+ µ

∂

∂x
(∇ · q)

= µ∇2u+ µ
∂

∂x
(0)

= µ∇2u

Extending this to the other divergence terms, we can replace the divergence with a vector

Laplacian:

∇ ·Υ = µ∇2q (1.37)

Substituting equation (1.37) into equation (1.34), the final momentum equation for an incom-

pressible fluid in vector form is as follows:

ρ

(
∂~q

∂t
+ ~q · ∇~q

)
= −∇p+ µ∇2q + ~fb (Alexandre and Jerrold, 1992; Raju, 2011)

The Navier-Stokes equation for each of the three components in cartesian coordinates are:

x-component

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=
∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ fbx (1.38)

y-Component

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=
∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ fby (1.39)

z-Component

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=
∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ fbz (1.40)

Corresponding equations of conservation of momentum in the cylindrical co-ordinate system

are

r- Component

ρ

(
∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
− v2

r
+ w

∂u

∂z

)
= −∂p

∂r
+ µ

(
∂

∂r

(
1

r

∂(ru)

∂r

))
(1.41)

+ µ

(
1

r2

∂2u

∂θ2
− 2

r2

∂v

∂θ
+
∂2u

∂z2

)
+ fbr ,
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θ- Component

ρ

(
∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+
uv

r
+ w

∂v

∂z

)
= −∂p

∂θ
+ µ

(
∂

∂r

(
1

r

∂(rv)

∂r

))
(1.42)

+ µ

(
1

r2

∂2v

∂θ2
+

2

r2

∂u

∂θ
+
∂2v

∂z2

)
+ fbθ ,

z- Component

ρ

(
∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂

∂r

(
1

r

∂(rw)

∂r

)
+

1

r2

∂2w

∂θ2
+
∂2w

∂z2

)
+ fbz .

(1.43)

1.1.19 Energy equation

To complete the system of equation, we require the third physical principle which states that

energy is conserved. A statement of this physical principle is the first law of thermodynamics.

When applied to the flow model of a fluid element moving with flow, the first law of thermody-

namics states that the the accumulation of internal energy inside the system is equal to sum of

heat transmitted to the fluid particle and rate of work done by external forces, i.e.,

Et = Q+W ⇒ dEt
dt

=
dQ

dt
=
dW

dt
(Alexandre and Jerrold, 1992) (1.44)

Using the Fourier’s law of heat conduction which states that: the heat flux is proportional to the

local temperature gradients. Mathematically this can be written as:

Q = −k∇T, (1.45)

where k is the thermal conductivity. The quantity Et consists of kinetic energy and potential

energy given by
dEt
dt

= ρδV (
de

dt
+

1

2
q2). (1.46)

Using Fourier’s law equation (1.45) we can find the rate of heat transmitted from the system as

follows:
dQ

dt
= δV

(
∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)

)
. (1.47)

Also we can find the rate of work done by external forces as:

dW

dt
= ρδV

(
1

2
q2 + νΦ

)
(1.48)

Now combining equations (1.46), (1.47) and (1.48) we obtain,

ρδV (
de

dt
+

1

2
q2) = δV

(
∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)

)
+ ρδV

(
1

2
q2 + νΦ

)
, (1.49)
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if k is constant equation (1.49) can be simplified to

ρ
de

dt
= k∇2T + ρνΦ. (1.50)

If we define e = cpT where cP is the specific heat capacity at constant pressure and applying

the definition of material derivative then we have

ρcp

(
∂T

∂t
+ q · ∇T

)
= k∇2T︸ ︷︷ ︸

heat conduction

+ ρνΦ︸︷︷︸
viscous dissipation

(Alexandre and Jerrold, 1992), (1.51)

where Φ is the viscous dissipation function. This gives the rate at which mechanical energy is

converted into thermal energy. For laminar flow of an incompressible fluid this be can defined

in cartesian coordinates as:

Φ =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2

.

(1.52)

Equation (1.51) is called energy equation and can be written in various forms.

The corresponding equation of conservation of energy in cylindrical coordinate system (r, θ, z)

is given by:

ρcp

(
∂T

∂t
+ q · ∇T

)
=
k

r

∂

∂r

(
r
∂T

∂r

)
+
k

r2

∂2T

∂θ2
+ k

∂2T

∂z2
+ µΦ, (1.53)

where, the dissipation function Φ is given by:

Φ = 2

[(
∂u

∂r

)2

+

(
1

r

∂v

∂θ
+
u

r

)2

+

(
∂w

∂z

)2
]

+

(
r
∂

∂r
(
v

r
) +

1

r

∂u

∂θ

)2

+

(
∂u

∂z
+
∂w

∂r

)2

+

(
1

r

∂w

∂θ
+
∂v

∂w

)2

.

(1.54)

The energy equation must be solved together with the momentum and the continuity equations.

1.1.20 Well-posedness

According to Hadamard (1902), a mathematical models of physical phenomena is well-posed

if it satisfies the following conditions:

1. A solution exists

2. The solution is unique

3. The solution’s behavior changes continuously with the initial conditions.
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1.2 Statement of the Problem

Currently, a large number of industries use the cooling system with traditional heat transfer

fluids such as water, oils, glycol and fluorocarbons. However they inherently poor heat trans-

fer performance due to their low thermal conductivities. Several researches have been carried

out to improve the heat transport properties of fluids. Solid metallic materials, such as silver,

copper and iron, and non-metallic materials, such as alumina, Copper oxide, Silicon carbide

and carbon nanotubes, have much higher thermal conductivities than base fluids. Therefore, the

thermal conductivities of fluids can be increased by adding solid particles into the base fluids.

Furthermore, modeling of the dynamics of flows through porous channel and cylindrical pipe

walls are useful for industrial, agriculture, medical and domestic applications such as cooling

systems, gaseous diffusion technology, mechanized irrigation and filtration, isotope separation,

surface ablation as well as pulmonary circulation. Using a mathematical model, it is therefore

necessary to examine the combined effect of the nanoparticles and other embedded parameters

on the entire flow structure for the purpose of maximizing the nanofluid convection heat transfer

applications.

1.3 Research Objectives

1.3.1 General objective

The general objective of this research is to model and analyze the laminar incompressible flow

of nanofluids and heat transfer in a cylindrical pipe and channel with permeable wall for both

transient and steady state flow problems.

1.3.2 The specific objectives

The specific objectives of this study are as follows:

1. To formulate mathematical models of nanofluids flow through a cylindrical pipe or chan-

nel with porous walls under various physical situation.

2. To investigate the effects of Navier slip, viscous dissipation and other flow parameters on

heat transfer in Berman flow of nanofluids.

3. To investigate the combined effects of thermophoresis and Brownian motion of particles

in the nanofluids flow.
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4. To investigate the effects of embedded flow parameters on the skin friction and heat trans-

fer characteristics due to nanofluids compared to base fluids.

5. To investigate the differences in flow behavior of convectional fluids and nanofluids.

1.4 Significance of the Research

The mathematical modelling and analysis of non-linear flow in a porous channel and cylindrical

cylinder are quickly becoming a tool for solving many challenging problems in engineering,

medicine, irrigation and applied sciences. The following are among the significance of this

research work:

• The findings and knowledge gained will provide useful information to engineers in de-

signing smallest heat exchanger systems which works with high efficiency and low cost.

• The study provides insight into solutions for practical problems related to mass and heat

transfer through porous wall and porous media geometries.

• The research adds scientific advancement knowledge to the researchers and other inter-

ested people working with computational fluid dynamics.

• The study will serve as a useful tool for heat transfer prediction.

• The findings from this study illuminate known discrepancy in analysis and help to ratify

a fundamental source of uncertainty in the models.

• The study provide some clarification and insight for understanding several pertinent as-

pects of modeling transport phenomena in porous channel and cylindrical pipe.

• Opportunity of extending the research.

1.5 Research Methodology

In this study, both numerical and analytical approaches are employed in solving the model-

s equations which are nonlinear Boundary Value Problems (BVP) and Initial Boundary Val-

ue Problems (IBVP). Concerning numerical methods, shooting method, Newton’s Raphsons

method, method of lines and Runge-Kutta method are employed. Shooting method is employed

to solve a nonlinear BVP while method of line is employed to the nonlinear IBVP. Shooting
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method is a combination of Newton-Raphson and fourth order Runge-Kutta method, also the

method of line involve the use of fourth order Runge-Kutta method. For nanofluid flow in a

porous channel considered, Berman similarity is employed to transform 2D PDE to ODE and

shooting method is employed to tackle the problem numerically, while in other problems con-

sidered, method of line is employed to tackle the PDE which then solved using Runge-Kutta-

Fehlberg iteration scheme. With the analytical method, regular perturbation methods with series

improvement technique are employed. The computational algorithms were implemented in a

computer using MATLAB and MAPLE symbolic package. In the following subsection, the

brief explanation of these methods are given.

1.5.1 Numerical approach

Shooting method

The shooting method is an iterative algorithm that reformulates the original boundary value

problem in to a set of initial value problem with its appropriate initial conditions. The new

problem requires the solution of the IVP with the initial conditions arbitrary chosen to approx-

imate the boundary conditions at the end points. If these boundary conditions are not satisfied

to the required accuracy, then the procedure is repeated again with a new set of initial condi-

tions until the required accuracy is acquired or a limit to the iteration is reached. The resultant

IVP is solved numerically using any appropriate technique for solving the linear ordinary dif-

ferential equations. In our case we use the 4th order Runge-Kutta method, which provides high

accuracy results. The solution of the IVP should converge to that of the BVP. The algorithm

for the above procedure is implemented on a computer using MATLAB and MAPLE symbolic

package. The computed results are presented in graphical form. Consider a two-point boundary

value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β. (1.55)

where a < b and x ∈ [a, b]. By making initial guess s for y′(a) and denoted by y(x, s). The

initial value problem becomes:

y′′ = f(x, y.y′), y(a) = α, y′(a) = s. (1.56)

Introducing the notation u(x; s), v(x; s) = ∂
∂x
y(x; s) equation (1.55) can be written as:
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∂

∂
u(x; s) = v(x; s), u(a; s) = α

∂

∂
v(x; s) = f(x, u(x; s), v(x; s)), v(a; s) = β. (1.57)

The solution u(x; s) of the initial value problem in equation (1.57), will coincide with the solu-

tion y(x) of the boundary value problem in equation (1.55), we can find a value δ such that:

ψ(s) = u(b; s)− β = 0. (1.58)

Equation (1.58) can be solved if and only if there exist s ∈ <, such that ψ(s) = 0.

Newton-Raphson Method

The Newton-Raphson method is an efficient and powerful method for finding function root-

s. The method produce faster convergence when good initial guess is provided. Consider a

sequence {Sn}∞n=1 generated by:

sn+1 = sn −
ψ(sn)

ψ′(sn)
. (1.59)

Starting by arbitrary chosen s0. To calculate ψ′(sn) we introduce new independent variable

ξ(x; s) = ∂u(x;s)
∂x

, ς(x; s) = ∂v(x;s)
∂x

and differentiate the initial value problem (1.57) with respect

to s to obtain second IVP.

∂ξ(x; s)

∂x
= ς(x; s), ξ(a; s) = 0

∂ς(x; s)

∂x
= p(x; s)ξ(x; s) + q(x; s)ς(x; s), ς(a; s) = 1, (1.60)

where,

p(x; s) =
∂f(x, u(x; s), v(x; s))

∂u
, q(x; s) =

∂f(x, u(x; s), v(x; s))

∂v
. (1.61)

We assign the value sn to s, n ≥ 0, then the IVP (1.57) and (1.60) were solved using an

numerical method for IVPs such as Runge-Kutta in the interval [a, b].

Thus an approximation of u(b; s) is obtained to calculte ψ(sn) = u(b; sn) − β and we also

obtain an approximation ξ(b; s) = ψ′(sn). The values ψ(sn) and ψ′(sn) gives the next

Newton-Raphson iterate sn+1 from equation (1.60). The procedure is repeated until the iterate

sn settle to a fixed number of digits.
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Runge-Kutta-Fehlberg Method

One way to guarantee accuracy in solution of IVPs is to solve the problem twice using step

size h and h/2 and compare answers at mesh points corresponding to the large step size. But

this requires a significant amount of computation for the smaller step size and must be repeated

if it is determined that the agrement is not good enough.

Runge-Kutta-Fehlberge method is one way try to resolve this problem. It has a procedure to

determine if the proper step size h is being used. At each step two different approximation is

accepted. If the two answers do not agree to a specified accuracy, the step size is reduced. If the

answers agree to more significant digits than required, the step size is increased.

Each step requires the following six values:

k1 = hf(tn, yn),

k2 = hf(tn + 1
4
h, yn + 1

4
k1),

k3 = hf(tn + 3
8
h, yn + 3

32
k1 + 9

32
k2),

k4 = hf(tn + 12
13
h, yn + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3),

k5 = hf(tn + h, yn + 439
216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4),

k6 = hf(tn + 1
2
h, yn − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5)



, (1.62)

Then the approximation to the solution of the IVP is made using a Runge-Kutta method of order

4:

yn+1 = yn +
25

216
k1 +

1408

2565
k3 +

2197

4101
k4 −

1

5
k5. (1.63)

Runge-Kutta-Fehlberg method with shooting technique

The proposed methods have been used extensively by several researchers in dealing with the 

problems of convective boundary layer flows (Ishak, 2009; Deswita et al., 2010; Singh et al., 

2010). The solution procedure is much simpler and effective and the obtained result is of 

high accuracy. The numerical code that incorporate the methods described above, using either 

MATLAB (for unsteady models) or MAPLE (steady formulated model) was developed to 

tackle the problems.

Method of line

The method of lines is a general technique for solving partial differential equations by typically

using finite difference relationships for the spatial derivatives and ordinary differential equations
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for the time derivative. This is a technique that enables conversion of PDEs into sets of ODEs,

which is in some sense, are equivalent to the former partial differential equations. The basic idea

behind is to discretized along the spatial coordinates only; this approximation is called semi-

discretization. If discretize in space and leave time continuous, a system of ODEs obtained.

The focus of the method of line is its merits of both the finite difference method and analytical

method. Thus, one of the salient features of this method is the use of existing and generally well

established numerical methods for ODEs.

1.5.2 Analytical approach

Perturbation theory

Perturbation theory comprises mathematical methods for finding an approximate solution to

a problem, by starting from the exact solution of a related problem. Perturbation theory is

applicable if the problem at hand cannot be solved exactly, but can be formulated by adding a

small term to the mathematical description of the exactly solvable problem. The theory leads

to an expression for the desired solution in terms of power series in some small parameter

known as a perturbation series. The leading term in this power series is the solution of the

exactly solvable problem, while further terms describe the deviation in the solution, due to the

deviation from the initial problem. Because of the nonlinear nature of model equations of our

problem, it is convenient to apply perturbation theory. We form a perturbation series of the

parameter ε:

ψ(ς) =
∞∑
j=1

ψjε
j,

substituting the power series expansion in to the problem equations and collecting the coeffi-

cients of the likes power of ξ and then solve the equations for the coefficients of solution series

iteratively to get the solution ε.

1.6 Dissertation Outline

This dissertation is divided into six chapters, of which chapters 2, 3, 4 and 5 comprise the main

body. The chapters are organized as follows:

Chapter 1 provides a general overview of the research context with a description of the back-

ground of the research, the problem statement, research objectives, significance of the research,

research methodology. The chapter also includes a derivation of the basic fluids models related
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to our topic.

Chapter 2 presents an analysis of heat transfer in Berman flow of nanofluids with Navier slip,

viscous dissipation and convective Cooling.

Chapter 3 is about an analysis to study the combined effect of variable viscosity, Brownian

motion and thermophoresis on unsteady flow of nanofluids in a pipe with permeable wall and

convective cooling.

Chapter 4 presents the analysis on unsteady flow of variable viscosity Cu-water and Al2O3-

water nanofluids in a porous pipe with buoyancy force.

Chapter 5 presents an analysis to study the Buoyancy-Driven heat transfer characteristics of wa-

ter based nanofluid past permeable cylindrical pipe with Navier slip through saturated porous

medium.

Chapter 6 concludes the dissertation with a general discussion of research findings, recommen-

dation and suggestions for continued research on this topic.

31



CHAPTER TWO

Analysis of Heat Transfer in Berman Flow of Nanofluids with Navier Slip, Viscous

Dissipation and Convective Cooling1

Summary: In this chapter, heat transfer characteristics of a Berman flow of water based nanofluids

containing copper (Cu) and alumina (Al2O3) as nanoparticles in a porous channel with Navier slip,

viscous dissipation and convective cooling is investigated. It is assumed that the exchange of heat with

the ambient surrounding takes place at the channel walls following the Newton’s law of cooling. The

governing partial differential equations and boundary conditions are converted into a set of nonlinear

ordinary differential equations using appropriate similarity transformations. These equations are solved

analytically by regular perturbation methods with series improvement technique and numerically using

an efficient Runge-Kutta-Fehlberg integration technique coupled with shooting scheme. The effects

of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop

and Nusselt numbers are presented graphically and discussed quantitatively. Our results reveal that

both velocity, temperature and heat transfer coefficient (Nu) are increasing with the increase of suction

Reynolds number and Navier slip parameter and the effects of increasing Biot number and nanoparticles

volume fraction is to decrease the nanofluid temperature.

2.1 Introduction

The study of fluid flow and heat transfer between two porous boundaries has gained tremendous atten-

tion of researchers due to its wide applications in engineering and industrial processes. Some of the

practical interests include problems dealing with transpiration cooling - where the walls of a channel

containing heated fluid are protected from overheating by passing cooler fluid over the exterior surface

of the channel; fluid flow occurring during the separation of isotopes of Uranium-235 and Uranium-238

by gaseous diffusion in order to produce fuel for nuclear reactors; controlling boundary layer flow over

aircraft wings by injection or suction of fluid out of or into the wing; lubrication of porous bearings;

petroleum technology; ground water hydrology; seepage of water in river beds; purification and filtra-

tion processes; methods of decreasing rates of heat transfer in combustion chambers exhaust nozzles and

porous walled flow reactors etc. In a pioneering work, Berman (1953) presented an exact solution of the

1 This chapter is based on the paper:

O. D. Makinde, S. Khamis, M. S. Tshehla, and O. Franks (2014). Analysis of Heat Transfer in Berman Flow of

Nanofluids with Navier Slip, Viscous Dissipation, and Convective Cooling. Advances in Mathematical Physics,

13 pages.
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Navier-Stokes equations that describes the steady two-dimensional flow of an incompressible viscous 

fluid along a channel with parallel rigid porous walls, the flow being driven by uniform suction or injec-

tion at the walls. Sellars (1955) extended Bermans work to high suction Reynolds number. Yuan (1956) 

considered the flow in a channel with porous walls. He obtained solutions for small suction and injection 

values and asymptotic solution valid at large injection values.

Terrill (1982, 1983), gave an exact series solution for the fully developed laminar flow in a pipe of circu-

lar cross section with porous wall driven by a spatially variable though time independent suction and/or 

injection. Studies on developing flow in porous-walled ducts with suction and injection effects were 

carried out by Sorour et al. (1987) and Zaturska et al. (1988). In view of the above interests, several re-

searchers have also investigated the heat transfer problems between two permeable parallel walls under 

different physical situations (Pederson and Kinney, 1971; Raithby, 1971; Makinde, 1999).

Moreover, the applications of conventional heat transfer fluids such as water and glycol mixture in engi-

neering flow processes are limited due to their low thermal p roperties. A potential solution to improve 

these thermal properties is to add nanoparticles into the conventional fluids, hence forming the nanofluids 

as coined by Choi (1995). Nanofluids contain thermally conducting submicron solid particles and have 

great potential as a high-energy carrier. The nanoparticles such as Copper, Alumina, Titania and Cop-

per Oxide, unlike larger-sized particles, can be suspended stably within the conventional fluids without 

settling out of suspension. Nanofluids are free from numerous problems such as abrasion, clogging and 

high pressure loss, and are considered to be the next-generation working fluids in modern heat transfer 

technologies Pak and Cho (1998). Experimental results (Wen and Ding, 2005; Xuan and Li, 2003; Wang 

et al., 2013) have shown that even with small solid volume fraction of nanoparticles (usually less than 

5%), the thermal conductivity of heat transfer fluids can be enhanced by 10 − 50%. Several authors (Oz-

top and Abu-Nada, 2008; Kakac and Pramuanjaroenkij, 2009; Makinde, 2013a) have also theoretically 

investigated the heat transfer enhancement of nanofluids under different physical conditions. 

Meanwhile, advances in the manufacture of micro-devices has enabled experimental investigation of flu-

id flow in nano and microscale, and many experimental results have provided evidences to support the 

slip condition (Huang and Breuer, 2007; Martin and Boyd, 2006). In order to describe the slip character-

istics of fluid on the solid surface, Navier (1823) introduced a more general boundary condition, namely 

the fluid velocity component tangential to the solid surface, relative to the solid surface, is proportional to 

the shear stress on the fluid−solid interface. The proportionality is called the slip length which describes 

the slipperiness of the surface. However, from the literature survey, it is found that no study has been 

conducted on the heat transfer characteristics of Berman flow of nanofluids wi th Navier sl ip, viscous 

dissipation and convective cooling at the walls. Hence the present study is an attempt in this direction. 

The flow of water base nanofluids containing copper (Cu) and alumina (Al2O3) as  nanoparticles in  a
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uniformly porous wall channel with Navier slip, viscous dissipation and convective heat exchange with

the ambient surrounding is investigated. Sections 2-4 give in more details the model nonlinear governing

equations together with the analytical and numerical solution techniques employed to tackle the prob-

lem. In section 5, we present graphically and discuss the main features of the flow and heat transfer

characteristics in a range of governing parameters. Final conclusions are drawn in section 6.

2.2 Problem Formulation

Consider a two dimensional steady flow of a viscous incompressible water based nanofluids containing

copper (Cu) and alumina (Al2O3) as nanoparticles in a uniformly porous wall channel. The channel wall

is subjected to Navier slip and convectively exchange heat with the ambient surrounding. We choose a

Cartesian co-ordinates system in such a way that the x- axis is taken along the channel and the y-axis is

normal to it as shown in Figure 2.1:

Figure 2.1: Schematic diagram of the physical system

The governing equations which are those of conservation of mass, momentum, and energy are:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µnf

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.2)

ρnf

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µnf

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.3)

u
∂T

∂x
+ v

∂T

∂y
=

knf
(ρcp)nf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

2µnf
(ρcp)nf

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

(2.4)

+
µnf

(ρcp)nf

(
∂v

∂x
+
∂v

∂y

)2

,

where (u, v) are the velocity components of the nanofluid in the (x, y) directions respectively, V (> 0)

uniform wall suction velocity, p is the pressure, T is the nanofluid temperature, µnf is the effective
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dynamic viscosity of the nanofluid (Brinkman, 1 952), k nf i s the effective thermal conductivity of the 

nanofluid ( Maxwell, 1 904), ρ nf i s t he n anofluid de nsity an d (ρ cp)nf is  th e he at ca pacitance of  the 

nanofluid which are given by (Xuan and Li, 2003; Wen and Ding, 2005; Oztop and Abu-Nada, 2008; 

Kakac and Pramuanjaroenkij, 2009; Wang et al., 2013; Makinde, 2013a).

µnf =
µf

(1− ϕ)2.5
, ρnf = (1− ϕ)ρf + ϕρs, αnf =

knf
(ρcp)nf

,

knf
kf

=
(ks + 2kf )− 2ϕ(kf − ks)
(ks + 2kf ) + ϕ(kf − ks)

, (ρcp)nf = (1− ϕ)(ρcp)f + ϕ(ρcp)s. (2.5)

In equation (2.5), ϕ is the nanoparticles solid volume fraction, ρf is the reference density of the fluid

fraction, ρs is the reference density of the solid fraction, µf is the viscosity of the fluid fraction, kf is

the thermal conductivity of the fluid fraction, cp is the specific heat at constant pressure and ks is the

thermal conductivity of the solid volume fraction. Due to the symmetric nature of the flow, the boundary

conditions at the channel centreline and at the porous wall may be written as (Berman, 1953; Sellars,

1955; Yuan, 1956; Terrill, 1982)

∂u

∂y
(x, 0) = 0,

∂T

∂y
(x, 0) = 0, v(x, 0) = 0, (2.6)

βu(x, a) = µnf
∂u

∂y
(x, a), v(x, a) = V, − knf

∂T

∂y
T (x, a) = h [T (x, a)− TW ] , (2.7)

where Tw is the ambient surrounding temperature, h is the coefficient of heat transfer and β is the Navier

slip coefficient. Introducing the stream function ψ and vorticity Ω into the governing equations (2.1)-

(2.5) as follows:

u =
∂ψ

∂y
, v = −∂ψ

∂x
Ω =

∂u

∂y
− ∂v

∂x
=
∂2ψ

∂y2
+
∂2ψ

∂x2
. (2.8)

After eliminating the pressure P from equations (2.2) and (2.3), we obtain

ρnf

(
∂ψ

∂y

∂Ω

∂x
− ∂ψ

∂x

∂Ω

∂y

)
= µnf

(
∂2Ω

∂x2
+
∂2Ω

∂y2

)
, (2.9)

(
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
=

knf
(ρcp)nf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

4µnf
(ρcp)nf

(
∂2ψ

∂x∂y

)2

(2.10)

+
µnf

(ρcp)nf

(
−∂

2ψ

∂x2
+
∂2ψ

∂y2

)2

.

The following dimensionless variables and parameters are introduced into equations (2.9)and (2.11) to-

gether with their corresponding boundary conditions:

η =
y

a
, ψ̄ =

ψ

V a
, Ω̄ =

Ωa

V
, Φ =

T − Tw
Tw

, Re =
V a

νf
, X =

x

a
, νf =

µf
ρf
,

P r =
µfcp
kf

, m1 = (1− ϕ+ ϕρs/ρf )(1− ϕ)2.5, λ =
µf
βa
, P̄ =

aP

V µf
,

m2 = m4

(
1− ϕ+ ϕ

(ρcp)s
(ρcp)f

)
, Bi =

ha

kf
, Ec =

V 2

cpTw
,

m3 =
m4

(1− ϕ)2.5
, m4 =

(ks + 2kf ) + ϕ(kf − ks)
(ks + 2kf )− 2ϕ(kf − ks)

, (2.11)
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and we obtain

m1Re

(
∂ψ̄

∂η

∂Ω̄

∂X
− ∂ψ̄

∂X

∂Ω̄

∂η

)
=

(
∂2Ω̄

∂η2
+
∂2Ω̄

∂X2

)
, (2.12)

m2RePr

(
∂ψ̄

∂η

∂Φ̄

∂X
− ∂ψ̄

∂X

∂Φ̄

∂η

)
=

(
∂2φ̄

∂η2
+
∂2φ̄

∂X2

)
+ 4m3EcPr

(
∂2ψ̄

∂X∂η

)2

(2.13)

+ m3EcPr

(
− ∂

2ψ̄

∂X2
+
∂2ψ̄

∂η2

)2

,

with
∂2ψ̄

∂η2
(X, 0) = 0,

∂Φ

∂η
(X, 0) = 0,

∂ψ̄

∂X
(X, 0) = 0, (2.14)

∂ψ̄

∂η
(X, 1) =

λ

(1− ϕ)2.5

∂2ψ̄

∂η2
(X, 1),

∂ψ̄

∂X
(x, a) = −1,

∂Φ

∂η
(X, 1) = −m4BiΦ(X, 1), (2.15)

where Re is the flow Reynolds number such that Re > 0 represents wall suction and Re < 0 represents

wall injection; Ec is the Eckert number, Bi is the Biot number, Pr is the base fluid Prandtl number,

m1,m2, m3 and m4 can be easily determined from the thermophysical properties of the base fluid and

the nanoparticles, λ is the Navier slip parameter such that λ = 0 corresponds to no slip, while full

lubrication is described in the limit λ→∞. To transform 2D PDE to ODE, we seek a similarity form of

solution as obtained by Berman (1953),

ψ̄(X, η) = XF (η),W (X, η) = X
dF

dη
, Φ(X, η) = H(η) +X2θ(η). (2.16)

Equations (2.12)-(2.14) together with the boundary conditions in (2.14)-(2.15) then become

d4F

dη4
= m1Re

(
dF

dη

d2F

dη2
− F d

3F

dη3

)
, (2.17)

d2θ

dη2
= m3EcPr

(
d2F

dη2

)2

+m2RePr

(
2θ
dF

dη
− F dθ

dη

)
, (2.18)

d2H

dη2
= −2θ − 4m3EcPr

(
dF

dη

)2

−m2RePrF
dH

dη
, (2.19)

d2F

dη2
(0) = 0,

dθ

dη
(0) = 0,

dH

dη
(0) = 0, F (0) = 0, (2.20)

dF

dη
(1) = b

d2F

dη2
(1), F (1) = −1

dθ

dη
(1) = −m4Biθ(1),

dH

dη
(1) = −m4BiH(1), (2.21)

where b = λ(1− ϕ)2.5. The dimensionless fluid axial pressure gradient is given as:

− dP̄

dX
= XA, (2.22)
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where

(1− ϕ)2.5A = −d
2F

dη2
+m1Re

[(
d2F

dη2

)2

− F d
2F

dη2

]
. (2.23)

Other quantities of practical interest in this study are the local skin friction coefficient Cf and the local

Nusselt number Nu, which are defined as

Cf =
aτw
µfV

, Nu =
aqw
kfTw

, (2.24)

where τw is the wall shear stress and qw is the heat flux at the channel walls which are given by

τw = µ
∂u

∂y
|y=a, qw = −knf

∂T

∂y
|y=a . (2.25)

Using equations (2.11) and (2.16), we substitute equation (2.25) into (2.24) and obtain

Cf =
X

(1− ϕ)2.5

d2F

dη2
(1), Nu = −

knf
kf

[
dH

dη
(1) +X2 dθ

dη
(1)

]
. (2.26)

In the following section, the boundary value problem (2.17) - (2.21) was solved analytically using

regular perturbation method and numerically by the Runge-Kutta-Fehlberg method with shooting tech-

nique (Na, 1979). The results are utilised to compute the fluid pressure gradient, local skin friction and

local Nusselt number as highlighted in equations (2.24) and (2.26).

2.3 Perturbation Method

Due to the nonlinear nature of the model equations (2.17)-(2.21), it is convenient to form a power series

expansion in the parameter R that is,

F (η) =
∞∑
i=1

FiRe
i, θ(η) =

∞∑
i=1

θiRe
i. (2.27)

Substituting the solution series in (2.27) into (2.17)-(2.21) and collecting the coefficients of like powers

of R, we obtain the following.

Zeroth Order. Consider

d4F0

dη4
= 0,

d2F0

dη2
= −m3EcPr

(
d2F0

dη2

)2

,
d2H0

dη2
= −2θ0 − 4m3EcPr

(
dF0

dη

)2

, (2.28)

with
d2F0

dη2
(0) = 0,

dθ0

dη
(0) = 0,

dH0

dη
(0) = 0, F0(0) = 0, (2.29)

dF0

dη
(1) = b

d2F0

dη2
(1), F0(1) = −1

dθ0

dη
(1) = −m4Biθ0(1),

dH0

dη
(1) = −m4BiH0(1). (2.30)
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Higher Order n ≥ 1. Consider

d4Fn
dη4

= m1Re

n−1∑
i=0

(
dFi
dη

d2Fn−i−1

dη2
− Fi

d3Fn−i−1

dη3

)
, (2.31)

d2θn
dη2

= −m3EcPr

n∑
i=0

(
d2Fi
dη2

d2Fn−i
dη2

)
+m2RePr

n−1∑
i=0

(
2θi

dFn−i−1

dη
− Fi

dθn−i−1

dη

)
, (2.32)

d2Hn

dη2
= −2θn − 4m3EcPr

n∑
i=0

(
dFi
dη

dFn−i
dη

)
−m2RePr

n−1∑
i=0

(
Fi
dHn−i−1

dη

)
, (2.33)

with

d2Fn
dη2

(0) = 0,
dθn
dη

(0) = 0,
dHn

dη
(0) = 0, Fn(0) = 0, (2.34)

dFn
dη

(1) = b
d2Fn
dη2

(1), Fn(1) = 0
dθn
dη

(1) = −m4Biθn(1),
dHn

dη
(1) = −m4BiHn(1). (2.35)

The equations are solved iteratively and the series solutions for the velocity and temperature fields are

given as:

F (η) =
η(η2 + 6b− 3)

2− 6b
+
ηRem1(η2 − 1)

280(3b− 1)3

(
3η4b− η4 + 3η2b− η2 − 18b+ 2

)
+O(Re2), (2.36)

θ(η) =
3(4 +m4Bi+ η4m4Bi)m3EcPr

4m4Bi(3b− 1)2
+O(Re), (2.37)

H(η) = − 3m3EcPr

2m4Bi(3b− 1)2

(
2η2 +

7

2
m4Biη

2 +
1

6
η6m4Bi+ 2m4Biη

4b

−η4m− 4Bi+ 12m4Bib
2η2 − 12m4Bibη

2
)
− 3m3EcPr

2m3
4Bi

3(3b− 1)2(9b2 − 6b+ 1)
(6

+9m4Bi− 24m4Bib+ 36m4Bib
2 − 15m2

4Bi
2b+ 18m2

4Bi
2b2
)

+O(Re), (2.38)

where b = λ(1 − ϕ)2.5. Note that if the parameters ϕ = 0, b = 0, in (2.36) we will recover the

solution for the classical case of conventional fluid given in (Berman, 1953; Sellars, 1955; Yuan, 1956;

Terrill, 1982). Using a computer symbolic algebra package (MAPLE), several terms of the above solution

series in equations (2.36)-(2.38) are obtained. From equations (2.36)-(2.38) together with equations

(2.23) and (2.26), we obtained the series solutions for the skin friction, Nusselt number and axial pressure

gradient as follows:

Cf =
X

(1− ϕ)2.5

[
3

1− 3b
− 3Rem1

35(3b− 1)3

−Re
2m2

1(3465b2 − 1743b+ 394)

40425(3b− 1)5
+O(Re3)

]
, (2.39)
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A =
1

(1− ϕ)2.5

[
3

1− 3b
− 9Rem1(105b3 − 140b2 + 63b− 9)

35(3b− 1)3

+
Re2m2

1(1155b3 − 1309b2 + 364b− 26)

13475(3b− 1)5
+O(Re3)

]
, (2.40)

kf
knf

Nu =
6m3EcPrG1

m4Bi(3b− 1)2
+

2Rem3EcPrG2

105m2
4Bi

2(3b− 1)4
(2.41)

+ X2

(
3m3EcPr

(3b− 1)2
+

3Rem3EcPrG3

35m4Bi(3b− 1)4

)
+O(R2),

where the expression forGi, i = 1, 2, 3 are given in the appendix A. We are aware that these power series

solutions are valid for very small parameter values of Re. However, using Hermite-Pade approximation

technique see (Makinde, 1999) that is based on the series summation and improvement method; the

usability of the extended solution series is improved beyond small parameter values of Re.

2.4 Numerical Procedure

An efficient finite difference approach based on Runge-Kutta-Fehlberg method with shooting technique

(Na, 1979) has been employed to numerically solve the coupled nonlinear ordinary differential equa-

tions (2.17)- (2.19) subject to the boundary conditions (2.20)-(2.21) for different values of governing

parameters. The boundary value problem is first transformed into an initial value problem (IVP). Let

z1 = F, z2 =
dF

dη
, z3 =

dF

dη2
, z4 =

d3F

dη3
, z5 = θ, z6 =

dθ

dη
, z7 = H, z8 =

dH

dη
. (2.42)

Substituting equation (2.42) into equations (2.17)-(2.21), we obtain a system of first order differential

equations respectively, as follows:

dz1

dη
= z2,

dz2

dη
= z3,

dz3

dη
= z4,

dz4

dη
= m1Re (z2z3 − z1z4) ,

dz5

dη
= z6,

dz6

dη
= −m3EcPrz

2
3 +m2RePr (2z5z2 − z1z6) , (2.43)

dz7

dη
= z8,

dz8

dη
= −2z5 − 4m3EcPrz

2
2 −m2RePr (z1z8) ,

subject to the initial conditions

z1(0) = 0, z2(0) = s1, z3(0) = 0, z4(0) = s2, (2.44)

z5(0) = s3, z6(0) = 0, z7(0) = s4, z8(0) = 0.
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By applying the shooting method with the Newton-Raphson algorithm to guess the unspecified con-

ditions s1, s2, s3 and s4 in equation (2.44), the resulting initial value problem is then integrated numer-

ically until the boundary conditions at η = 1 are achieved. The step size is taken as ∆η = 0.001 and the

convergence criteria were set to 10−7.

2.5 Results and Discussion

The flow of water base nanofluids containing Cu and Al2O3 as nanoparticles and their heat transfer

characteristics in a symmetrically porous channel with Navier slip and convective cooling at the surface

are investigated. The governing partial differential equations and the corresponding boundary conditions

are converted into a set of nonlinear ordinary differential equations and tackled both analytically using

the perturbation method coupled with series improvement technique and numerically using Runge-Kutta-

Fehlberg integration technique coupled with shooting scheme. Thermophysical properties of base fluid

and nanoparticles are presented in Table 2.1. For pure water, the momentum diffusivity is dominant and

convection is very effective in transferring within the fluid in comparison to pure conduction. Following

Kakac and Pramuanjaroenkij (2009); Oztop and Abu-Nada (2008); Makinde (2013a), we take Pr = 6.2

in the numerical computation. Note that when ϕ = 0, no nanoparticle is present in the based fluid

(water). The solid volume fraction in the base fluid is taken as ϕ = 0 to 0.3 (i.e., ranging from 0 to

30 percent). In order to get a clear insight into the entire flow structure and thermal development, we

have assigned numerical values to other parameters encountered in the problem. Numerical solutions

are displayed in Tables 2.2-2.3 together with Figures 2.2-2.23. The numerical values of suction driven

normal velocity profile (Re = 1) is displayed in Table 2.2. In the absence of nanoparticles (ϕ = 0)

and Navier slip λ at the channel walls, the results agreed well with the one already in the literature see

(Berman, 1953; Sellars, 1955; Yuan, 1956) for the flow of conventional fluid in a symmetrical porous

wall channel. However, Cu-water nanofluid is affected more by the combined effects of suction and

Navier slip at wall in comparison to Al2O3-water nanofluid. Table 2.3 shows the perfect agreement

between the series solution and the numerical solution for the axial velocity profiles along the channel

centreline with increasing concentration of nanoparticles for both Cu-water andAl2O3-water nanofluids.
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Table 2.1: Thermophysical properties of the water and nanoparticles (Kakac and 

Pramuan-jaroenkij, 2009; Xuan and Li, 2003; Wen and Ding, 2005; Wang et al., 2013; Oztop 

and Abu-Nada, 2008)

Physical

properties

Fluid phase

(water)
Cu Al2O3

Cp(J/kgK) 4179 385 765

ρ(kg/m3) 997.1 8933 3970

k(W/mK) 0.613 400 40

Table 2.2: Computation showing the normal velocity profiles for Re = 1

η

−F (η)

λ = 0, ϕ = 0

Ref.(Berman,

1953; Sellars,

1955; Yuan,

1956)

−F (η)

λ = 0, ϕ = 0

Present

−F (η)

λ = 0.05, ϕ =

0.1

Cu-water

−F (η)

λ = 0.05, ϕ =

0.1

Al2O3-water

0.0 0.00000 0.000000 0.000000 0.000000

0.1 0.14874 0.148739 0.160680 0.160920

0.2 0.29455 0.294548 0.317732 0.318184

0.3 0.43449 0.434493 0.467527 0.468132

0.4 0.56564 0.565639 0.606428 0.607103

0.5 0.68504 0.685042 0.730781 0.731419

0.6 0.78974 0.789739 0.836887 0.837373

0.7 0.87672 0.876724 0.920958 0.921192

0.8 0.94292 0.942920 0.979045 0.978994

0.9 0.98514 0.985137 1.006937 1.006713

1.0 1.00000 1.000000 1.000000 1.000000
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Table 2.3: Computation showing the axial velocity profiles for Re = 1, λ = 0.05, X = 1, η =

0

ϕ

W (1, 0)

Cu-Water

(Series)

W (1, 0)

Cu-Water

(Numerical)

W (1, 0)

Al2O3-Water

(Series)

W (1, 0)

Al2O3-Water

(Numerical)

0.00 1.581405 1.581405 1.581405 1.581405

0.01 1.583733 1.583733 1.584084 1.584084

0.05 1.594688 1.594688 1.596218 1.596218

0.10 1.612850 1.612850 1.615303 1.615303

0.15 1.637660 1.637660 1.640343 1.640343

0.20 1.672037 1.672037 1.674097 1.674097

0.25 1.721196 1.721196 1.721395 1.721395

0.30 1.795420 1.795420 1.791485 1.791485

2.5.1 Velocity profiles with parameter variation

The effects of parameter variation on both the axial and normal velocity components are displayed in

Figures 2.2-2.9. Generally, it is interesting to note that the effect of Navier slip causes flow reversal

at the channel walls. In Figure 2.2, the profiles shows that Cu-water moves faster along the channel

centreline region and subjected to higher flow reversal at the wall as compared to Al2O3-water in the

presence of suction. With Cu-water as the working nanofluid, increasing nanoparticles volume fraction

concentration from 0-30% increases both the axial velocity along the centreline region and the flow

reversal at the channel walls as shown in Figure 2.3. Similar trend is observed in Figure 2.4 and Figure2.5

with a growing suction parameter and Navier slip parameter. Figures 2.6-2.9 show that the nanofluids

normal velocity profiles. With suction and Navier slip, the Cu-water moves faster to the wall as compared

to Al2O3-water as illustrated in Figure 2.6. A further increase in normal velocity towards the walls is

observed with a growing in suction parameter, Navier slip parameter and nanoparticles volume fraction

as shown in Figures 2.7-2.9.
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Figure 2.2: Nanofluids axial velocity profiles

Figure 2.3: Axial velocity profiles with increasing ϕ
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Figure 2.4: Axial velocity profiles with increasing Re

Figure 2.5: Axial velocity profiles with increasing λ
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Figure 2.6: Nanofluids normal velocity profiles

Figure 2.7: Normal velocity profiles with increasing ϕ

45



Figure 2.8: Normal velocity profiles with increasing Re

Figure 2.9: Normal velocity profiles with increasing λ

2.5.2 Temperature profiles with parameter variation

Figures 2.10-2.16 illustrate the nanofluids temperature profiles across the channel with different param-

eter variation. Generally, a decrease in the fluid temperature near the channel walls is observed due to
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convective heat loss to ambient surrounding. It is noteworthy that the temperature of Cu-water nanofluid

is generally higher than that of Al2O3-water nanofluid under the same flow condition as shown in Figure

2.10. In Figure 2.11, it is observed that the nanofluid temperature decreases with growing in nanopar-

ticles volume fraction. Similar effect of a decrease in nanofluid temperature is observed in Figure 2.12

with Cu-water as working nanofluid as the Biot number increases. This is expected, since an increase

in Biot number indicates a rise in convective cooling due to heat loss to the ambient surrounding from

the channel walls. Meanwhile, a combine increase in the suction, Navier slip and viscous dissipation as

shown in Figures 2.13-2.15 causes an increase in the nanofluid temperature. This may be attributed to the

fact that as Re, λ, Ec increase the internal heat generation within the fluid due velocity gradient increas-

es, leading to a rise in temperature. Figure 2.16 elucidates the temperature profiles with increasing axial

distance along the channel. The nanofluid temperature decreases within the channel centreline region

and increases near the wall region with increasing axial distance. Moreover, it is interesting to note that

at point η = 0.5 within the channel, the nanofluid temperature is independent of the axial distance.

Figure 2.10: Nanofluids temperature profiles
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Figure 2.11: Temperature profiles with increasing ϕ

Figure 2.12: Temperature profiles with increasing Bi
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Figure 2.13: Temperature profiles with increasing Re

Figure 2.14: Temperature profiles with increasing λ
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Figure 2.15: Temperature profiles with increasing Ec

Figure 2.16: Temperature profiles with increasing X

2.5.3 Skin Friction, Pressure Gradient and Nusselt Number

Figures 2.17-2.18 depict the skin friction profiles for both Cu-water and Al2O3-water nanofluids at the

channel walls. The skin friction generally increases with an increase in nanoparticles volume fraction,

however, it is noticed that the skin friction produced by Cu-water is more intense than the one produced
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by Al2O3-water as shown in Figure 2.17. This is expected since the velocity gradient of Cu-water near

the channel walls is higher than thatAl2O3-water. In Figure 2.18, we observe that the skin friction gen-

erally increases with an increase in Navier slip. Meanwhile, a growing in suction (Re > 0) increases

the skin friction while a growing in injection (Re < 0) decreases the skin friction. The pressure drop

along the channel is illustrated in Figures 2.19-2.20. For both Cu-water and Al2O3-water nanofluids, the

pressure drop increases with increasing nanoparticles volume fraction. Interestingly, the pressure drop

produced by Al2O3-water is slightly higher than that of Cu-water as shown in Figure 2.19. Figure 2.20

shows a general increase in pressure drop with a rise in Navier slip. A growing in suction (Re > 0)

decreases the pressure drop while a growing in injection (Re < 0) increases the pressure drop along

the channel. Figures 2.21-2.23 elucidate the heat transfer rate at the channel walls with different pa-

rameter variation. It is observed that the wall heat transfer rate (Nu) decreases with an increase in the

nanoparticles volume fraction as shown in Figure 2.21. A slight increase inAl2O3-water Nusselt number

is noticed as compared to Cu-water Nusselt number. In Figure 2.22, We noted that the increase in the

Navier slip parameter results in increase in Nusselt number. This may be due to a rise in the nanofluid

temperature gradient at the channel walls. Meanwhile, as the suction increases, the heat flux at the wall

increases while a decrease in wall heat is observed with a rise in injection. The strength of the wall heat

flux is enhanced with increasing axial distance, viscous dissipation and convective cooling as illustrat-

ed in Figure 2.23. This can be attributed to a rise in the temperature gradient due to convective heat

exchange with the ambient along the channel walls.

Figure 2.17: Skin friction with increasing ϕ
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Figure 2.18: Skin friction with increasing Re and λ

Figure 2.19: Axial pressure gradient with increasing ϕ
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Figure 2.20: Axial pressure gradient with increasing Re and λ.

Figure 2.21: Nusselt number with increasing ϕ
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Figure 2.22: Nusselt number with increasing Re and λ.

Figure 2.23: Nusselt number with increasing X , Bi and Ec.

2.6 Conclusion

The combined effects of viscous dissipation, Navier slip and convective cooling on Berman flow and

heat transfer of water base nanofluids containing Cu and Al2O3 as nanoparticles are investigated in this

chapter. The nonlinear model problem is tackled both analytically using perturbation series method
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and numerically using Runge-Kutta-Fehlberg integration technique coupled with shooting scheme. We

summarize below some of the essential features of physical interest from the above analysis.

• Cu-water nanofluid moves faster with enhanced flow reversal at the walls as compared to Al2O3

-water nanofluid.

• Nanofluids velocity and flow reversal at the walls increase with suction, λ and ϕ.

• Cu-water produce higher temperature as compared to Al2O3 -water. The nanofluids temperature

increases with suction, λ and Ec, but decreases with Bi and ϕ.

• The skin friction produced by Cu-water is more intense than that of Al2O3 -water. The skin

friction increases with suction (Re > 0), λ and ϕ but decreases with injection (Re < 0).

• The pressure drop produced by Al2O3 -water in more than that of Cu-water. The pressure drop is

enhanced by injection, λ and ϕ but decrease by suction.

• The Nusselt number increases with suction, λ, Bi, Ec, X , but decreases with injection and ϕ. A

slight increase in Nu for Al2O3 -water is noticed as compared to Cu-water.
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CHAPTER THREE

Modelling the Effects of Variable Viscosity in Unsteady Flow of Nanofluids in a Pipe with

Permeable Wall and Convective cooling2

Summary: In this chapter, we investigated the combined effects of variable viscosity, Brownian

motion, thermophoresis and convective cooling on unsteady flow of nanofluids in a cylindrical pipe

with permeable wall are investigated. It is assumed that the pipe surface exchange heat with the ambient

following the Newton’s law of cooling. Using a semi-discretization finite difference method coupled with

Runge-Kutta-Fehlberg integration scheme, the nonlinear governing equations of momentum and energy

balance, and the equation for nanoparticles concentration are tackled numerically. Useful results for the

velocity, temperature, nanoparticles concentration profiles, skin friction and Nusselt number are obtained

graphically and discussed quantitatively. The results show that both temperature and velocity profiles

enhanced with the increase of viscosity parameter and Eckert number and reduced with the increase of

Biot number, the nanoparticles concentration profiles is increasing with thermophoresis parameter and

Biot number while decreasing with the increase of Brownian motion parameter.

3.1 Introduction

The classical challenges facing fluid mechanics which have received much attention in several industrial 

and engineering processes are the problems of heat transfer and fluid flow embedded in geometries with 

permeable walls. Some examples include; problems dealing with purification and filtration processes, 

transpiration cooling where the walls of a pipe containing heated fluid are protected from overheating 

by passing cooler fluid over the exterior surface of the pipe, petroleum technology, isotopes separation 

of Uranium-235 and Uranium-238 by gaseous diffusion for production of fuel used in nuclear reactor, 

controlling boundary layer flow over a ircraft w ings b y i njection o r s uction o f fl uid ou t of  or  in to the 

wing, lubrication of porous bearings, ground water hydrology, leakage of water in river beds, methods of 

reducing rates of heat transfer in combustion chambers exhaust nozzles and porous walled flow reactors 

see Makinde et al. (2014). Several studies have been done to focus this area. Karode (2001) conducted a 

study on laminar flow in a channel with porous wall. He presented an analytical solution for the pressure 

drop in fluid flow in a rectangular slit and cylindrical tube for the case of constant wall permeability. 

Oxarango et al. (2004) proposed one-dimensional model to investigate the heat transfer in laminar flow

2 This chapter is based on the paper:

Sara Khamis, Oluwole Daniel Makinde, Yaw Nkansah-Gyekye (2014). Modelling the effects of variable viscosity

in unsteady flow of nanofluids in a pipe with permeable wall and convective cooling. Applied and Computational

Mathematics, 3:75-84.
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of a fluid in a  channel with suction/injection w all. An analytic solution describing 2D steady laminar 

flow over an array of porous pipes for the case of low Reynolds number was presented by Moussy and 

Snider (2009). Several researchers have conducted the same study on heat transfer problems between 

two permeable parallel walls under different physical situations (Erdogan and Imrak, 2008; Tsangaris 

et al., 2007; Theuri and Makinde, 2014; Mutuku-Njane and Makinde, 2014a).

Convectional heat transfer in fluids such as water, mineral oil and ethylene glycol are widely used for 

heat exchange purposes in the industries and building application. However, conventional fluids remain 

penalized by their limited thermal properties among which are their low thermal conductivity. An in-

novative way of improving the heat transfer of these fluids is to suspend small amounts of nanometer 

sized (10 − 50nm) particles and fibers in the convective fl uids. This new kind of fluid has attracted the 

interest of many researchers due to its thermal enhancement property. Nanofluids have enhanced ther-

mophysical properties such as thermal conductivity, thermal diffusivity, viscosity and convective heat 

transfer coefficients compared with base fluids (Kaufui and Omar, 2010). Among the important features 

of nanoparticles suspended in convectional fluids are Brownian motion and thermophoresis (Xuan and 

Li, 2003). Brownian motion describes the random movement of nanoparticles in the base fluid. This 

random movement is due to collision of particles into each other. The collision passes on the kinetic 

energy of the particles to the molecules. Thermophoresis describes the nanoparticles dispersion in the 

base fluid due to temperature gradient.

Many researches have been conducted to analyze heat and mass transfer in nanofluids flow problems 

between two permeable walls under different physical situations. Mutuku-Njane and Makinde (2014b) 

performed a numerical analysis to investigate the combined effects on buoyancy and magnetic on a 

steady two-dimensional boundary layer flow of an e lectrically conducting water-based nanofluid con-

taining three different types of nanoparticles: copper, aluminium oxide, and titanium dioxide past a con-

vectively heated porous vertical plate with variable suction. Olanrewaju and Makinde (2013) formulated 

a problem on the boundary layer stagnation point flow of a nanofluid over a permeable flat surface with 

Newtonian heating. The combined effects of viscous dissipation and Newtonian heating on boundary-

layer flow over a flat plate for three types of water-based nanofluids containing metallic or nonmetallic 

for a range of nanoparticle volume fractions was investigated by Makinde (2013a). He found that the heat 

transfer rate at the plate surface increases with increasing nanoparticle volume fraction and Biot number, 

while it decreases with the Brinkmann number. Recently, heat transfer characteristics of a Berman flow 

of water based nanofluids containing copper and alumina in a porous channel with Navier slip, viscous 

dissipation, and convective cooling was reported by Makinde et al. (2014). Moreover, many researchers 

studied the effects of temperature dependent viscosity in a nanofluid flow and heat transfer taking into 

account thermophoresis and Brownian motion. Makinde (2009) examined the effect of thermal radiation
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on inherent irreversibility in the flow of a variable viscosity optically thin fluid through a channel with 

isothermal walls. Kuppalapalle et al. (2013) carried out a numerical study to investigate the effects of 

the temperature dependent viscosity on the flow and heat transfer of a nanofluid over a flat surface in the 

presence of viscous dissipation. Furthermore, the effect of variable viscosity on thermal boundary layer 

over a permeable flat plate with radiation and convective surface boundary condition was reported by 

Makinde (2012). However, in all studies the effects of variable viscosity in unsteady flow of nanofluids 

in a pipe with permeable wall and convective cooling have not been investigated.

Therefore, the present study aimed to investigate the combined effects of variable viscosity, Brownian 

motion, thermophoresis and convective cooling on unsteady flow of nanofluids in a pipe with permeable 

wall. In the subsequent sections 2 and 3 the details of the model formulation together with the numerical 

solution techniques employed to tackle the problem are presented. In section 4, pertinent results are 

displayed graphically and discussed. Finally, conclusions are drawn in section 5.

3.2 Mathematical Model

Consider the unsteady laminar flow of a water base incompressible variable viscosity nanofluids through

a cylindrical pipe with permeable wall under the action of a constant axial pressure gradient. It is as-

sumed that V (> 0) corresponds to uniform suction velocity at the pipe surface while V (< 0) represents

fluid injection into the pipe and the pipe surface exchange heat with the ambient surrounding following

Newton’s law of cooling as depicted in Figure 3.1.

Figure 3.1: Schematic diagram of the problem

Using the Buongiorno nanofluid model (Buongiorno, 2006) with the Brownian motion and ther-

mophoresis effects, the governing equations for continuity, momentum, energy, and nanoparticles con-

centration are:
∂u

∂z
= 0, (3.1)
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ρf

(
∂u

∂t̄
+ V

∂u

∂r

)
= −∂P

∂z
+

1

r

(
rµf (T )

∂u

∂r

)
, (3.2)

∂T

∂t̄
+ V

∂T

∂r
= αf

1

r

(
r
∂T

∂r

)
+ τ

(
DB

∂T

∂r

∂ϕ

∂r
+
DT

T0

(
∂T

∂r

)2
)

+
αfµf (T )

kf

(
∂u

∂r

)2

, (3.3)

∂ϕ

∂t̄
+ V

∂ϕ

∂r
=
DB

r

∂

∂r

(
r
∂ϕ

∂r

)
+

(
∂DT

∂Ta

)(
∂2T

∂r

)
, (3.4)

where DB and DT are the Brownian and thermophoretic diffusion coefficients respectively, u is the

nanofluid velocity in the z-direction, r is the radial distance, a is the pipe radius, T is the nanofluid

temperature, P is the nanofluid pressure, t̄ is the time, Ta is the ambient temperature which also

corresponds to the nanofluid initial temperature, ϕ is the concentration of nanoparticles, ρ is the

nanofluid density, αf is the thermal diffusivity of the nanofluid and τ is the ratio of solid particles heat

capacitance to that of the nanofluid heat capacitance. The dynamic viscosity of nanofluid is assumed to

be temperature dependent which can be expressed in (Theuri and Makinde, 2014; Klemp et al., 1990):

µf (T ) = µ0e
−m(T−Ta), (3.5)

where µ0 is the nanofluid viscosity at the ambient temperature Ta and m is the variable viscosity

parameter.

The initial and boundary conditions are given as follows:

u(r, 0) = 0, T (r, 0) = Ta, ϕ(r, 0) = ϕ0, (3.6)

∂u

∂r
(0, t̄) =

∂T

∂r
(0, t̄) =

∂ϕ

∂r
(0, t̄) = 0, (3.7)

u(a, t̄ = 0), − kf
∂T

∂r
(a, t̄ = 0) = h(T (a, t̄ = 0)− Ta), (3.8)

DB
∂ϕ

∂r
(a, t̄ = 0) = −DT

Ta

∂T

∂r
(a, t̄ = 0),

where h is the heat transfer coefficient, kf is nanofluid thermal conductivity coefficient and ϕ0 is the

nanoparticles initial concentration. We introduce the dimensionless variables and parameters as follows:



θ =
T − T0

Ta − T0
, W =

u

V
, η =

r

a
, t =

tνf
a2
, νf =

µ0

ρf
,

Re =
V a

νf
, P =

aP

µ0V
, Nb =

τDBϕ0

αf
, G =

∂P

∂Z
, Pr =

µ0cpf
kf

Z =
Z

a
, Ec =

V 2

cpf (Ta − T0)
, H =

ϕ

ϕ0
, Nt =

τDT (Ta − T0)

Taαf
,

Bi =
ha

kf
, β = m(Ta − T0), Sc =

νf
DB

, τ =
(ρcp)s
(ρcp)f

.

(3.9)

The dimensionless governing equations together with the appropriate initial and boundary conditions

can be written as:
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∂W
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(
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+

1

η

∂W

∂η
− β∂W

∂η
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)
, (3.10)

Pr
∂θ

∂t
+ PrRe

∂θ

∂η
=

1

η

∂
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(
η
∂θ

∂η

)
+

(
Nb

∂θ

∂η

∂H

∂η
+Nt

(
∂θ
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)2
)

+ EcPre−βθ
(
∂W
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, (3.11)

Sc
∂H

∂t
+ ScRe

∂H

∂η
=

1

η

∂

∂η

(
η
∂H

∂η

)
+
Nb

Nt

∂2θ

∂η2
, (3.12)

with initial and boundary conditions:

W (η, 0) = 0, θ(η, 0) = 0, H(η, 0) = 1, (3.13)

∂W

∂η
(0, t) =

∂θ

∂η
(0, t) =

∂H

∂η
(0, t) = 0, (3.14)

W (1, t) = 0,
∂θ

∂η
(1.t) = −Bi(θ(1, t)− 1),

∂H

∂η
(1, t) = −Nt

Nb

∂θ

∂η
(1, t), (3.15)

where Re is Reynolds number such that Re > 0 represents suction, Re < 0 represents injection,

and Re = 0 corresponds to the case of impermeable pipe wall, Nb is the Brownian motion parameter,

Nt is the thermophoresis parameter, Bi is the Biot number, β is the variable viscosity parameter, Sc is

the Schmidt number, Pr is the Prandtl number, Ec is the Eckert number and G is the pressure gradient

parameter. The quantities of practical interest in this study are the skin friction coefficient Cf and the

local Nusselt number Nu which are defined as:

Cf =
aτw
µ0V

, Nu =
aqw

kf (Ta − T0)
, (3.16)

where τw is the wall shear stress and qw is the heat flux at the pipe wall given by:

τw = µnf
∂u

∂r

∣∣∣∣
r=a

, qw = −kf
∂T

∂z

∣∣∣∣
r=a

. (3.17)

Substituting equations (3.17) into (3.16) and introducing dimensionless variables we have

Cf = e−βθ
∂W

∂η

∣∣∣∣
η=1

, Nu =
∂θ

∂η

∣∣∣∣
η=1

Sh =
∂H

∂η

∣∣∣∣
η=1

=
Nb

Nt
Nu. (3.18)
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3.3 Numerical Procedure

Equations (3.10)-(3.15) constitute a system of nonlinear initial boundary value problem (IBVP) and are

solved numerically using a semi-discretization finite difference method known as method of lines (Na,

1979). Spatial interval 0 ≤ η ≤ 1 is partitioned into N equal parts with grid size ∆η = 1/N and grid

points ηi = (i − 1)∆η , 1 ≤ i ≤ N + 1 . The first and second spatial derivatives in equations (3.10)-

(3.12) are approximated with second-order central finite differences. Let Wi(t), θi(t) and Hi(t) be

approximation of W (η, t) , θ(η, t) and H(η, t), then the semi-discrete system for the problem becomes:

dWi

dt
= G−ReWi+1 −Wi−1

2∆η
+ e−βθi

Wi+1 − 2Wi +Wi−1

∆η2
(3.19)

+ e−βθi
Wi+1 −Wi−1

2ηi∆η
− βe−βθi (θi+1 − θi−1)(Wi+1 −Wi−1)

4∆η2
,

P r
dθi
dt

= −PrReθi+1 − θi−1

2∆η
+
θi+1 − 2θi + θi−1

∆η2
+
θi+1 − θi−1

2ηi∆η
(3.20)

+ Nb
(θi+1 − θi−1)(Hi+1 −Hi−1)

4∆η2
+Nt

(
θi+1 − θi−1

2∆η

)2

+ EcPreβθ
(
Wi+1 −Wi−1

2∆η

)2

,

Sc
dHi

dt
= −ScReHi+1 −Hi−1

2∆η

Hi+1 − 2Hi +Hi−1

∆η2
(3.21)

+
Hi+1 −Hi−1

2ηi∆η
+
Nt

Nb

(θi+1 − 2θ1 + θi−1)

∆η2
,

with initial conditions

Wi(0) = θi(0) = 0, Hi(0) = 1, 1 ≤ i ≤ N + 1. (3.22)

The equations corresponding to the first and last grid points are modified to incorporate the boundary

conditions as follows:

W2 = W1, θ2 = θ1, H2 = H1, WN+1 = 0, (3.23)

θN+1 = θN (1−Bi∆η) +Bi∆η, HN+1 = HN −Nt
θN+1 − θN

Nb
.

Equations (3.19)-(3.23) is a system of initial value nonlinear ordinary differential equations and can

be solved iteratively using Runge-Kutta-Fehlberg integration technique (Na, 1979) implemented on a

computer using MATLAB. From the process of numerical computation, the skin-friction coefficient and

the Nusselt number in equation (3.18) are also worked out and their numerical values are presented.
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3.4 Results and Discussion

The combined effects of temperature dependent viscosity, Brownian motion, thermophoresis and con-

vective cooling on unsteady flow of nanofluids in a pipe with permeable wall are investigated. The

semi-discretization approach is used to solve the governing non-linear partial different equation numeri-

cally. The numerical solution for the representative velocity profiles, temperature profiles, nanoparticles

concentration profiles, skin friction and Nusselt number have been carried out by assigning some arbi-

trary chosen specific values to various parameters controlling the flow system. The results are presented

in Figures 3.2 - 3.28. The Prandtl number (Pr) is assumed to be 6.2 which is within the range from

6.2 ≤ Pr ≤ 7.1 the most encountered fluids in nature and frequently used in engineering and industries

(Oztop and Abu-Nada, 2008; Kakac and Pramuanjaroenkij, 2009; Makinde, 2013b). Table 3.1 illustrates

the effects of different parameters governing the flow on skin friction and Nusselt number coefficients.

3.4.1 Non-Dimensional Velocity Profiles with Parameter Variation

The effects of parameter variation on velocity profiles are displayed in Figures 3.2-3.9. In Figures 3.2

and 3.3, we observe that the nanofluid velocity is high at the centerline region of the pipe and is de-

creasing towards the pipe wall. Moreover, the velocity reaches its steady state quickly when the fluid

is injected into the pipe (Re < 0) compared with suction (Re > 0). The velocity at the center of the

pipe increases with increasing time and reaches its minimum value towards the pipe surface satisfying

the prescribed initial and boundary conditions as demonstrated in Figure 3.4. Figure 3.5 illustrates the

variation of nanofluid velocity with variable viscosity parameter. We note that the nanofluid moves faster

with increasing variable viscosity parameter in the presence of suction. This is due to the fact that in-

creasing β result in decreasing the viscosity of the nanofluids. Similar trend are observed with growing

Eckert number and pressure gradient parameter as illustrated in Figure 3.6 and Figure 3.7, respectively.

The opposite behavior is observed with increasing the Biot number as seen in Figure 3.8. Increasing

Biot number leads to reduce the nanofluid velocity. This is because an increase in Biot number raises

convective cooling due to heat loss to the ambient from the pipe surface and hence reduces the nanoflu-

id velocity. The increases of nanofluid velocity with increasing suction and decreasing with increasing

injection is observed from Figure 3.9.
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Figure 3.2: Velocity profiles with increasing distance

Figure 3.3: Velocity profiles with increasing distance
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Figure 3.4: Velocity profiles with increasing time

Figure 3.5: Velocity profiles with increasing β
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Figure 3.6: Velocity profiles with increasing Ec

Figure 3.7: Velocity profiles with increasing G
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Figure 3.8: Velocity profiles with increasing Bi

Figure 3.9: Velocity profiles with increasing distance suction and injection Re

3.4.2 Non- Dimensional Temperature Profiles with Parameter Variations

Figures 3.10-3.16 demonstrate the nanofluids temperature profiles across the pipe and the effect of dif-

ferent parameters in the fluid flow system. Generally, due to convective heat loss to ambient surrounding

following the Newton’s law of cooling, the nanofluid temperature near the pipe wall is shown decreasing.

In Figure 3.10 and Figure 3.11, the profiles shows that the nanofluid temperature is higher at the pipe

wall. However, the temperature reaches its steady state earlier when the external fluid added in to the

pipe fluid (injection) as seen in Figure 3.11. An increase of the nanofluid temperature is observed with
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increasing time and Eckert number as shown in Figures 3.12 and 3.13. This may be attributed to the

fact that, as Ec increases the internal heat generation within the fluid due velocity gradient increases,

leading to a rise in temperature. It is noted that the nanofluid temperature is decreasing at the centre

of the pipe before the flow reversal near the pipe wall with increasing variable viscosity parameter as

shown in Figure 3.14. The nanofluid temperature is increasing at the centreline region followed by flow

reversal towards the pipe wall with increasing Biot as illustrated in Figure 3.15. This can be explained as,

increasing Biot number indicates a rise in convective cooling due to heat loss to the ambient surrounding

from the pipe surface and hence the temperature at that wall of pipe lead to the overall cooling of the bulk

nanofluid. Figure 3.16 elucidates the temperature profiles variation with increasing injection and suction.

We also observe that the nanofluid temperature decreases with increasing both suction and injection.

Figure 3.10: Temperature profiles with increasing distance
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Figure 3.11: Temperature profiles with increasing distance

Figure 3.12: Temperature profiles with increasing Time
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Figure 3.13: Temperature profiles with increasing Ec

Figure 3.14: Temperature profiles with increasing β
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Figure 3.15: Temperature profiles with increasing Bi

Figure 3.16: Temperature profiles with increasing suction and injection Reynolds number
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3.4.3 Non-Dimensional Nanoparticles Volume Concentration Profiles with Parameter

Variations

Figures 3.17-3.24 demonstrate the effects of various physical parameters which determine the flow on the

nanoparticles concentration profiles. Figure 3.17 shows the effect of increasing distance to nanoparticles

concentration. It is noted that at the first time, the nanoparticles volume fraction is high at the pipe

wall for a very short time, and then become higher at the center of the pipe as time increases . In

Figure 3.18, we note that the nanoparticles volume fraction increases with increasing time. In addition,

the nanoparticles concentration at the center of the pipe is higher compared at the pipe surface. The

effects of increasing viscosity, viscous dissipation and thermophoresis as shown in Figures 3.19-3.21

causes an increase in the nanoparticles concentration at the centreline region of the pipe and reverse

towards the pipe wall. This could be explained as due to variation of kinetic energy of nanoparticles

and mixtures of mobile particles in the fluid where the different particle exhibit different responses to

the force of a temperature gradient. The opposite results is noted from Figure 3.22, with increasing

the motion of particles (Nb), the nanoparticles concentration is decreasing at the centre of the pipe and

more concentrated near the pipe wall. In Figure 3.23, the increase of nanoparticles concentration with

increasing Biot number is observed. The nanoparticles volume fraction become more concentrated with

increasing suction compared with increasing injection as illustrated in Figure 3.24.

Figure 3.17: Nanoparticles distribution profiles with increasing distance
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Figure 3.18: Nanoparticles distribution profiles with increasing time

Figure 3.19: Nanoparticles distribution profiles with increasing β
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Figure 3.20: Nanoparticles distribution profiles with increasing Ec

Figure 3.21: Nanoparticles distribution profiles with increasing Nt
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Figure 3.22: Nanoparticles distribution profiles with increasing Nb

Figure 3.23: Nanoparticles distribution profiles with increasing Bi
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Figure 3.24: Nanoparticles distribution profiles with increasing Re

3.4.4 Skin Friction and Local Nusselt Number with Parameters Variation

Figures 3.25-3.28 together with Table 3.1 demonstrate the variations of skin friction and Nusselt number

with different parameters. In general, Biot number, Eckert number, variable viscosity parameter, pressure

gradient parameter and Reynolds number have high effects on skin friction and Nusselt number coeffi-

cients while Brownian motion and thermophoresis parameters have less effect. Keeping fixed values of

parameters, both Nusselt number and skin friction varies with time. We observe that the friction between

the pipe surface and nanofluid relative to motion is increasing negatively with increasing, Eckert number,

Biot number, and pressure gradient for t = 3, as shown in Table 3.1. The opposite observation is seen

with Nusselt number. The convective to conductive heat transfer (Nu) at the pipe surface is increasing

with Eckert number, Biot number, and pressure gradient. Figures 3.25-3.28 supplement the information

obtained from Table 1 for the time interval [0, 5]. The friction between the pipe wall and the fluid is

decreasing with increasing Ec and β for some range of time and then reverse the behavior as shown in

Figure 3.25. Figure 3.26 points out that growth in suction (R > 0) magnifies the skin friction while a

growth in injection (R < 0) reduces the skin friction. Figure 3.27 elucidates the rate of heat transfer at

the pipe wall with increasing Ec and β. The heat transfer rate (Nu) is high with increasing both Ec and

β. The heat transfer rate is increasing with increasing suction and decreasing with increasing injection

this is illustrated in Figure 3.28
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Table 3.1: computation showing the skin friction and Nusselt number Pr = 6.2, Sc = 1.

t Bi Ec Nt Nb Re G Cf Nu

1 1 0.1 1 0.1 0.1 2 1 -1.0512 -0.6306

3 1 0.1 1 0.1 0.1 2 1 -1.1570 -0.1067

5 1 0.1 1 0.1 0.1 2 1 -1.2245 0.4242

3 5 0.1 1 0.1 0.1 2 1 -1.1742 0.1207

3 10 0.1 1 0.1 0.1 2 1 -1.1816 0.4510

3 1 0.4 1 0.1 0.1 2 1 -1.4389 0.1209

3 1 0.8 1 0.1 0.1 2 1 -2.0621 0.7045

3 1 0.1 2 0.1 0.1 2 1 -1.2184 0.6491

3 1 0.1 3 0.1 0.1 2 1 -1.2902 1.5260

3 1 0.1 1 0.2 0.1 2 1 -1.1570 -0.1058

3 1 0.1 1 0.4 0.1 2 1 -1.1572 -0.1040

3 1 0.1 1 0.1 0.2 2 1 -1.1570 -0.1067

3 1 0.1 1 0.1 0.4 2 1 -1.1570 -0.1067

3 1 0.1 1 0.1 0.1 -2 1 -0.2695 0.0248

3 1 0.1 1 0.1 0.1 0 1 -0.4982 0.1351

3 1 0.1 1 0.1 0.1 2 1.5 -1.8530 0.8558

3 1 0.1 1 0.1 0.1 2 2 -2.7467 2.5565
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Figure 3.25: Nanoparticles distribution profiles with increasing Re

Figure 3.26: Nanoparticles distribution profiles with increasing Re
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Figure 3.27: Nanoparticles distribution profiles with increasing Re

Figure 3.28: Nanoparticles distribution profiles with increasing Re

3.5 Conclusion

In this chapter, the combined effects of temperature dependent viscosity, Brownian motion, thermophore-

sis and convective cooling on unsteady flow of nanofluids in a pipe with permeable wall are investigated.

The coupled nonlinear governing equations were derived, non-dimensionalised and numerically solved

using a semi-discretization finite difference method coupled with a Runge-Kutta-Fehlberg integration

scheme. Based on the graphical representations, the following main conclusions are drawn:
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• The nanofluid velocity and temperature reaches its steady state quickly with injection (Re < 0)

compared with suction (Re > 0).

• The nanofluid moves faster with increasing variable viscosity parameter, Eckert number, pressure

gradient and suction and reducing with increasing Biot number and injection.

• The nanofluid temperature is increasing near the pipe wall with increasing Eckert number and

variable viscosity parameter and reduced due to convective heat loss to ambient following the

Newton’s law of cooling. The nanofluid temperature decreases with increasing both suction and

injection.

• The nanoparticles volume fraction is increasing at the centreline region with increasing Biot num-

ber, viscosity parameter, Eckert number, and thermophoresis while decreasing with Brownian

motion.

• Skin friction and Nusselt number coefficients are more affected with Biot number, Eckert number,

variable viscosity parameter, pressure gradient parameter and Reynolds number while Brownian

motion and thermophoresis parameters have less effect.

• Skin friction and Nusselt number are increasing with increasing suction (Re > 0) and decreasing

with increasing injection (Re < 0).
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CHAPTER FOUR

Modelling the Effects of Variable Viscosity in Unsteady Flow of Nanofluids in a Pipe with 

Permeable Wall and Convective cooling3

Summary: This chapter investigates the combined effects of buoyancy force and variable viscos-

ity on unsteady flow and heat transfer of water base nanofluid containing Copper (Cu) and Alumina

(Al2O3) as nanoparticles through a cylindrical pipe with permeable wall. The non-linear partial differ-

ential equations governing the flow and heat transfer problem are obtained and solved numerically using

a semi-discretization finite difference method coupled with Runge-Kutta-Fehlberg integration scheme.

The numerical solutions for velocity, temperature, skin friction and Nusselt number have been presented

graphically to show the effects of different nanoparticles and parameters embedded in the flow system.

Our results show that with suction, Cu-water produces higher skin friction and heat transfer rate than

Al2O3-water. Both nanofluids velocity and temperature increase with a decrease in viscosity and an

increase buoyancy force intensity.

4.1 Introduction

Heat transfer enhancement using nanofluids has become a hot topic in recent years due to their various 

practical applications in industrial and engineering systems. The thermal conductivity of heat-transfer 

fluids i s f undamental i n t he d evelopment o f e nergy-efficient he at-transfer eq uipment. Ho wever, con-

ventional heat-transfer fluids, such as w ater, o il and e thylene g lycol, a re i nherently l ow e fficient heat 

transfer fluids. Fluids containing suspended c rystalline solid particles a re expected t o d isplay signifi-

cantly enhanced thermal conductivities as crystalline solids have thermal conductivities of 1-3 orders of 

magnitude larger than those of basic heat transfer fluids. Nanofluids have many applications in  the in-

dustries since the nanometer size solid materials used have unique chemical and physical properties.The 

cooling applications of nanofluids include silicon mirror cooling, electronics cooling, vehicle cooling and 

transformer cooling. Other areas where nanofluids can be employed are in heat exchange electronics sys-

tems, micro-electro-mechanical system, auto-mobile engines, welding equipment and cooling of nuclear 

reactors Choi (1995); Wang et al. (1999). Most common techniques used in the production of nanofluids 

are: the single-step technique in which nanoparticles are evaporated directly into the base fluid and the 

2-step technique in which nanoparticles are first prepared by either the inert gas-condensation method or

3 This chapter is based on the paper:

Sara Khamis, Oluwole Daniel Makinde and Yaw Nkansah-Gyekye (2015). Unsteady flow of Variable Viscosity

Cu-water and Al2O3-water Nanofluids in a Porous Pipe with Buoyancy force. International Journal of Numerical

Methods for Heat and Fluid Flow, 25(7).
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chemical vapour deposition method and then dispersed into the base fluid (Wang and Mujumdar, 2007). 

Choi (1995) studied the enhancement of thermal conductivity of fluids using n anoparticles. Thereafter, 

theoretical, experimental and numerical researches have been done by several authors to demonstrate 

nanofluids distinctly enhanced heat transfer properties which go up with increasing volumetric fraction 

of nanoparticles. Wang and Mujumdar (2007) summarizes the researches on flow and heat transfer char-

acteristics of nanofluids in forced and natural convective flows. Kiblinski et al. (2002) presented a 

review to discuss the thermophysical properties of nanofluids and future challenges. Eastman et al. 

(2001) observed that Al203-water and CuO-water with 5% nanoparticles volume fractions increased 

the thermal conductivity by 29% and 60%, respectively. Oztop and Abu-Nada (2008) performed a 

numerical inves-tigation on natural convection involving nanofluids in partially heated rectangular 

enclosures. A detail critical synthesis of thermophysical properties of nanofluids was reported by 

Khanafer and Vafai (2011). Other authors such as Tham et al. (2011); Wen and Ding (2005); Xuan and 

Li (2003); Wang et al. (2013); Makinde (2013b); Kakac and Pramuanjaroenkij (2009); Patrulescu et al. 

(2014) etc., have investigated the nanofluid dynamics and thermophysical characteristics under various 

physical situations. Meanwhile, buoyancy driven flow and heat transfer in vertical geometries have 

many significant applica-tions in industrial and engineering systems such as electrical and 

microelectronic equipments containers, solar-collectors, geothermal engineering, petroleum reservoirs, 

thermal buildings insulation, etc. Many studies have been published to discuss the importance of 

buoyancy force on fluid flow and heat transfer under several physical conditions. Eegunjobi and 

Makinde (2012) investigated the combined effects of buoyancy force and Navier slip on the entropy 

generation rate in a vertical porous channel with wall suction/injection. They found that increase of 

Grashof number slightly increases the entropy generation rate at the injection wall. Kuznetsov and 

Nield (2010) presented a similarity solution of natural convec-tive boundary-layer flow of a nanofluid 

past a vertical plate. Their results show that the reduced Nusselt number is a decreasing function of 

each of buoyancy-ratio number Nr, a Brownian motion number Nb and a thermophoresis number Nt. 

Mutuku-Njane and Makinde (2013) performed a numerical study to investigate the combined effect of 

buoyancy force and Navier slip on magneto-hydrodynamic flow of a nanofluid over a convectively 

heated vertical porous plate. The results show that the velocity decreases while local skin friction 

increases with Grashof number (buoyancy force parameter). Theoretical investi-gation for buoyancy-

driven heat transfer in 2D enclosure utilizing nanofluids was published by Khanafer et al. (2003). 

Recently, Nazari et al. (2015) studied experimentally the forced convective heat transfer due to flow of 

Al2O3-water nanofluid through a pipe filled with a metal foam. Sheikholeslami et al. (2014) presented 

a study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. 

Their results reveal that heat transfer rate increases with an increase of nanoparticle volume fraction, 

Rayleigh numbers and inclination angle. Makinde et al. (2014) investigated the heat transfer
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characteristics of a Berman flow of water based nanofluids containing copper and alumina in a porous 

channel with Navier slip, viscous dissipation, and convective cooling. Mansour et al. (2014) performed 

a numerical study investigating natural convection fluid flow and heat transfer inside C-shaped enclo-

sures filled with Cu-water nanofluid using the finite difference met hod. Kandelousi (2014) studied the 

hydrothermal behavior of nanofluid fluid between two parallel plates to  list a fe w. However, the study 

on transient flow o f variable v iscosity C u-water a nd Al2O3-water n anofluids in  a po rous pi pe driven 

by the buoyancy force effect has not been reported yet in the literature. Therefore, the objective of the 

present work is to study the combined effect of buoyancy force and variable viscosity parameters on an 

unsteady nanofluids flow past a vertical porous pi pe. The numerical solution of dimensionless velocity 

profiles, t emperature p rofiles, sk in fr iction an d Nu sselt nu mber pr ofiles for  wid e ran ge of parameters 

under axisymmetric conditions are presented graphically and discussed quantitatively.

4.2 Mathematical Model

Consider an unsteady laminar flow of incompressible water base nanofluids containing two types of

nanoparticles, i.e., Copper (Cu) and Alumina (Al2O3) with variable viscosity and buoyancy force in a

cylindrical pipe with permeable wall under the action of a constant axial pressure gradient and uniform

suction/injection. We assume that V > 0 corresponds to uniform suction velocity at the pipe surface

while V < 0 represent fluid injection into the pipe. We also assumed that both the base fluid (i.e.,

water) and the nanoparticles are in thermal equilibrium and no slip occurs between them. A cylindrical

coordinate system (r, z) is considered where, z-axis is taken along centre of the pipe and r-axis is normal

to the pipe surface as seen in Figure 4.1 below.

Figure 4.1: Physical geometry and coordinate system
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Under Bousinessq approximation for density variation due to temperature with the Buongiorno

nanofluid model (Buongiorno, 2006). The governing equations for the continuity, momentum, and ener-

gy describing the flow are as follows:
∂u

∂z
= 0, (4.1)

ρnf

(
∂u

∂t
+ V

∂u

∂r

)
= −∂P̄

∂z
+

1

r

(
rµf (T )

∂u

∂r

)
+ ρnfγnf (T − T0), (4.2)

(ρcp)nf

(
∂T

∂t̄
+ V

∂T

∂r

)
= knf

1

r

(
r
∂T

∂r

)
+ µnf (T )

(
∂u

∂r

)2

, (4.3)

with initial and boundary conditions:

u(r, 0) = 0, T (r, 0) = T0, (4.4)

∂u

∂r
(0, t̄) =

∂T

∂r
(0, t̄) = 0, (4.5)

u(a, t̄ = 0), T (a, t̄) = Tw. (4.6)

The dynamic viscosity of the nanofluid is assumed to be temperature dependent expressed as (Ahmad

et al., 2011; Sahin, 1999; Klemp et al., 1990)

µnf (T ) = µ0e
−m(T−T0), (4.7)

where u is the nanofluid axial velocity, P is the pressure, T is the bulk nanofluid temperature, T0 is

the nanofluid initial temperature, Tw is the pipe surface temperature, g is the gravitational acceleration, µ0

is the initial dynamics viscosity,m is the variable viscosity parameter, µnf , γnf , knf , ρnf , αnf , (ρcp)nf is

the effective dynamic viscosity, volumetric expansion coefficient, thermal conductivity, density, thermal

diffusivity and heat capacitance of the nanofluid respectively which are defined as (Mutuku-Njane and

Makinde, 2013):

µnf =
µf

(1− ϕ)2.5
, ρnf = (1− ϕ)ρf + ϕρs, αnf =

knf
(ρcp)nf

,

γnf = (1− φ)γf + ϕγs,
knf
kf

=
ks + 2kf − 2ϕ(kf − ks)
ks + 2kf + ϕ(kf − ks)

,

(ρcp)nf = (1− ϕ)(ρcp)f + ϕ(ρcp)s.


(4.8)

In equation (4.8), ϕ is the nanoparticles solid volume fraction, ρf is the reference density of the

fluid fraction, ρs is the reference density of the solid fraction, γf is the volumetric expansion of the

fluid, γs is the volumetric expansion of solid fraction, µf is the viscosity of the fluid fraction, kf is

the thermal conductivity of the fluid fraction, cp is the specific heat at constant pressure and ks is the

83



thermal conductivity of the solid volume fraction. We introduce the following dimensionless variables

and parameters:

θ =
T − T0

Tw − T0
, W =

u

V
, η =

r

a
, t =

tνf
a2
, νf =

µ0

ρf
, Re =

V a

νf

τ =
(ρcp)s
ρcp)f

, P =
aP

µ0V
, Gr =

g(ργ)f (Tw − T0)a2

V µ0
, A =

∂P

∂Z
,

Z =
z

a
, Ec =

V 2

cpf (Ta − T0)
, β = m(Tw − T0), P r =

µ0cpf
kf

,

b1 =
ρf
ρnf

, b2 = 1− ϕ+ ϕγs/γf , b3 =
ks + 2kf − 2ϕ(kf − ks)
ks + 2kf + ϕ(kf − ks)

.



(4.9)

The dimensionless momentum and energy equations together with its initial and boundary conditions

can be written as;

∂W

∂t
+Re

∂W

∂η
= b1A+

b1e
−βθ

(1− ϕ)2.5

(
∂2W

∂η2
+

1

η

∂W

∂η
− β∂W

∂η

∂θ

∂η

)
+ b2Grθ, (4.10)

Pr
∂θ

∂t
+ PrRe

∂θ

∂η
=

b3
1− ϕ+ ϕτ

(
1

η

∂θ

∂η
+
∂2θ

∂η2

)
+

PrEc

(1− ϕ)2.5(1− ϕτ)
e−βθ

(
∂W

∂η

)2

, (4.11)

with initial and boundary conditions:

W (η, 0) = 0, θ(η, 0) = 0, (4.12)

∂W

∂η
(0, t) =

∂θ

∂η
(0, t) = 0, (4.13)

W (1, t) = 0, θ(1, t) = 1, (4.14)

where Re(> 0) is suction / injection (< 0) Reynolds number, β is the variable viscosity parameter,

Pr is the Prandtl number, Gr is the Grashof number, Ec is the Eckert number, A is the pressure gradient

parameter and b1, b2 and b3 can be determined from the thermophysical properties of the base fluid and

the nanoparticles. The wall shear stress (skin friction coefficient) Cf and the heat transfer rate at the pipe

wall (Nusselt number) Nu are the important physical parameters for this type of study which are defined

as:

Cf =
aτw
µ0V

, Nu =
aqw

kf (TW − T0)
, (4.15)
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where τw is the wall shear stress and qw is the heat flux at the pipe wall given by:

τw = −µnf
∂u

∂r

∣∣∣∣
r=a

, qw = −knf
∂T

∂r

∣∣∣∣
r=a

. (4.16)

Substituting equations (4.16) into (4.15) and introducing dimensionless variables, we obtain

Cf = − e−βθ

(1− ϕ)2.5

∂W

∂η

∣∣∣∣
η=1

, Nu = −b3
∂θ

∂η

∣∣∣∣
η=1

. (4.17)

4.3 Numerical Procedure

Equations (4.10)-(4.14) is a system of nonlinear Initial Boundary Value Problem (IBVP). The system

is solved numerically using a semi-discretization finite difference method known as the method of lines

(Na, 1979). Spatial interval is partitioned into N equal parts with mesh size and mesh grid points . The

first and second spatial derivatives in equation (4.10) and equation (4.11) are approximated with second-

order central finite differences. Let Wi(t) and θi(t) be approximation of W (ηi, t) and θ(ηi, t), then the

semi-discrete system for the problem becomes:

dWi

dt
= b1A−Re

Wi+1 −Wi−1

2∆η
(4.18)

+
b1e
−βθi

(1− ϕ)2.5

(
Wi+1 − 2Wi +Wi−1

∆η2
+
Wi+1 −Wi−1

2ηi∆η

)
− b1e

−βθi

(1− ϕ)2.5

(
β

(θi+1 − θi−1)(Wi+1 −Wi−1)

4∆η2

)
+ b2Grθi,

P r
dθi
dt

=
b3

(1− ϕ+ ϕ)

(
θi+1 − 2θi + θi−1

∆η2
+
θi+1 − θi−1

2ηi∆η

)
(4.19)

+
EcPreβθ

(1− ϕ)2.5(1− ϕ+ ϕτ)

(
Wi+1 −Wi−1

2∆η

)2

− PrRe
θi+1 − θi−1

2∆η
,

with initial conditions:

Wi(0) = 0, θi(0) = 0, 1 ≤ i ≤ N + 1. (4.20)

The equations corresponding to the first and last grid points are modified to incorporate the boundary

conditions as follows:

W1 = W0, θ1 = θ0, WN+1 = 0, θN+1 = 1. (4.21)

Equations (4.18)-(4.21) is a system of initial value nonlinear ODEs and can be solved iteratively

using Runge-Kutta-Fehlberg integration technique (Na, 1979) implemented on a computer using MAT-

LAB. The Runge-Kutta-Fehlberg (RKF) method is used to guarantee the accuracy in the solution of
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Table 4.1: Thermophysical properties of the fluid phase (water) and nanoparticles (Kuznetsov

and Nield, 2010)

ρ(kg/m3) Cp(J/kgK) k(W/mK) γ(1/K)

Pure water 997.1 4179 0.613 21× 10−5

Copper(Cu) 8933 385 401 1.67× 10−5

Aluminium 3970 765 40 0.85× 10−5

equations (4.18)-(4.21). RKF algorithm decides if the appropriate step size is being used. At each step,

two different approximations for the solution are computed and compared. If the two answers are in

close agreement, the approximation is accepted. If the two answers do not agree to a specified accura-

cy, the step size is reduced. If the answers agree to more significant digits than required, the step size is

increased. From the process of numerical computation, the skin-friction coefficient and the Nusselt num-

ber in equation (4.17) are also highlighted and their numerical values are presented. The thermophysical

values for water and nanoparticles used in a considered problem are shown in Table 4.1.

4.4 Results and Discussion

In the present study, the effects of Buoyancy force and temperature dependent viscosity on unsteady

nanofluid flow past a vertical porous pipe are investigated using two types of nanoparticles with water

as base fluid. The nanoparticles used are copper (Cu) and alumina (Al2O3). The effects of various

thermophysical parameters on temperature and velocity profiles of nanofluid flow are analysed. The

local skin friction and Nusselt number are also highlighted. The default values of the thermophysical

parameters are specified as: ϕ = 0.3, A = 1, Gr = 0.1, Re = 1, Pr = 6.2, Ec = 1, ∆η = 0.005, ∆t =

0.01 and β = 0.5. All profiles therefore correspond to these values unless otherwise indicated. Moreover,

the steady-state solution is assumed to have been reached, when the absolute difference between the

values of velocity, as well as temperature at two consecutive time are very small. Cu-water nanofluid

delayed to reach its steady state thanAl2O3-water, but we have noticed that for (t > 17) both temperature

and velocity reaches their steady state for both nanofluids.

4.4.1 Transient and steady flow analysis

Figures 4.2-4.7 displays the transient solutions of velocity and temperature from the time where the

nanofluids begin to flow until a steady state is reached. Both velocity and temperature time evolutions

demonstrate the transient increase in fluid quantities as shown in Figure 4.2 and Figure 4.3. Figure 4.3 in
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particular show the development of the temperature fields from the initial state in which the temperature

at the wall is higher than the bulk temperature. Figure 4.4 and Figure 4.5 demonstrate the general

overview for the velocity and temperature for all nanofluid. It is noticed that the nanofluid temperature

and velocity for Cu-water are higher than that of Al2O3-water. However the Al2O3-water nanofluids

temperature and velocity reaches its steady state earlier than Cu-water nanofluid. Figure 4.6 and Figure

4.7 compare the numerical solutions obtained using semi-discretization technique for unsteady flow (t =

20) with steady state numerical method known as shooting method. No significant differences were

observed.

Figure 4.2: Transient and steady state velocity profiles
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Figure 4.3: Transient and steady state temperature profiles

Figure 4.4: Nanofluids velocity profiles with increasing distance
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Figure 4.5: Nanofluids temperature profiles with increasing distance

Figure 4.6: Nanofluid velocity solution from shooting method and method of lines
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Figure 4.7: Nanofluid Temperature solution from shooting method and method of lines

4.4.2 Dimensionless velocity profile with parameters variations

Figures 4.8-4.12 demonstrate the effects of various thermophysical parameters on the nanofluids veloc-

ity profiles. Generally, the nanofluid velocity is lower at the pipe surface due to no-slip condition and

increases to the free stream value at the center of the pipe satisfying the flow field conditions. The

nanofluid velocity is observed to slow down when more nanoparticles are added in to the base as illus-

trated in Figure 4.8. This is expected since both the density and the dynamic viscosity of the nanofluid

increase with increasing nanoparticles volume fraction leading to decrease in the velocity. An increase

of viscosity parameter means a decrease in fluid viscosity and hence reduces the flow resistance which

results in increasing the nanofluid velocity within the pipe as illustrated in Figure 4.9. The same trend is

observed with increasing pressure gradient and Grashof number as seen in Figures 4.10-4.11, an increase

of Grashof number has the tendency to increase the thermal and mass buoyancy which leads to the in-

creasing of nanofluid velocity. Meanwhile, it is important to note that (Re > 0) corresponds to uniform

suction at the pipe wall while (Re < 0) represents uniform injection. Figure 4.12, the profiles shows that

the nanofluid velocity increases with an increase in wall suction and decreases with an increase in fluid

injection at the pipe wall. The increase in nanofluid velocity due to uniform suction or decrease due to

injection may be attributed to the combined effects of pressure gradient and thermal buoyancy.
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Figure 4.8: Nanofluids velocity profiles with increasing ϕ

Figure 4.9: Nanofluids velocity profiles with increasing β
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Figure 4.10: Nanofluids velocity profiles with increasing A

Figure 4.11: Nanofluids velocity profiles with increasing Gr
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Figure 4.12: Nanofluids velocity profiles with increasing Re

4.4.3 Dimensionless temperature profile with parameters variations

The effects of variation in the thermophysical parameters on the nanofluid temperatures profiles are

illustrated in Figures 4.13-4.17. An increase in the nanoparticles volume fraction causes a decrease in

the nanofluid temperature as illustrated in Figure 4.13 . This may be due to a decrease in the velocity

gradient as ϕ. increases, consequently, the overall bulk temperature decreases. Meanwhile, a sharp rise

in the temperature near the pipe wall is observed with a decrease in the nanoparticles volume fraction

and this rise in temperature near the pipe wall attained its peak value when pure water is considered i.e.,

at ϕ = 0. The temperature increase near the pipe wall may be attributed to the combined effects of

fluid suction and increasing velocity gradient as the nanoparticles volume fraction decreases. In Figure

4.14, the growing of temperature is observed with increasing Eckert number; this is expected since the

terms linked to the Eckert number act as strong heat source in energy equation. Similar trend has been

noticed with increasing Grashof number, viscosity parameter and suction Reynolds number. Nanofluid

temperature increases with increasing Grashof number, viscosity parameter and suction Reynolds (i.e.,

the axisymmetric suction strength) as demonstrated in Figures 4.15-4.17.
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Figure 4.13: Nanofluid temperature profiles with increasing ϕ

Figure 4.14: Nanofluid temperature profiles with increasing Ec
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Figure 4.15: Nanofluid temperature profiles with increasing Gr

Figure 4.16: Nanofluid temperature profiles with increasing β
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Figure 4.17: Nanofluid temperature profiles with increasing suction Re

4.4.4 Wall shear stress and heat transfer rate

Figures 4.18-4.22 illustrate the effects of various pertinent parameters for the skin friction coefficient and

the local Nusselt number at the pipe surface.The wall shear stress against time is plotted in Figure 4.18

which compares the skin friction coefficients profiles for Cu-water and Al2O3-water nanofluids. Both

skin friction produced by Cu-water and Al2O3-water nanofluid increase with increasing time and the

Cu-water nanofluid demonstrated the highest shear stress than Al2O3-water. The wall shear stress at the

pipe wall (η = 1) dependence on nanoparticles volume fraction ϕ is illustrated in Figure 4.19 and Figure

4.20, for varying Re, Gr and β. The results shows that, the shear stress is increasing with increasing

suction Re, Gr and β and decreasing with increasing nanoparticles concentration and injection Re.

Figure 4.21 illustrate the heat transfer rate for both nanofluids. The heat transfer rate produced by Cu-

water nanofluid is higher than that of Al2O3-water nanofluid. In Figure 4.22, the heat transfer profiles

are plotted against ϕ with various parameters variation. There is an increase in the rate of heat transfer

with increasing each of the parameter Gr, β and Ec and decreased with increasing parameter ϕ.

96



Figure 4.18: Skin friction profiles for both nanofluids

Figure 4.19: Skin friction profiles with increasing ϕ and Re
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Figure 4.20: Skin friction profiles with increasing ϕ, Gr and β

Figure 4.21: Nusselt number profiles with increasing ϕ for both nanofluids
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Figure 4.22: Nusselt number profiles with increasing ϕ, β. Ec and Gr

4.5 Conclusion

In the present chapter, we studied the laminar unsteady flow of variable viscosity past a vertical porous

pipe of water-based nanofluids containing copper and alumina. The governing nonlinear PDEs are solved

numerically using a semi-discretization finite difference method together with Runge-Kutta-Fehlberg

integration scheme. The main results are summarised as follows:

• The Cu-water nanofluid tends to flow faster than Al2O3-water nanofluid.

• The nanofluid velocity increases with increasing β, A, Gr and suction Re and decreases with

increasing ϕ and injection Re.

• The nanofluid temperature of Cu-water is higher than that of Al2O3-water.

• The nanofluid temperature profile increases with Ec, Gr, β and suction Re and decreases with ϕ.

• The temperature and velocity for Al2O3-water nanofluid reaches steady state earlier than Cu -

water nanofluid.

• The Cu-water nanofluid produces higher wall shear stress than Al2O3-water nanofluid and in-

creases with increasing Gr, β and suction Re while decreases with increasing ϕ and injection

Re.

• The Cu-water nanofluid produces more heat transfer rate than Al2O3-water nanofluid. The heat

transfer rate increases with increasing β, Ec, and Gr and decreases with increasing ϕ.

99



CHAPTER FIVE

Buoyancy-Driven Heat Transfer of Water-Based Nanofluid in a Permeable Cylindrical Pipe with

Navier Slip Through Saturated Porous Medium4

Summary: The combined effect of buoyancy-driven force, variable viscosity and Navier slip on

heat transfer of unsteady water-based nanofluid flow containing copper and alumina nanoparticles in a

permeable cylindrical pipe through saturated porous medium is investigated numerically. The Darcy-

Brinkman-Forchheimer model was adopted to describe the flow. The non-linear PDEs governing the

problem were obtained and solved numerically using a semi-discretization finite difference method to-

gether with Runge-Kutta-Fehlberg integration scheme. The numerical solutions for velocity, tempera-

ture, skin friction and Nusselt number have been presented graphically and discussed quantitatively. The

results reveal that both nanofluid temperature and velocity are enhanced with increasing nanoparticles

volume fraction and Grashof number and reduced with the increasing viscosity, Navier slip parameter,

porous media resistance parameter and porous media shape factor parameter.

5.1 Introduction

A nanofluid is a colloidal suspension of nano-sized particles and fibres which are below 100 nm in a

base fluid. Common fluids such as water, ethanol or engine oils are typically used as base fluids. The

variety of nanoparticles which are used in preparation of nanofluids includes: metallic oxides such as

Al2O3, CuO, TiO2; metal carbides such as SiC, TiC; nitride ceramics such as AlN and SiN; metals

such as Al, Cu, Ag, Au and Fe; non-metals such as graphite and carbon-nanotubes etc. Since the ter-

m nanofluid coined by Choi (1995), the understanding of the so-called anomalous increase in thermal

conductivity of nanofluids has generated considerable research interest. Buongiorno (2006) developed

a two-component four-equation non-homogeneous equilibrium model for mass, momentum, and heat

transport in nanofluid to study convective transport in nanofluids. Buongiorno reported that the absolute

nanoparticle velocity can be viewed as the sum of the base fluid velocity and a relative slip velocity.

Seven slip mechanisms including inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus

effect, fluid drainage, and gravity settling are proposed.

Research related to convective flow and heat transfer using porous medium technique has gained great

interest in recent decades due to the fact that this structure encountered in many engineering applications

4 This chapter is based on published paper:

Sara Khamis, Oluwole Daniel Makinde & Yaw Nkansah-Gyekye (2015). Buoyancy-Driven Heat Transfer of

Water-Based Nanofluid in a Permeable Cylindrical Pipe with Navier Slip Through Saturated Porous Medium.

Journal of Porous Media, 18 (12): 11691180.
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such as design of canisters for nuclear waste disposal, nuclear reactors, thermal insulation, geothermal 

systems, cooling of electronic circuits, ceramic processing, filtration processes, oil recovery drying pro-

cesses, heat exchangers as well as building constructions (Ahmad and Pop, 2010; Vafai and Tien, 1982). 

The analysis of convective transport in a porous medium with the inclusion of non-Darcian effects has 

also been a matter of study in recent years. The inertia effect is expected to be important at a higher flow 

rate and it can be accounted through the addition of a velocity squared term in the momentum equation, 

which is known as the Forchheimers extension of Darcys law. Bansod (2003) performed a comprehen-

sive study on combined heat mass transfer by natural convection along the horizontal surface in a fluid 

saturated porous medium. The Von-Karmann integral method was used together with similarity method 

for the solution to the problem. It was shown that with increasing of buoyancy ratio, both the heat and 

mass transfer rates increase while the Lewis number is found to have more effect on the concentration 

field than i t does on the flow and temperature fie lds . Fur thermore, a considerable number of studies on 

convective heat and fluid flow of porous media saturated by a nanofluid have been done analytically 

and numerically (Kuznetov and Nield, 2009, 2010a,b). Rana et al. (2014) reported the thermosolutal 

instability problem in a horizontal layer of an elastic-viscous nanofluid in porous medium. They used 

Walters fluid model to describe the rheological behavior of the nanofluid and for the porous medium. 

Makinde and Eegunjobi (2013) use the first and second law of thermodynamics to analyze numerically 

the inherent irreversibility in a steady flow of a couple stress fluid through a vertical channel filled with 

porous media. Analysis of nanofluid heat transfer in parallel plate vertical channel partially filled 

with porous medi-um using Brinkman-Forchheimer extended Darcy model is reported by Hajipour 

and Dehkordi (2012). They used different viscous dissipation models to account for viscous heating. 

They reported that the presence of nanoparticles in the base fluid enhances the heat-transfer process 

significantly. Gorla and Chamkha (2011) analyze the natural convection past an isothermal horizontal 

plate in a porous medium saturated by a nanofluid; their results show that as the buoyancy ratio and 

thermophoresis parameters are increased, the friction factor increases whereas the heat transfer and 

mass transfer rate decreases. Targui and Kahalerras (2014) presented a numerical simulation of 

nanofluids flow in a double pipe heat exchanger provided with porous baffles. They observed that the 

addition of nanoparticles enhances the rate of heat transfer in comparison to conventional fluids. 

From literature survey, to the best of our knowledge, we have found that no study has been reported on 

heat transfer flow of nanofluid with Navier slip and variable viscosity in a cylindrical pipe with permeable 

wall. Thus, the purpose of this study is to numerically investigate the effect of buoyancy force, variable 

viscosity and Navier slip past a permeable cylindrical pipe embedded in a porous medium filled with 

nanofluid. T he m odel f ormulation e quations i n d imensional a nd n on-dimensional f orm a re established 

in section two. The numerical computation is done using semi-discretization technique to transform the
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PDEs in to a set of ODEs which are then solved numerically using Runge-Kutta-Fehlberg integration

scheme; this is explained in section three. Numerical solutions for the velocity, temperature, skin fric-

tion and Nusselt number are presented and discussed in section four with various parameters variation

governing the flow. Finally, the conclusions are drawn in section five.

5.2 Problem Formulation

Consider unsteady, axisymmetric incompressible flow of water-based nanofluids containing two types of

nanoparticles namely; copper and alumina through a cylindrical pipe with permeable of length L >> r

and radius r embedded in saturated porous media. The pipe surface is subjected to Navier slip condi-

tion. The geometry of the problem and coordinate system are shown in Figure 5.1. The mathematical

equations describing the physical model are based upon the following assumptions:

i The fluid is laminar, Newtonian and fully developed.

ii The thermophyiscal parameters for the fluid flow are constant except, for the density in the buoy-

ancy force which is approximated using Boussinesq model.

iii The fluid phase and nanoparticles are in thermal equilibrium state.

iv The porous media is homogeneous and in local thermal equilibrium with the fluid.

Figure 5.1: Schematic diagram of the physical system

Under the above mentioned assumptions and based on Brinkman-Forchheimer model the one

dimensional governing equations in a dimensional form are as follows, see for example (Eegunjobi and
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Makinde, 2012; Ozkol et al., 2007; Makinde et al., 2011; Stokes, 1984)

Continuity equation:
∂u

∂z
= 0, (5.1)

Momentum equation:

ρnf

(
∂u

∂t
+ V

∂u

∂r

)
= −∂P̄

∂z
+

1

r

(
rµf (T )

∂u

∂r

)
+ ρnfγnf (T − T0)−

µnf (T )u

K
− Fu2

√
K
, (5.2)

Energy equation:

(ρcp)nf

(
∂T

∂t̄
+ V

∂T

∂r

)
= knf

1

r

(
r
∂T

∂r

)
+ µnf (T )

(
∂u

∂r

)2

+
µnf (T )

K
u2 +

F√
K
u3, (5.3)

with initial and boundary conditions:

u(r, 0) = 0, T (r, 0) = T0, (5.4)

∂u

∂r
(0, t̄) =

∂T

∂r
(0, t̄) = 0 t̄ > 0, (5.5)

ξu(a, t̄) = µnf
∂u

∂r
, T (a, t̄) = Tw t̄ > 0. (5.6)

where: u is the nanofluid axial velocity, P is the pressure, T is the nanofluid temperature, To is the 

nanofluid initial temperature, Tw is the pipe wall temperature, g is the gravitational acceleration, K is the 

porous media permeability, F is the empirical constant in the second order (porous inertia) resistance 

such that F = 0 corresponds to the Darcy law, ξ is the Navier slip coefficient. Moreover, µnf is the 

nanofluid dynamic viscosity, knf is the nanofluid thermal conductivity ρnf is the nanofluid density, γnf is 

the nanofluid volumetric expansion coefficient and (ρcp)nf is the heat capacitance of the nanofluid as 

given in reference (Anbuchezhian et al., 2012) which are defined as:

µnf =
µf

(1− ϕ)2.5
, ρnf = (1− ϕ)ρf + ϕρs, αnf =

knf
(ρcp)nf

,

γnf = (1− φ)γf + ϕγs,
knf
kf

=
ks + 2kf − 2ϕ(kf − ks)
ks + 2kf + ϕ(kf − ks)

,

(ρcp)nf = (1− ϕ)(ρcp)f + ϕ(ρcp)s.


(5.7)

In equation (5.7), ϕ is the nanoparticles solid volume fraction such that ϕ = 0 refer to the base fluid

(water), ρf is the reference density of the fluid fraction, ρs is the reference density of the solid fraction,

γf is the volumetric expansion of the fluid, γs is the volumetric expansion of solid fraction, µf is the

viscosity of the fluid fraction, kf is the thermal conductivity of the fluid fraction, cp is the specific heat

at constant pressure and ks is the thermal conductivity of the solid volume fraction.
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The viscosity of the nanofluid is assumed to be temperature dependent and can expressed as (Abu-Nada 

and Chamkha, 2010; Namburu et al., 2007):

µf (T ) = µ0e
−m(T−T0), (5.8)

where, µ0 is the initial dynamics viscosity and m is the viscosity variation parameter.

The mathematical analysis of the problem is simplified by introducing the following dimensionless

quantities:

θ =
T − T0

Tw − T0
, W =

u

V
, η =

r

a
, t =

tνf
a2
, νf =

µ0

ρf
, Re =

V a

νf

τ =
(ρcp)s
(ρcp)f

, P =
aP

µ0V
, Gr =

g(ργ)f (Tw − T0)a2

V µ0
, A =

∂P

∂Z
,

Z =
z

a
, Ec =

V 2

cpf (Ta − T0)
, β = m(Tw − T0), P r =

µ0cpf
kf

,

S = a2

K , Da = 1
S , M = Fa

ρf
√
K
.


(5.9)

The dimensionless momentum and energy equations together with their initial and boundary conditions

can be written as:

∂W

∂t
+Re

∂W

∂η
= a1A+

a1e
−βθ

(1− ϕ)2.5

(
∂2W

∂η2
+

1

η

∂W

∂η
− β∂W

∂η

∂θ

∂η

)
(5.10)

+ a2Grθ −
Sa1e

−βθ

(1− ϕ)2.5
−Ma1ReW

2,

P r
∂θ

∂t
+ PrRe

∂θ

∂η
=

a3

1− ϕ+ ϕτ

(
1

η

∂θ

∂η
+
∂2θ

∂η2

)
(5.11)

+
PrEc

(1− ϕ)2.5(1− ϕτ)
e−βθ

(
∂W

∂η

)2

+
PrEc

(1− ϕ)2.5(1− ϕτ)

(
Se−βθW 2 +MRe(1− ϕ)2.5W 3

)
,

with initial and boundary conditions:

W (η, 0) = 0, θ(η, 0) = 0,

∂W

∂η
(0, t) =

∂θ

∂η
(0, t) = 0, t > 0,

W (1, t) =
λe−βθ

(1− ϕ)2.5

∂W

∂η
(1, t), θ(1, t) = 1, t > 0.


(5.12)

where: Re(> 0) is suction / injection (< 0) Reynolds number, β is the variable viscosity parameter,

λ is the Navier slip parameter such that λ = 0 corresponds to no slip condition and λ → ∞ describes

full lubrication, Pr is the Prandtl number, Gr is the Grashof number, Ec is the Eckert number, S is the

porous media shape factor parameter, M is the second order porous media resistance parameter, A is the
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pressure gradient parameter and τ is the ratio of nanoparticles heat capacity. The constants a1, a2 and a3

can be determined from the thermophysical properties of the base fluid and the nanoparticles which are

described as:

a1 =
ρf
ρnf

= 1
1−ϕ+ϕρs/ρf

,

a2 = 1− ϕ+ ϕγs/γf ,

a3 =
(ks + 2kf )− 2ϕ(kf − ks)
(ks + 2kf ) + ϕ(kf − ks)

.


(5.13)

The wall shear stress (skin friction coefficient) Cf and the heat transfer rate (Nusselt number) Nu

are the important physical quantities of interest in this type of study which are defined as:

Cf =
aτw
µ0V

, Nu =
aqw

kf (TW − T0)
, (5.14)

where τw is the wall shear stress and qw is the heat flux at the pipe wall given by:

τw = µnf
∂u

∂r

∣∣∣∣
r=a

, qw = −knf
∂T

∂r

∣∣∣∣
r=a

. (5.15)

Substituting equations (5.15) into (5.14) and introducing dimensionless variables we obtain:

Cf =
e−βθ

(1− ϕ)2.5

∂W

∂η
,

Nu = −a3
∂θ

∂η
,

 η = 1. (5.16)

5.3 Numerical Procedure

In this section, the numerical procedure employed to tackle the system of nonlinear IBVP given in equa-

tions (5.10)-(5.13) is presented. The semi-discretization finite difference method known as method of

lines (Na, 1979; Morton and Mayers, 2005) is used to solve the system numerically. The discretization

is based on a linear Cartesian mesh and uniform grid on which finite differences are taken. The spatial

interval 0 ≤ η ≤ ηmax is partitioned into N equal parts with mesh size ∆η = 1/N and mesh grid points

ηi = (i − 1)∆η, 1 ≤ i ≤ N + 1 . The first and second spatial derivatives in equation (5.10) and

equation (5.12) are approximated with second-order central finite differences. Let Wi(t) and θi(t) be

approximation of W (ηi, t) and θ(ηi, t), then the semi-discrete system for the problem becomes:

dWi

dt
= a1A+

a1e
−βθi

(1− ϕ)2.5

(
Wi+1 − 2Wi +Wi−1

∆η2
+
Wi+1 −Wi−1

2ηi∆η

)
(5.17)

− a1e
−βθi

(1− ϕ)2.5

(
β

(θi+1 − θi−1)(Wi+1 −Wi−1)

(2∆η)2

)
+ a2Grθi −Re

(Wi+1 −Wi−1)

2∆η
− Sa1e

βθi

(1− ϕ)2.5
Wi −MRea1W

2
i ,
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Pr
dθi
dt

=
a3

(1− ϕ+ ϕ)

(
θi+1 − 2θi + θi−1

∆η2
+
θi+1 − θi−1

2ηi∆η

)
(5.18)

+
PrEc

(1− ϕ)2.5(1− ϕ+ ϕτ)
e−βθi

(
Wi+1 −Wi−1

2∆η

)2

+
PrEc

(1− ϕ)2.5(1− ϕ+ ϕτ)

(
Se−βθiW 2

I +MRe(1− ϕ)2.5W 3
)

− PrRe
θi+1 − θi−1

2∆η
,

with initial conditions:

Wi(0) = 0, θi(0) = 0, 1 ≤ i ≤ N + 1. (5.19)

The equations corresponding to the first and last grid points are modified to incorporate the boundary

conditions as follows:

W1 = W0, θ1 = θ0,

Wi+1 =
λeβθN+1

λe−βθN+1 −∆η(1− ϕ)2.5
WN , θN+1 = 1.

 (5.20)

Equations (5.18)-(5.20) is a set of initial value nonlinear ordinary differential equations that can be solved

iteratively using Runge-Kutta -Fehlberg integration technique (Morton and Mayers, 2005) implemented

on computer using MATLAB. From the process of numerical computation, the skin-friction coefficient

and the Nusselt number in equation (5.16) are also highlighted and their numerical values are presented.

The thermophysical values for water and nanoparticles used are shown in Table 5.1.

Table 5.1: Thermophysical properties of the water and nanoparticles (Oztop and Abu-Nada,

2008)

Materials ρ(kg/m3) cp(J/kgK) k(W/mK) γ(1/K)

Pure water (H2O) 997.1 4179.0 6.13×10−1 21× 10−5

Alumina (Al2O3) 3970.0 765.0 4×101 0.85× 10−5

Copper (Cu) 8933.0 385.0 4.01×102 1.67× 10−5

5.4 Results and Discussion

In this section, the effects of some of the emerging flow controlling parameters on the dimensionless

velocity, temperature, skin friction factor and heat transfer rate are investigated and presented graphically.

The numerical results for the representative velocity field are displayed in Figures 5.2-5.8, Figures 5.9-

5.15 for temperature field and Figures 5.16-5.21 for skin friction and heat transfer rate respectively.
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Moreover the numerical values for skin friction and the Nusselt number are computed for various values

of the parameters Gr, β,Re, λ, Ec, A, S and M and their results are presented in Table 5.2. In our

analysis where no nanoparticles are compared, the Al2O3-water nanofluid was used for both profiles.

The detailed discussions for the graphical representation solution are reported in subsequent sections.

5.4.1 Velocity Profile with Parameters Variation

Figures 5.2-5.8 illustrate the variation effects of the various parameters on transient velocity profiles.

Figure 5.2 gives an insight of evolution of velocity profiles from the time where the nanofluid begins

to flow until steady state is reached for both nanofluids. As expected the nanofluid velocity increases

with increasing time until steady state is achieved. The nanofluid velocity for Cu-water is higher than

that of Al2O3-water before it reverses the order near the pipe wall. Interestingly, the results shows that

the nanofluid velocity is higher at the pipe wall than at the centreline region of the pipe; this is due

to the Navier slip boundary condition applied at the pipe wall. The response of nanoparticles volume

fraction (ϕ) with reference to Al2O3-water nanofluid on velocity profiles are seen in Figure 5.3. The

transient velocity is enhanced with the increase of ϕ; however this behaviour changes near the pipe wall.

The opposite response is observed with growing viscosity parameter (β), the increases of β caused the

nanofluid velocity to decelerate at the centreline region and causes flow reversal near the pipe wall as

described in Figure 5.4. The transient velocity profiles increases with increasing Grashof number (Gr)

as demonstrated in Figure 5.5. An increase in Gr means increases the buoyancy force and subsequently

the fluid velocity in the flow direction. In Figure 5.6, the transient nanofluid velocity decreases with the

increase of Navier slip parameter λ; this trend continue until λ→∞(i.e. full lubrication). Then velocity

at the center becomes the same as that at the pipe wall as expected. Also the velocity at the wall becomes

zero when the no slip condition is considered. Figure 5.7 and Figure 5.8 show the effects of porous media

resistance parameter (M ) and porous media shape factor parameter (S). It is noticed that as M and S

are increasing the transient nanofluid velocity decreases. This is because the presence of porous medium

increases the flow resistances which result in reducing the bulk nanofluid velocity within the pipe.
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Figure 5.2: Transient and steady state non-dimensional velocity evolutions for Cu-water and

Al2O3-water nanofluids

Figure 5.3: Non-dimensional velocity evolutions with increasing nanoparticles volume fraction

ϕ
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Figure 5.4: Non-dimensional velocity evolutions with increasing β

Figure 5.5: Non-dimensional velocity evolutions with increasing Gr
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Figure 5.6: Non-dimensional velocity evolutions with increasing λ

Figure 5.7: Non-dimensional velocity evolutions with increasing M
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Figure 5.8: Non-dimensional velocity evolutions with increasing S

5.4.2 Temperature Profiles with Parameters Variation

The responses of the variation of parameters on temperature profiles are reported graphically in Figures

5.9 - 5.15. In Figure 5.9, the non-dimensional temperature is plotted against radius for different time

value i.e., for t = 1, 2, 14, 15. The profiles shows that, by increasing time the temperature increases

until a steady state is achieved. In addition, the temperature at the centerline region of the pipe becomes

higher as time increased and then reduced gradually to the prescribed value at the pipe wall (i.e.,θ = 1

at η = 1). Figure 5.10 and Figure 5.11 show the increase of temperature by increasing of nanoparticles

volume fraction (ϕ) and Grashof number (Gr) respectively. Expectedly, increasing of ϕ enhances the

nanofluid temperature inside the pipe; this is due to the fact that nanoparticles have high thermal con-

ductivity compared to pure water. Increasing Gr means increasing buoyancy force which enhances both

the flow velocity and temperature as highlighted in the previous section. Meanwhile, Figures 5.12-5.15

show the variation of nanofluid temperature profiles with increasing each of the parameter β, λ, M and

S. The profiles shows that the nanofluid temperature reduced by increasing each of these parameters

when Al2O3-water nanofluid is used.
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Figure 5.9: Transient and steady state non-dimensional temperature evolutions for Cu-water

and Al2O3-water nanofluids

Figure 5.10: Non-dimensional temperature evolutions with increasing ϕ
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Figure 5.11: Non-dimensional temperature evolutions with increasing Gr

Figure 5.12: Non-dimensional temperature evolutions with increasing β
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Figure 5.13: Non- dimensional temperature evolution with increasing λ

Figure 5.14: Non-dimensional velocity evolutions with increasing M
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Figure 5.15: Non-dimensional temperature evolution with increasing S

5.4.3 Skin Friction and Nusselt Number with Parameters variation

The effects of various parameters on skin friction and Nusselt number are discussed in this section. Table

5.2 shows the numerical computation for skin friction and Nusselt number for some selected parameters

values by fixing time and nanoparticle volume fraction. The results from the table shows that, the skin

friction is increasing with the increase of Gr, β, Ec and A while decreasing with the increase of λ,

Re, M and S. The results illustrates that the effect of increasing Gr, Ec and A is to increase the heat

transfer rate, whereas increasing β, λ, Re, M and S is to reduce the heat transfer rate at the pipe wall.

Moreover, the effect of embedded parameters values on skin friction is highlighted in Figures 5.16-5.18.

Figure 5.16, compares the skin friction of Cu-water and Al2O3-water nanofluids. The profiles shows

that the skin friction is higher with Cu-water than that of Al2O3-water nanofluids. The results also show

that the skin friction is reduced by increasing ϕ and enhanced by increasing β as seen in Figure 5.17.

Figure 5.18 shows that with increasing M and S the wall shear stress are reduced. The influence of

embedded parameters on Nusselt number is displayed in Figures 5.19 - 5.21. Figure 5.19 demonstrates

the skin friction for both Cu-water and Al2O3-water nanofluid. Interestingly, the profiles shows that the

heat transfer rate of Al2O3-water is higher compared to Cu-water. Moreover, the response of increasing

ϕ is to enhance the wall heat transfer rate while increasing β is to reduce the wall heat transfer rate as

illustrated in Figure 5.20. The profiles shows that the wall transfer rate is reduced by increasing S and

M as seen Figure 5.21.
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Table 5.2: Computation showing the Cf and Nu for various values of embedded parameters for

t = 2, ϕ = 0.3

Gr β Re λ Ec A S M Cf Nu

0.1 0.5 2 0.5 1 1 0.5 10 0.0159 0.4837

0.2 0.5 2 0.5 1 1 0.5 10 0.0171 1.1073

0.3 0.5 2 0.5 1 1 0.5 10 0.0185 1.7902

0.1 0.1 2 0.5 1 1 0.5 10 0.0081 0.8543

0.1 0.4 2 0.5 1 1 0.5 10 0.0134 0.5837

0.1 0.9 2 0.5 1 1 0.5 10 0.0317 0.0626

0.1 0.5 1.5 0.5 1 1 0.5 10 0.0187 4.1548

0.1 0.5 2 0.5 1 1 0.7 10 0.0102 -0.7796

0.1 0.5 2 0.5 1 1 0.9 10 0.0075 -1.2840

0.1 0.5 2 0.5 1.5 1 0.5 10 0.0168 3.5800

0.1 0.5 2 0.5 2 1 0.5 10 0.0178 6.7031

0.1 0.5 2 0.5 1 1.5 0.5 10 0.0214 4.5196

0.1 0.5 2 0.5 1 2.0 0.5 10 0.0270 9.0739

0.1 0.5 2 0.5 1 1 0.6 10 0.0155 0.3436

0.1 0.5 2 0.5 1 1 1.0 10 0.0142 -0.1907

0.1 0.5 2 0.5 1 1 0.6 12 0.0146 -0.2388

0.1 0.5 2 0.5 1 1 0.6 15 0.0132 -0.9936
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Figure 5.16: Skin friction profiles for Cu-water and Al2O3-water nanofluids

Figure 5.17: Skin fiction profiles with increasing ϕ,β and λ
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Figure 5.18: Skin fiction profiles with increasing M , S and λ

Figure 5.19: Nusselt number profiles for Cu-water and Al2O3-water nanofluids
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Figure 5.20: Nusselt number profiles with increasing ϕ, β, and λ

Figure 5.21: Nusselt number profiles with increasing M , S and λ

5.5 Conclusion

In this chapter, we investigated numerically the combined effect of buoyancy-driven force, tempera-

ture dependent viscosity and Navier slip on heat transfer for unsteady copper-water and alumina-water

nanofluids in a permeable cylindrical pipe filled with saturated porous medium. The nonlinear governing

PDEs are transformed into a set of initial value ODEs using semi-discretization finite difference method.
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The resultant ODEs were solved numerically using Runge-Kutta-Fehlberg integration scheme imple-

mented on a computer using MATLAB. The nanofluid velocity, temperature, skin friction and Nusselt

number profiles were discussed for various parameters values governing the flow. The results reveal,

among other conclusions, that:

• Both velocity and temperature profiles increases with increasing time until the steady state is

achieved. The Al2O3-water nanofluid reaches its steady state earlier as compared to Cu-water.

• Both velocity and temperature profiles increases with the increasing of nanoparticles volume frac-

tion and Grashof number while decreases with the increasing of variable viscosity parameter,

Navier slip parameter, porous media resistance parameter and porous media shape factor parame-

ter.

• The skin friction at the pipe wall is reduced with increasing nanoparticles volume fraction, Navier

slip parameter, porous media resistance parameter and porous media shape factor parameter and

enhanced with the increasing of variable viscosity parameter.

• Nusselt number is increased with increasing nanoparticles volume fraction and decreased with in-

creasing variable viscosity parameter, porous media resistance parameter and porous media shape

factor parameter.
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CHAPTER SIX

6.1 General Discussion

In this study, we considered the analysis of steady and unsteady axisymmetric laminar nanofluid flow of

incompressible fluids with some variable parameters through a channel and cylindrical pipes with per-

meable boundary walls. The nanoparticles used in our analysis were copper (Cu) and alumina (Al2O3).

The governing PDE for mass, momentum and energy were obtained. The nonlinear partial differential

equations were then dimensionalized and transformed into ODE by using the method of lines for the case

of unsteady formulated models and Berman similarity transformation for the case of steady nanofluid for-

mulated model. The resulting dimensionless nonlinear ordinary differential equations were then solved

numerically using the well-known fourth order Runge-Kutta-Fehlberg method with shooting technique

and analytically using regular perturbation method. The numerical results for the velocity, temperature,

skin-friction coefficient, and Nusselt number profiles and the effect of pertinent parameters are studied

and plotted graphically and in tabular form. We compared our numerical and analytical results and al-

so our present results with one existing in literature for the flow of conventional fluid in a symmetrical

porous wall channel.

In chapter 2, we investigated the heat transfer characteristics of a Berman flow of water based nanofluids

in a porous channel with Navier slip, viscous dissipation and convective cooling. We assume that the

exchange of heat with the ambient surrounding takes place at the channel walls following the Newton’s

law of cooling. The governing non-linear partial differential equations were transformed to non-linear

ordinary differential equations using Berman similarity transformation. We solved the resultant nonlinear

problem using both analytical and numerical techniques. The numerical results show a good agreement

with the exact solution and consistent with prior published result.

In chapter 3, the combined effects of variable viscosity, Brownian motion, thermophoresis and con-

vective cooling on unsteady flow of nanofluids in a pipe with permeable wall were investigated. The

non-linear PDE were non-dimensionalized and transformed into a set of non-linear ODE by using semi-

discretization technique. The non-dimensional governing equations of momentum and energy balance,

and the equation for nanoparticles concentration were then solved numerically. The numerical solution

for the representative velocity profiles, temperature profiles, nanoparticles concentration profiles, skin

friction and Nusselt number have been carried out by assigning some arbitrary values to various parame-

ters controlling the flow system and presented graphically. The effects of different parameters governing

the flow on skin friction and Nusselt number coefficients were tested. The results revealed that velocity

is increasing with a decrease of viscosity and increasing of suction Reynolds number while decreasing

with an increase of convective cooling and injection Reynolds number. Furthermore, the temperature
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is decreasing with an increase of convective cooling and decreasing with a decrease of viscosity before

flow reversal at the pipe surface. Also the nanoparticles concentration is increasing with an increase

of thermophoresis and decreasing with an increase of Brownian motion before flow reversal at the pipe

surface.

In chapter 4, we investigated the effects of buoyancy force and temperature dependent viscosity on un-

steady nanofluid flow past a vertical porous pipe. We developed the governing equations for continuity,

momentum, and energy by using Bousinessq approximation for density variation due to temperature

with the Buongiorno nanofluid model. The set of non-linear partial differential equations were then

transformed into non-linear ordinary differential equations using semi-discretization approach. The nu-

merical solutions for the temperature, velocity, skin friction and Nusselt number were obtained and

presented graphically. The effects of various thermophysical parameters on temperature and velocity

profiles as well as skin friction and Nusselt number were analysed. Our results reveals that both nanoflu-

ids velocity and temperature increase with a decrease in viscosity and an increase in buoyancy force

intensity.

In chapter 5, the combined effect of buoyancy-driven force, variable viscosity and Navier slip on heat

transfer of unsteady water-based nanofluid flow in a permeable cylinder through saturated porous medi-

um were investigated numerically. The Darcy- Brinkman-Forchheimer model was adopted to formulate

the equations of the flow. The non-linear PDE governing the flow were obtained, non-dimensionalized

and transformed into ODE and then solved numerically. The numerical solutions for velocity, tempera-

ture, skin friction and Nusselt number have been presented graphically and discussed quantitatively. The

results reveal that both nanofluid temperature and velocity are enhanced with increasing Grashof number

and Darcy number but reduced with the increasing of viscosity, Navier slip parameter and porous media

resistance parameter.

6.2 Conclusion

Different mathematical models of nanofluids flow and heat transfer through a cylindrical pipe and chan-

nel with porous wall are formulated and analyzed under various physical situation. In general, the study

considers axisymmetric, Newtonian and laminar nanofluids flow models of incompressible fluid with

variable parameters. The nonlinear models are tackled both analytically and numerically using different

approaches as explained in the earlier chapters and the results are presented graphically and in tabular

form. The effects of pertinent parameters have been tested. We validate our results by comparing with

the existing one in the literature and also by solving the problem using different approaches. One of

the main findings we have observed is that the nanoparticles volume fraction enhances the heat transfer

as presented in many other studies obtained from the literature, and this conclude that the nanofluids is
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an advanced fluid in cooling or heating system compared with the normal fluids like water. Thus, the

models and analysis presented in this dissertation will aid the research community in understanding the

mechanism of heat transfer in nanofluids. Moreover, it was observed from the analysis that, using the

same base fluid and the same types of nanoparticles some results differ from one model to another de-

pending on the geometry orientation and boundary conditions. However, some of the essential features

of physical interest are summarized below:

• Both Cu-water andAl2O3 -water nanofluids profiles varies with time before it reaches their steady

state, Al2O3 -water reaches its steady state earlier than Cu-water.

• Cu-water nanofluid moves faster as compared to Al2O3 -water nanofluids. The nanofluid velocity

is increased with nanoparticles volume concentration when slip condition is used and the situation

reverse when no slip condition is used at the boundaries. Also the profiles illustrate that the

velocity is increasing with suction, Grashof number and Darcy number while decreasing with the

increase of viscosity, injection and porous media resistance parameter.

• Cu-water nanofluid produced higher temperature as compared to Al2O3 -water. The nanofluids

temperature increases with suction, viscous dissipation, buoyancy force and Darcy number. Fur-

thermore, nanofluid temperature increases with slip parameter and nanoparticles volume concen-

tration however this behaviour changes depending on the boundary conditions and geometry ori-

entation, for example when convective cooling is applied in the boundary the temperature reduced

otherwise it raised. Moreover, the nanofluid temperature is decreased with increasing convective

cooling, injection viscosity and porous media resistance parameter.

• The pressure drop produced by Al2O3 -water in more than that of Cu-water. The pressure drop is

enhanced by injection, Navier slip parameter and nanoparticles volume fraction but decrease by

suction.

• The skin friction produced by Cu-water is more intense than that of Al2O3 -water. The skin

friction increases with suction, Grashof number, Darcy number. In addition, the skin friction

is also increases with Navier slip parameter and nanoparticles volume fraction for the case of

channel flow with convective cooling in the boundary while the skin friction decreases for the

same parameter for the case of vertical pipe with no convective cooling at the boundary. Moreover

the skin friction decreases with increasing injection, viscosity, porous media resistance parameter

and nanoparticles volume fraction.

• The Nusselt number of Al2O3-water is higher for some cases compared to Cu-water. The Nusselt

number increases with suction, Biot number, Eckert number and Navier slip while decreases with
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injection, viscosity, porous media resistance parameter and nanoparticles volume fraction.

6.3 Recommendations

The findings of this research are useful for industrial purposes specifically in heat transfer systems

design. Thus, a practical applicability of the findings will improve the existing design in cooling system

by making use of nanofluids.

Getting the knowledge from other field related to this study for the purpose of practical use of the

models will integrate strongly theoretically and experimentally.

Suggestions for Future Work

This study can be extended in different number of ways for instance:

• One can consider the interaction of nanoparticles for turbulent flow.

• The same geometry of pipe flow could also be considered for the non-Newtonian fluids.

• Extensions to the three dimensional porous walled channel and two dimensional pipe or annular

flows with porous or accelerating walls could also be considered.

• Different fluids or fluid-like materials could also be considered by amending the constitutive e-

quation relating the stresses and shear-rates within the fluid elements.

• Similar problems as presented here, can be considered by simply changing the wall boundary

conditions.

124



REFERENCES

Abu-Nada, E. and Chamkha, A. J. (2010). Effect of nanofluid variable properties on natural convec-

tion in enclosures filled with a CuO-EG-Water nanofluid. International Journal of Thermal Science,

49(12):2339–2352.

Ahmad, S. and Pop, I. (2010). Mixed convection boundary layer flow from a vertical flat plate embed-

ded in a porous medium filled with nanofluids. International Communication of Heat Mass Tranfer,

37(8):987–991.

Ahmad, S., Rohni, A. M., and Pop, I. (2011). Blasius and sakiadis problems in nanofluids. Acta Me-

chanica, 218(3-4):195–204.

Alexandre, C. and Jerrold, E. M. (1992). A Mathematical Introduction to Fluid Mechanics. Springer-

Verlag Publishing Company, Inc.

Anbuchezhian, N., Srinivasan, K., Chandrasekaran, K., and Kanasamy, R. (2012). Thermoporesis and

Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due

to solar energy. Applied Mathematics and Mechanics, 33(6):765–780.

Bansod, V. J. (2003). The Darcy model for boundary layer flows in a horizontal porous medium induced

by combined buoyancy forces. Journal of Porous Media, 6(4):273–281.

Batchelor, G. K. (1977). The effect of Brownian motion on the bulk stress in the suspension of spherical

particles. Journal of Fluid Mechanical, 83(01):97–117.

Berman, A. S. (1953). Laminar flow in channels with porous wall. Journal of Applied Physics,

24(9):1232–1235.

Blazeki, J. (2005). Computational Fluid Dynamics: Principle and Application. Elsevier Ltd, Oxford,

UK, second edition.

Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solution. Journal of Chemical

Physics, 20(4):571–581.

Buongiorno, J. (2006). Convective transport in nanofluids. Journal of Heat transfer, 128(3):240–250.

Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In Singer, D. and

Wang, H., editors, Development and Applications of Non-Newtonian Flows, volume 66, pages 99–106.

American Society of Mechanical Engineers, New York.

125



Das, S. K., Putra, N., and Roetzel, W. (2003a). Pool boiling characteristics of nanofluids. International

Journal of Heat and Mass Transfer, 46(5):851–862.

Das, S. K., Putra, N., Thiesen, P., and Roetzel, W. (2003b). Temperature dependence of thermal conduc-

tivity enhancement for nanofluids. Transactions of the ASME. Journal of Heat Transfer, 125(4):567–

574.

Deswita, L., Ishak, A., and Nazar, R. (2010). Powerlaw fluid flow on a moving wall with suction and

injection effects. Australian Journal of Basic and Applied Sciences, 4(8):2250–2256.

Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. (2001). Anomalously increased

effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles.

Applied Physics Letter, 78(6):718–720.

Eastman, J. A., Phillpot, S. R., Choi, S. U. S., and Keblinski, P. (2004). Thermal transport in nanofluids.

Annual Review of Materials Research, 34(1):219–246.

Eegunjobi, A. S. and Makinde, O. D. (2012). Combined effect of buoyancy force and Navier slip on

entropy generation in a vertical porous channel. Entropy, 14(6):1028–1044.

Einstein, A. (1906). A new determination of the molecular dimensions. Annalen Der Physik, 19(2):289–

306.

Erdogan, M. E. and Imrak, C. E. (2008). On the flow in a uniformly porous pipe. International Journal

of Non-Linear Mechanics, 43(4):292–301.

Gorla, R. and Chamkha, A. (2011). Natural convection boundary layer flow over a horizontal plate

embedded in a porous medium saturated with nanofluid. Journal of Modern Physics, 2(2):62–71.

Hadamard, J. (1902). Sur les problmes aux drives partielles et leur signification physique. Princeton

University Bulletin.

Hajipour, M. and Dehkordi, M. (2012). Analysis of nanofluid heat transfer in parallel-plate vertical

channels partially filled with porous media. International Journal of Thermal Science, 55:103–113.

Ho, C. J., Liu, W. K., S, C. Y., and Lin, C. C. (2010). Natural convection heat transfer of alumina-water

nanofluid in vertical square enclosures: an experimental study. International Journal of Thermal

Sciences, 49(8):1345–1353.

Huang, P. and Breuer, K. S. (2007). Direct measurement of slip length in electrolyte solutions. Physics

of Fluids, 19(2):028104.

126



Hwang, K. S., Lee, J. H., and Jang, S. P. (2007). Buoyancy-driven heat transfer of water-based Al2O3

nanofluids in a rectangular cavity. International Journal of Heat and Mass Transfer, 50(19):4003–

4010.

Ishak, A. (2009). Mixed convection boundary layer flow over a horizontal plate with thermal radiation.

International Journal of Heat and Mass Transfer, 46(2):147–151.

John, H. Y. (2008). A Heat Transfer Text Book. Phlogiston Press, Cambridge Massachusetts, third

edition.

Kakac, S. and Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with

nanofluids. International Journal of Heat and Mass Transfer, 52(13):3187–3196.

Kamyar, A., Saidur, R., and Hasanuzzaman, M. (2012). Application of computational fluid dynamics for

nanofluids. International Journal of Heat and Mass Transfer, 55(15):4104–4115.

Kandelousi, M. S. (2014). KKL correlation for simulation of nanofluid flow and heat transfer in a

permeable channel. Physics Letters A, 378(45):3331–3339.

Karode, S. K. (2001). Laminar flow in channels with porous walls, revisited. Journal of Membrane

Science, 191(1-2):237–241.

Kaufui, V. W. and Omar, D. L. (2010). Applications of nanofluids: current and future. Advances in

Mechanical Engineering, 2:11pages.

Khanafer, K. and Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids.

International Journal of Heat and Mass Transfer, 54(19-20):4410–4428.

Khanafer, K., Vafai, K., and Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a

two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer,

46(19):3639–3653.

Kiblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A. (2002). Mechanism of heat flow is

suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer,

45(4):855–863.

Klemp, K., Herwig, H., and Selmann, M. (1990). Entrance flow in channel with temperature dependent

viscosity including viscous dissipation effects. Proceedings of the Third International Congress Fluid

Mechanics, 3:1257–1266.

127



Kumar, R., Ibrahim, A., and Veena, S. (2013). A numerical study of free convection heat and mass

transfer in a Rivlin-Ericksen viscoelastic flow past an impulsively started vertical plate with variable

temperature and concentration. International Journal of Heat and Fluid Flow, 44:258–264.

Kuppalapalle, V., Kerehalli, P. V., and Chiu-on, N. (2013). The effect of variable viscosity on the flow and

heat transfer of a viscous ag-water and cu-water nanofluids. Journal of Hydrodynamics, 25(1):8pages.

Kuznetov, A. V. and Nield, D. A. (2009). Thermal instability in a porous medium layer saturated by a

nanofluid. International Journal of Heat and Mass Transfer, 52(25-26):5796–5801.

Kuznetov, A. V. and Nield, D. A. (2010a). The onset of convection in a layer of cellular porous material:

effect of temperature-dependent conductivity arising from radiative transfer. Journal of Heat Transfer,

132(7):4–12.

Kuznetov, A. V. and Nield, D. A. (2010b). The onset of double-diffusive nanofluid convective in a layer

of a saturated porous medium. Transport in Porous Media, 85(3):941–951.

Kuznetsov, V. D. and Nield, A. (2010). Natural convective boundary layer flow of nanofluid past a

vertical plate. International Journal of Thermal Science, 49(2):243–247.

Makinde, O. D. (1999). Extending the utility of perturbation series in problems of laminar flow in a

porous pipe and a diverging channel. Journal of Australian Mathematical Society, 41(01):118–128.

Makinde, O. D. (2009). Hermite-Pade approach to thermal radiation effect on inherent irreversibility in

a variable viscosity channel flow. Computers and Mathematics with Applications, 58(11):2330–2338.

Makinde, O. D. (2012). Effects of variable viscosity on thermal boundary layer over a permeable flat

plate with radiation and convective surface boundary condition. Journal of Mechanical Science and

Technology, 26(5):1615–1622.

Makinde, O. D. (2013a). Computational modelling of nanofluids flow over a convectively heated un-

steady stretching sheet. Current Nanoscience, 9(5):673–678.

Makinde, O. D. (2013b). Effects of viscous dissipation and Newtonian heating on boundary layer flow

of nanofluids over a flat plate. International Journal of Numerical Methods for Heat and Fluid flow,

23(8):1291–1303.

Makinde, O. D., Chinyoka, T., and Rundora, L. (2011). Unsteady flow of a reactive variable viscos-

ity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary

conditions. Computational Mathematics and Application, 62(9):3343–3352.

128



Makinde, O. D. and Eegunjobi, A. S. (2013). Entropy generation in a couple stress fluid flow throgh

vertical channel filled with saturated porous media. Entropy, 15(11):4589–4606.

Makinde, O. D., Khamis, S. A., Tshehla, M. S., and Franks, O. (2014). Analysis of heat transfer in

Berman flow of nanofluids with Navier slip, viscous dissipation, and convective cooling. Advances in

Mathematical Physics, 2014:13pages.

Mansour, M. A., Bakeir, M. A., and Chamkha, A. (2014). Natural convection inside a C-shaped

nanofluid-filled enclosure with localized heat sources. International Journal of Numerical Methods

for Heat and Fluid Flow, 24(8):1954–1978.

Martin, M. J. and Boyd, D. I. (2006). Momentum and heat transfer in a laminar boundary layer with slip

flow. Journal of Thermophysics and Heat Transfer, 20(4):710–719.

Maxwell, J. C. (1881). Treatise on Electricity and Magnetism. Clarendon, Oxford, UK, 2rd edition.

Maxwell, J. C. (1904). Electricity and magnetism. Clarendon, Oxford, 3rd edition.

Morton, K. W. and Mayers, D. F. (2005). Numerical Solution of Partial Differential Equations: An

Introduction. Cambridge University Press.

Motsumi, T. and Makinde, O. D. (2012). Effects of thermal radiation and viscous dissipation on boundary

layer flow of nanofluids over a permeable moving flat plate. Physica Scripta, 86(4):8pages.

Moussy, Y. and Snider, A. D. (2009). Laminar flow over pipes with injection and suction through the

porous wall at low Reynolds numbers. Journal of Membrane Science, 327(1):104–107.

Mutuku-Njane, W. N. and Makinde, O. D. (2013). Combined effect of buoyancy force and navier slip

on MHD flow of a nanofluid over a convectively heated vertical porous plate. The Scientific World

Journal, 49:8pages.

Mutuku-Njane, W. N. and Makinde, O. D. (2014a). Hydromagnetic bioconvection of nanofluid over a

permeable vertical plate due to gyrotactic microorganisms. Computer and Fluids, 95:88–97.

Mutuku-Njane, W. N. and Makinde, O. D. (2014b). MHD nanofluid flow over a permeable vertical plate

with convective heating. Journal of Computational and Theoretical Nanoscience, 11(3):667–675.

Na, T. Y. (1979). Computational Methods in Engineering Boundary Value Problems. Academic Press,

New York.

Namburu, P. K., Misra, D., and Das, D. K. (2007). Viscosity of copper oxide nanoparticles dispersed in

ethylene glycol and water mixture. Experimental Thermamal and Fluid Science, 32(2):397–402.

129



Navier, C. L. M. H. (1823). Memoire sur les lois du mouvement des fluides. Memoires de l’Academie

Royale des Sciences de l’Institutde France, 6:389–440.

Nazari, M., Ashouri, M., Kayhani, M. H., and Tamayol, A. (2015). Experimental study of convective

heat transfer of a nanofluid through a pipe filled with metal foam. International Journal of Thermal

Science, 88:33–39.

Olanrewaju, A. M. and Makinde, O. D. (2013). On boundary layer stagnation point flow of a nanoflu-

id over a permeable flat surface with Newtonian heating. Chemical Engineering Communications,

200(6):836–852.

Oxarango, L., Schmitz, P., and Quintard, M. (2004). Laminar flow in channels with wall suction or

injection: a new model to study multi-channel filtration systems. Chemical Engineering Science,

59(5):1039–1051.

Ozkol, I., Komurgoz, G., and Arikoglu, A. (2007). Entropy generation in the laminar natural convection

from a constant temperature vertical plate in an infinite fluid. Journal of Power Energy, 221(5):609–

616.

Oztop, H. F. and Abu-Nada, E. (2008). Numerical study of natural convection in partially heated rect-

angular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5):1326–

1336.

Pak, B. C. and Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submi-

cron metallic oxide particles. Experimental Heat Transfer, 11(2):151–170.

Patrulescu, F. O., Grosan, T., and Pop, I. (2014). Mixed convection boundary layer flow from a vertical

truncated cone in a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow,

24(5):1175–1190.

Paul, A. D. and Gorazo, M. (2007). Fluid Dynamics with a Computational Perspective. Cambridge

University Press, New York.

Pawel, K., Ravi, P., and Jacob, E. (2008). Thermal conductance of nanofluids: is the controversy over?

Journal of Nanoparticle, 10(7):1089–1097.

Pederson, R. J. and Kinney, R. B. (1971). Entrance-region heat transfer for laminar flow in porous tubes.

International Journal of Heat and Mass Transfer, 14(1):159–161.

130



Raithby, G. D. (1971). Laminar heat transfer in the thermal entrance region of circular tubes and two-

dimensional rectangular ducts with wall suction and injection. International Journal of Heat and Mass

Transfer, 14(2):224–243.

Raju, K. S. N. (2011). Fluid Mechanics, Heat Transfer, and Mass Transfer. John Wiley &Sons, In-

c.,Hoboken, New Jersey.

Rana, G. C., Thakur, R. C., and Kango, S. K. (2014). On the onset of thermosolutal insatability in a layer

of an elastico-viscous nanofluid in porous media. FME Transactions, 42(1):1–9.

Sahin, A. Z. (1999). Effect of variable viscosity on the entropy generation and pumping power in a

laminar fluid flow through a duct subjected to constant heat flux. Heat and Mass Transfer, 35(6):499–

506.

Sellars, J. R. (1955). Laminar flow in channels with porous walls at high suction Reynolds numbers.

Journal of Applied Physics, 26(4):489–490.

Senthilkumar, R., Vaidyanathan, S., and Sivaraman, B. (2012). Effect of inclination angle in heat pipe

performance using copper nanofluid. Procedia Engineering, 38:3715–3721.

Sheikholeslami, M., Ellahi, R., Hassan, M., and Soleimani, S. (2014). A study of natural convection heat

transfer in a nanofluid filled enclosure with elliptic inner cylinder. International Journal of Numerical

Methods for Heat and Fluid Flow, 24(8):1906–1927.

Singh, P., Tomer, N. S., Kumar, S., and Sinha, D. (2010). MHD oblique stagnation-point flow towards

a stretching sheet with heat transfer. International Journal of Applied Mathematics and Mechanics,

6(13):94–111.

Sorour, M. M., Hassab, M. A., and Estafanous, S. (1987). Developing laminar flow in a semiporous two-

dimensional channel with nonuniform transpiration. International Journal of Heat and Fluid Flow,

8(1):44–54.

Stokes, V. K. (1984). Theories of Fluids with Microstructure: An Introduction. Springer: New York.

Targui, N. and Kahalerras, H. (2014). Analysis of a double pipe heat exchanger performance by use of

porous baffles and nanofluids. International Journal of Mechanical, Aerospace, Industrial, Mecha-

tronic and Manufacturing Engineerig, 8(9):1581–1586.

Terrill, R. M. (1982). An exact solution for flow in a porous pipe. Journal of Applied Mathematical

Physics, 33(4):547–552.

131



Terrill, R. M. (1983). Laminar flow in a porous tube. Journal of Fluids Engineering, 105(3):303–307.

Tham, L., Nazar, R., and Pop, I. (2011). Mixed convection boundary layer flow from a horizontal

circular cylinder in a nanofluid. International Journal of Numerical Methods for Heat and Fluid

Flow, 22(5):576–606.

Theuri, D. and Makinde, O. D. (2014). Thermodynamic analysis of variable viscosity MHD unsteady

generalized Couette flow with permeable walls. Applied and Computational Mathematics, 3:1–8.

Tsangaris, S., Kondaxakis, D., and Vlachakis, N. W. (2007). Exact solution for flow in a porous pipe

with unsteady wall suction and/or injection. Communication in Nonlinear Science and Numerical

Simulation, 12(7):1181–1189.

Vafai, K. and Tien, C. L. (1982). Boundary and inertia effects on convective mass transfer in porous

media. International Journal of Heat and Mass Transfer, 25(8):1183–1190.

Wang, J., Zhu, J., Zhang, X., and Chen, Y. (2013). Heat transfer and pressure drop of nanofluids con-

taining carbon nanotubes in laminar flows. Experimental Thermal and Fluid Science, 44:716–721.

Wang, X., Xu, X., and Choi, S. S. U. (1999). Thermal conductivity of nanoparticle-fluid mixture. Journal

of Thermophysics and Heat Transfer, 13(4):474–480.

Wang, X. Q. and Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review. Interna-

tional Journal of Thermal Sciences, 46(1):277–284.

Wen, D. and Ding, Y. (2005). Experimental investigation into the pool boiling heat transfer of aqueous

based γ-alumina nanofluids. Journal of Nanoparticle Researsch, 7(2):265–274.

Xuan, Y. and Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluids.

Journel of Heat and mass Transfer, 125(1):151–165.

Yang, B. and Han, Z. H. (2003). Temperature-dependent thermal conductivity of nanorod-based nanoflu-

ids. Applied Physics Letters, 89(8):083111.

You, S. M., Kim, J. H., and Kim, K. H. (2003). Effect of nanoparticles on critical heat flux of water in

pool boiling heat transfer. Applied Physics Letters, 83(16):3374–3376.

Yuan, S. W. (1956). Further investigation of laminar flow in channels with porous walls. Journal of

Applied Physics, 27(3):267–269.

Zaturska, M. B., Drazin, P. G., and Banks, W. H. H. (1988). On the flow of a viscous fluid driven along

a channel by suction at porous walls. Fluid Dynamics Research, 4(3):151–178.

132



APPENDICES

Appendix A: Published Articles

1. O. D. Makinde, S. Khamis, M. S. Tshehla and O. Franks (2014). Analysis of Heat Transfer

in Berman Flow of Nanofluids with Navier Slip, Viscous Dissipation, and Convective Cooling,

Advances in Mathematical Physics, Article ID 809367, 13 pages.

2. Sara Khamis, Oluwole Daniel Makinde, Yaw Nkansah-Gyekye (2014). Modelling the effects of

variable viscosity in unsteady flow of nanofluids in a pipe with permeable wall and convective

Cooling, Applied and Computational Mathematics, 3(3): 75-84.

3. Sara Khamis Daniel Oluwole Makinde Yaw Nkansah-Gyekye (2015). Unsteady flow of variable

viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force, Interna-

tional Journal of Numerical Methods for Heat & Fluid Flow, 20 pages.

4. Sara Khamis, Oluwole Daniel Makinde & Yaw Nkansah-Gyekye (2015) Buoyancy-Driven Heat

Transfer of Water-Based Nanofluid in a Permeable Cylindrical Pipe with Navier Slip through a

Saturated Porous Medium, Journal of Porous Media, 18 (12): 1169-1180.

Appendix B

G1 = 1 +m4Bi− 4m4Bib+ 6m4Bib
2

G2 = −2m1m
2
4Bi

4 − 3780m2Prb+ 5670m2Prb
2 + 630m2Pr

+ 24m1m
2
4Bi

2b+ 232m2m
2
4PrBi

2 − 3294m2m4PrBib

+ 4536m2m− 4PrBib2 − 1875m2m
2
4Bi

2Prb+ 580m2m
2
4Prb

2Bi2

− 8694m2m
2
4PrBi

2b3 + 5670m2m
2
4prBi

2b2 + 5670m2m
2
4PrBi

2b4

+ 54m1m4Bib+ 594m2m4PrBi

G3 = 6m1m4Bib+ 70m2Pr − 135m2m4PrBib+ 24m2m4PrBi

− 420m2Prb+ 630m2Prb
2 + 189m2m4PrBib

2

133



Appendix C: MATLAB Code for the model in chapter 3

%function file

function ds = ode_sys1(t,s,delta_eta,Pr,

Ec,n,G,Nb,Nt,Re,Sc,eta,beta,Bi)

%input t the time variable (not used in this case)

% s the state vector

% k1,k2 model parameters

%output ds the derivative ds/dt at time t

w=zeros(1,n);

theta=w;

H=w;

dw=w;

dtheta=w;

dH=w;

for k=1:n

w(k) = s(k); %for clarity & readability, write the

theta(k) = s(n+k);

H(k)=s(2*n+k);

end

for k=1:n

if(k==1)

W1=w(k);

THETA1=theta(k);

h1=H(k);

W2=w(k+1);

THETA2=theta(k+1);

h2=H(k+1);

elseif(k==n)

W2=0;

THETA2=theta(n)-delta_eta*Bi*(theta(n)-1);

h2=H(n)-Nt/Nb*(theta(n)-delta_eta*Bi*(theta(n)-1)-theta(n));

W1=w(k-1);

THETA1=theta(k-1);
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h1=H(k-1);

else

W1=w(k-1);

THETA1=theta(k-1);

h1=H(k-1);

W2=w(k+1);

THETA2=theta(k+1);

h2=H(k+1);

end

dw(k)=G-Re*(W2-W1)/(2*delta_eta)

+(W2-2*w(k)+W1)/(delta_eta)ˆ2*exp(-beta*theta(k))

+exp(-beta*theta(k))*(W2-W1)/(2*eta(k)*delta_eta)

-beta*exp(-beta*theta(k))*(W2-W1)

*(THETA2-THETA1)/(4*delta_etaˆ2);

dtheta(k)=-Re*(THETA2-THETA1)/(2*delta_eta)

+(THETA2-2*theta(k)+THETA1)/(Pr*delta_etaˆ2)

+(THETA2-THETA1)/(2*eta(k)*delta_eta)

+Nb*(THETA2-THETA1)*(h2-h1)/(4*Pr*delta_etaˆ2)

+Nt/Pr*((THETA2-THETA1)/(2*delta_eta))ˆ2

+Ec*exp(-beta*theta(k))*((W2-W1)/(2*delta_eta))ˆ2;

dH(k)=-Re*(h2-h1)/(2*delta_eta)+(h2-2*H(k)

+h1)/(Sc*(delta_eta)ˆ2)

+(h2-h1)/(2*eta(k)*Sc*delta_eta)

+ Nt*(THETA2-2*theta(k)

+THETA1)/(Nb*(delta_eta)ˆ2);

end

ds = [dw’;dtheta’;dH’]; %collect output in vector ds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%SCRIPT file to run the ODE simulation for x->y->z->m

%close all

clear all
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clc

%global c,global i;

%c=[’k: ’;’r ’;’k--’;’k ’];

c=[’k--’;’r--’;’b--’;’g--’];

Pr = 6.2; %model parameter

Ec=1; %model parameter

Nb=0.1; %brownian motion parametr

Nt=0.1;%thermophorsis parametr

Sc=1;

Re=2;

G=1;

beta=0.1;

Bi=1;

%%%%%%%%%%%%%%%%%%%%%%% loop for varying parameter

% Re1=linspace(1,2,3);

% for i=1:length(Re1);

% Re=Re1(i);

tspan = 0:0.01:5;%time interval

delta_eta=0.005;

n=1/delta_eta-1;

eta=delta_eta:delta_eta:1-delta_eta;

s0 =[zeros(1,n),zeros(1,n),ones(1,n)];%initial values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[t,s] = ode15s(@ode_sys1,tspan,s0,[],delta_eta,Pr,

Ec,n,G,Nb,Nt,Re,Sc,eta,beta,Bi);

w1=s(:,1:n);

theta1=s(:,n+1:2*n);

H1=s(:,2*n+1:3*n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%skin friction and Nusselt number

Bi=linspace(1,10);

sk=skin(Bi,beta,w1,theta1,delta_eta,t);

plot(Bi,sk)

figure
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Nu=nusselt(Bi,theta1,t);

[ETA,T]=meshgrid(eta,t’);

% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%velocity profiles against time

figure

plot(t,w1(:,0.1*(n+1)),c(1),’LineWidth’,2)

hold

plot(t,w1(:,0.3*(n+1)),c(2),’LineWidth’,2)

plot(t,w1(:,0.5*(n+1)),c(3),’LineWidth’,2)

plot(t,w1(:,0.7*(n+1)),c(4),’LineWidth’,2)

% %title(’Solution Curves for the Model’)

ylabel(’Velocity ( W )’)

xlabel(’Time ( t )’)

%Temperature profiles against time

figure

plot(t,theta1(:,0.1*(n+1)),c(1),’LineWidth’,2)

hold

plot(t,theta1(:,0.3*(n+1)),c(2),’LineWidth’,2)

plot(t,theta1(:,0.5*(n+1)),c(3),’LineWidth’,2)

plot(t,theta1(:,0.7*(n+1)),c(4),’LineWidth’,2)

ylabel(’Temperature ( \theta )’)

xlabel(’Time ( t )’)

%Nanoparticles Concentration profiles against time

figure

plot(t,H1(:,0.1*(n+1)),c(1),’LineWidth’,2)

hold

plot(t,H1(:,0.3*(n+1)),c(2),’LineWidth’,2)

plot(t,H1(:,0.5*(n+1)),c(3),’LineWidth’,2)

plot(t,H1(:,0.7*(n+1)),c(4),’LineWidth’,2)

%title(’Solution Curves for the Model’)

ylabel(’Concentration ( H )’)

xlabel(’Time ( t )’)

% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%velocity profiles against radius
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figure

plot([eta,1],[w1(50,:),0],c(1),’LineWidth’,2)

hold

plot([eta,1],[w1(100,:),0],c(2),’LineWidth’,2)

plot([eta,1],[w1(150,:),0],c(3),’LineWidth’,2)

plot([eta,1],[w1(200,:),0],c(4),’LineWidth’,2)

% title(’Solution Curves for the Model’)

ylabel(’Velocity ( W )’)

xlabel(’Distance ( \eta )’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Temperature profiles against radius

figure

plot([eta],[theta1(50,:)],c(1),’LineWidth’,2)

hold

plot([eta],[theta1(100,:)],c(2),’LineWidth’,2)

plot([eta],[theta1(150,:)],c(3),’LineWidth’,2)

plot([eta],[theta1(200,:)],c(4),’LineWidth’,2)

ylabel(’Temperature ( \theta )’)

xlabel(’Distance ( \eta )’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Nanoparticles concentration profiles against radius \eta

figure

plot(eta,H1(50,:),c(1),’LineWidth’,2)

hold

plot(eta,H1(100,:),c(2),’LineWidth’,2)

plot(eta,H1(150,:),c(3),’LineWidth’,2)

plot(eta,H1(200,:),c(4),’LineWidth’,2)

%title(’Solution Curves for the Model’)

ylabel(’Concentration ( H )’)

xlabel(’Distance ( \eta )’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%plot([eta],[theta1(300,:)],c(i,:),’LineWidth’,2)

%plot([eta],[w1(300,:)],c(i,:),’LineWidth’,2)
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% % % plot(t,H1(:,0.6*(n+1)),c(i:i),’LineWidth’,2)

% plot(eta,H1(300,:),c(i,:),’LineWidth’,2)

% hold on

%pause

% end

% ylabel(’Nanoparticles concentration (H)’)

% xlabel(’Distance (\eta)’)

Appendix D: MATLAB code for the model in chapter 5 (Method of line)

%function file

function ds = ode_sys1(t,s,delta_eta,Pr,Gr,n,A,Re,phi,Ec,

eta,beta,tau,b1,b2,b3,S,M,lambda)

% s the state vector

%output ds the derivative ds/dt at time t

w(1:n) = s(1:n); %for clarity & readability,

theta(1:n) = s(n+1:2*n);

for k=1:n

if(k==1)

W1=w(k);

THETA1=theta(k);

W2=w(k+1);

THETA2=theta(k+1);

elseif(k==n)

W2= lambda*w(k)*exp(-beta)./(lambda*exp(-beta)

-delta_eta*(1-phi)ˆ(2.5));

THETA2=1;

W1=w(k-1);

THETA1=theta(k-1);

else

W1=w(k-1);

THETA1=theta(k-1);

W2=w(k+1);
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THETA2=theta(k+1);

end

dw(k)=-Re*(W2-W1)/(2*delta_eta)+

b1*A+b1*exp(-beta*theta(k))/(1-phi)ˆ(2.5)*((W2-2*w(k)

+W1)/delta_etaˆ2+1/eta(k)*(W2-W1)/(2*delta_eta)

-beta*(W2-W1)*(THETA2-THETA1)/(4*delta_etaˆ2))

+b2*Gr*theta(k)-S*b1*(1-phi)ˆ(-2.5)*exp(-beta*theta(k))*w(k)

-M*Re*b1*(w(k))ˆ2;

dtheta(k)=-Re*(THETA2-THETA1)/(2*delta_eta)

+b3/(Pr*(1-phi+phi*tau))*((1/(eta(k)*2*delta_eta)

*(THETA2-THETA1))+(THETA2-2*theta(k)+THETA1)/delta_etaˆ2)

+Ec*exp(-beta*theta(k))/((1-phi)ˆ(2.5)*(1-phi+phi*tau))

*((W2-W1)/(2*delta_eta))ˆ2

+Ec*S*exp(-beta*theta(k))*((1-phi)ˆ(2.5)

*(1-phi+phi*tau))ˆ(-1)*w(k)ˆ2

+M*Re*Ec*(1-phi+phi*tau)ˆ(-1)*(w(k))ˆ3;

end

ds = [dw’;dtheta’]; %collect the output in vector ds

%SCRIPT file to run the ODE simulation (chapter 5)

% close all

% clear all

% clc

c=[’k’;’r’;’b’;’g’];

%c=[’k-.’;’r-.’;’b-.’;’g-.’];

Pr = 6.2; %model parameter

A=1;

Gr=0.1;

beta=0.5;

Re=2;

phi=0.3;

Ec=1;

S=0.5;

M=10;
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Bi=0;

lambda=0.5;

% copper

% ks=401; %thermal conductivity of copper

% rho_s=8933; %copper

% cp_s=385; %cu

% gama_s=1.67e-5; %copper

%sigma_s=59.6e+6;-

%aluminium

% %%%%%%%%%%%%%%%%%%%%%%%%%%Aluminium

ks=40; %thermal conductivity of Aluminium

rho_s= 3970; %aluminium

cp_s=765;%aluminium

gama_s=0.85e-5; %aluminium

sigma_s=35e+6;

% %%%%%%%%%%%%%%%%%%%%%5

kf=0.613; %thermal conductivity of water

rho_f=997.1;%density of water

cp_f=4179;%water

gama_f=210e-6;%volumetric expansion coeffient/K

%sigma_f=5.5e-6;

tau=(rho_s*cp_s)/(rho_f*cp_f);

b1=rho_f/((1-phi)*rho_f+phi*rho_s);

b2=1-phi+phi*gama_s/gama_f;

b3=((ks+2*kf)-2*phi*(kf-ks))/((ks+2*kf)+phi*(kf-ks));

%b4=1-phi+phi*sigma_s/sigma_f;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tspan = 0:0.01:15; %time interval

% S1=linspace(1,4,4);

% %Nu=zeros(length(tspan),length(S1));

% for i=1:length(S1);

% S= S1(i);

delta_eta=0.005;

n=1/delta_eta-1;
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eta=delta_eta:delta_eta:1-delta_eta;

s0 = [zeros(1,n),zeros(1,n)]; %initial values

[t,s] = ode15s(@ode_sys1,tspan,s0,[],delta_eta,Pr,Gr,n,A,Re,phi,

Ec,eta,beta,tau,b1,b2,b3,S,M,lambda);

w1=s(:,1:n);

theta1=s(:,n+1:2*n);

eta=[0 eta 1];

% w1=[w1(:,1) w1 zeros(size(w1,1),1)];

w1=[w1(:,1) w1 lambda*w1(:,end-1).*exp(-beta*theta1(:,end))

./(lambda*exp(-beta*theta1(:,end))-delta_eta*(1-phi)ˆ(2.5))];

theta1=[theta1(:,1) theta1 ones(length(t),1)];

%theta1=[theta1(:,1) theta1 (theta1(:,end)

+Bi*delta_eta)/(1+Bi*delta_eta)];

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

plot(t,w1(:,0.1*(n+1)),’c’,’LineWidth’,2)

hold on

plot(t,w1(:,0.5*(n+1)),’y’,’LineWidth’,2)

plot(t,w1(:,0.6*(n+1)),’r’,’LineWidth’,2)

plot(t,w1(:,0.7*(n+1)),’b’,’LineWidth’,2)

plot(t,w1(:,0.8*(n+1)),’k’,’LineWidth’,2)

plot(t,w1(:,0.9*(n+1)),’g’,’LineWidth’,2)

ylabel(’Velocity ( W )’)

xlabel(’Time ( t )’)

% figure

% plot(t,theta1(:,0.1*(n+1)),’c’,’LineWidth’,2)

% hold on

% plot(t,theta1(:,0.5*(n+1)),’y’,’LineWidth’,2)

% plot(t,theta1(:,0.6*(n+1)),’r’,’LineWidth’,2)

% plot(t,theta1(:,0.7*(n+1)),’b’,’LineWidth’,2)

% plot(t,theta1(:,0.8*(n+1)),’k’,’LineWidth’,2)

% plot(t,theta1(:,0.9*(n+1)),’g’,’LineWidth’,2)

% ylabel(’Temperature ( \theta )’)
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% xlabel(’Time ( t )’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

plot(eta,w1(10,:),’k’,’LineWidth’,2)%

hold on

plot(eta,w1(50,:),’b’,’LineWidth’,2)

plot(eta,w1(200,:),’r--’,’LineWidth’,2)

plot(eta,w1(300,:),’y’,’LineWidth’,2)

plot(eta,w1(end,:),’r’,’LineWidth’,2)

ylabel(’Velocity ( W )’)

xlabel(’Distance ( \eta )’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure

plot(eta,theta1(100,:),’k--’,’LineWidth’,2)

hold on

plot(eta,theta1(200,:),’b--’,’LineWidth’,2)

plot(eta,theta1(500,:),’c’,’LineWidth’,2)

plot(eta,theta1(1400,:),’y--’,’LineWidth’,2)

plot(eta,theta1(end,:),’r--’,’LineWidth’,2)

% ylabel(’Temperature ( \theta )’)

% xlabel(’Distance ( \eta )’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% hold on

% plot(eta,theta1(end,:),c(i,:),’LineWidth’,2.5)

% %plot(eta,w1(end,:),c(i,:),’LineWidth’,2.5)

%

% % % % % % % % %pause

% ylabel(’\theta ’)

% %ylabel(’W’)

% xlabel(’\eta’)

% end

%legend(’Re=-2’,’Re=0’,’Re=2’)

Skin friction and Nusselt number
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% sk(:,i)=-(1-phi)ˆ-(2.5)*(w1(:,end)-w1(:,end-1))/delta_eta;

Nu(:,i)=-b3*(theta1(:,end)-theta1(:,end-1))/delta_eta;

% end

% hold on

% plot(lambda1,sk(end,:),’b’)

% % %plot(t,sk(:,end),’r--’)

% xlim([0.5 1])

% ylabel(’C_f ’)

% % %xlabel(’$\varphi$’,’Interpreter’,’Latex’)

% xlabel(’\lambda’)

%plot(t,sk(:,end),’k--’)

% figure

% plot(lambda1,Nu(end,:),’k:’)

% % plot(t,Nu(:,end),’r--’)

% xlim([0.5 1])

% % % % % % % % plot(Gr1,Nu,’k’)

% ylabel(’Nu ’)

% % xlabel(’$\varphi$’,’Interpreter’,’Latex’)

%plot(eta,w1(end,:),’LineWidth’,2)
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