
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Materials, Energy, Water and Environmental Sciences Research Articles [MEWES]

2024-02-02

Future Trade-Off for Water Resource

Allocation: The Role of Land

Cover/Land Use Change

Sigalla, Onesmo

MDPI

https://doi.org/10.3390/w16030493

Provided with love  from The Nelson Mandela African Institution of Science and Technology



Citation: Sigalla, O.Z.; Twisa, S.;

Chilagane, N.A.; Mwabumba, M.F.;

Selemani, J.R.; Valimba, P. Future

Trade-Off for Water Resource

Allocation: The Role of Land

Cover/Land Use Change. Water 2024,

16, 493. https://doi.org/

10.3390/w16030493

Academic Editors: Renato Morbidelli,

Carla Saltalippi, Alessia Flammini and

Jacopo Dari

Received: 7 November 2023

Revised: 4 December 2023

Accepted: 5 December 2023

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Future Trade-Off for Water Resource Allocation: The Role of
Land Cover/Land Use Change
Onesmo Zakaria Sigalla 1,2,* , Sekela Twisa 3 , Nyemo Amos Chilagane 4 , Mohamed Fadhili Mwabumba 5 ,
Juma Rajabu Selemani 1 and Patrick Valimba 6

1 Nelson Mandela-African Institution of Science and Technology, Nelson Mandela Road,
Arusha P.O. Box 447, Tanzania; juma.selemani@nm-aist.ac.tz

2 Rain Drop Initiative, 109 Regent Estate, Mikocheni, Dar es Salaam P.O. Box 8703, Tanzania
3 Water Resource Center of Excellence, Water Resource Department, Ministry of Water,

Dodoma P.O. Box 456, Tanzania; sekelat@yahoo.co.uk
4 Tanzania Research and Conservation Organization, Morogoro P.O. Box 6873, Tanzania;

nchilagane@yahoo.com
5 Tanzania Meteorological Authority, Dar es Salaam P.O. Box 3056, Tanzania; mwabbumba@gmail.com
6 Department of Water Resources Engineering, College of Engineering and Technology, University of Dar es

Salaam, Dar es Salaam P.O. Box 35131, Tanzania; pvalimba@yahoo.com
* Correspondence: onesigalla@gmail.com; Tel.: +255-(713)-535-997 or +255-(754)-535-997

Abstract: Global croplands, pastures, and human settlements Have expanded in recent decades.
This is accompanied by large increases in energy, water, and fertilizer consumption, along with
considerable losses of biodiversity. In sub-Saharan Africa, policies are implemented without critical
consideration; e.g., agricultural expansions impair ecosystem services. We studied land use/cover
and the associated rate of change for four time epochs, i.e., 1991, 2001, 2011, and 2021. This employed
remote sensing and GIS techniques for analysis, while future projections were modeled using cellular
automata and the Markov chain. The kappa coefficient statistics were used to assess the accuracy
of the final classified image, while reference images for accuracy assessment were developed based
on ground truthing. Overall change between 1991 and 2021 showed that major percentage losses
were experienced by water, forest, woodland, and wetland, which decreased by 8222 Ha (44.11%),
426,161 Ha (35.72%), 399,584 Ha (35.01%), and 105,186 Ha (34.82%), respectively. On the other Hand,
a percentage increase during the same period was experienced in cultivated land, built-up areas, and
grasslands, which increased by 659,346 Ha (205.28%), 11,894 Ha (159.93%), and 33,547 Ha (98.47%),
respectively. However, this expansion of thirsty sectors Has not reversed the increasing amount of
water discharged out of the Kilombero River catchment. We recommend the promotion of agroforests
along with participatory law enforcement and capacity building of local communities’ institutions.

Keywords: land use/land cover; remote sensing and GIS; water allocation; water resource management

1. Introduction

On a global scale, a recent realization is that, in recent decades, human activities Have
increasingly become recognized as a major force shaping the biosphere [1]. These activities
influence the alteration of the terrestrial environment at unprecedented rates, magnitudes,
and spatial scales [2]. This is caused by expansions in global land allocated for crops,
pastures, human settlement, and conservation, which in turn shape consumption of energy,
water, fertilizer, and other ecosystem resources [3,4]. Such changes in land use Have
enabled humans to appropriate an increasing share of the planet’s resources that potentially
undermine the capacity of ecosystems to sustain food production, maintain freshwater and
forest resources, regulate climate and air quality, and ameliorate infectious diseases [3].
Land use (LU) and land cover (LC) change is a hybrid phenomenon. On the one Hand, LU
denotes human employment of the land for a number of social and economic activities,
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while LC denotes the physical and biotic character of the land surface as observed naturally
or after alteration following human activities [5–7]. LULC change causes a number of effects
manifested in biodiversity, the hydrological cycle, land productivity, and the sustainability
of the natural environment [8,9]. In the past and in the coming years, land use dynamics Has
been playing a wide role as a driving force in the alteration of the global environment [9].
Land use/cover thus presents us with a dilemma. On one Hand, many LULC practices
are absolutely essential for humanity because they provide critical natural resources and
ecosystem services, such as food, fiber, shelter, and freshwater. On the other Hand, some
forms of land use/land cover are degrading the ecosystems and services upon which
we depend.

In many parts of Africa, including Tanzania, scholars Have indicated a declining
state of natural vegetation, which is being replaced by altered land use/land cover follow-
ing human socio-economic activities. In sub-Saharan Africa, projections show that land
use/land cover changes will further alter regional hydrologic conditions and result in a
variety of impacts on ecosystem functioning [10,11]. One such aftermath of degradation
is the freshwater water shortage, which Has become a key global threat restricting the
sustainable development of society and the economy [12–15]. This general water shortage
and its natural spatial and temporal uneven distribution, coupled with the increasing
demand for water, Has intensified conflicts among water users [16]. Studies Have proven
that such problems can be effectively alleviated through an informed understanding of the
changes, their drivers, and a sound water resource allocation mission [17,18]. Needless
to say, water resource allocation is a highly complex decision-making issue that requires
consideration across multilevel, multiagent, multi-objective, and non-linear correlations,
which are usually affected by conflicting objectives and socio-economic conditions [19].
The common understanding of the causes of land use/land cover change is dominated by
simplifications, which, in turn, underlie many ineffective environmental and development
policies [20]. Understanding the trend of land use/land cover change in a particular place
is a good place to begin to address the impacts born out of these changes.

Kilombero River catchment (KRC), as is the case for many other parts of Tanzania,
is sparsely gauged to assist in determining the impacts of land use/land cover change
over time [21,22]. The current study Has employed remote sensing (RS) and geographic
information system (GIS) to understand historical and projected LULC change. RS tech-
niques Have been in use since the early 1970s by employing optical and thermal sensors
mounted in moving objects such as boats, aircraft, and satellites to provide both spatial
and temporal information needed to monitor changes on the Earth’s surface [23,24]. GIS,
on the other Hand, denotes systems that are used to store, retrieve, analyze, and display
data that are represented spatially or geographically [25]. Integration of remotely sensed
data, global positioning system (GPS), and GIS technologies provides a valuable tool for
monitoring and assessing the Earth’s surfaces [25,26]. Remotely sensed data can be used
to create a permanent, geographically located database to provide a baseline for future
comparisons. The integrated use of remotely sensed data, GPS, and GIS enables researchers
and managers to develop management plans for a variety of natural resource management
applications [26].

With the hindsight of how and to what extent land use/land cover change Have
impacted important catchments such as the Great Ruaha River catchment (GRRC feeds
the second largest national parks in Africa, i.e., the Ruaha National Park and propels
more than 50% of the potential installed hydropower generation potential in Tanzania
(before the 2000 MW of Nyerere HEP, which is under construction)) [27–30], the Wami-
Ruvu River catchment (Ruvu catchment forms the water towers for the largest commercial
city of Tanzania, Dar es Salaam) [30–32] and others, it is imperative to study critical
catchments such as the KRC which makes more than 60% of the Rufiji basin water flows
to the Indian Ocean [33,34]. In addition, the catchment feeds the 2000 MW hydro-electric
production (HEP), the Nyerere HEP, formally known as Siegler’s Gorge [35], the largest East
African mangrove forest, and a mix of iconic ecosystems in between [36–38]. Establishing
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a sound understanding of the historical, current, and future trends of land use/land
cover change and its relationship with river flow trends provides a solid foundation upon
which development objectives and constraints can be pegged in these agrarian economies
dependent on ecosystem services. This research paper, therefore, was inspired by the three
critical research questions:

i. What is the historical, current, and future land use and land cover trend for the
Kilombero River catchment?

ii. What is the rate of change of the natural ecosystem services offered by this catchment?
iii. In the face of these changes, what are the policy tradeoffs given the role that KRC is

poised to play in the national economy?

2. Material and Methods
2.1. Study Area

The current assessment focused on the hydrologic boundaries of the Kilombero River
Catchment (Figure 1), which is part of Tanzania’s largest hydrologic basin, the Rufiji River
Basin (RRB), spreading across 177,420 km2 (about 20% of Tanzania’s land mass). Kilombero
River catchment in particular extends between longitudes 34◦00′ E–37◦20′ E and latitudes
07◦40′ S–10◦00′ S and covers an area of approximately 40,000 km2 [33]. The cross-section
of the catchment (Figure 2) is characteristic of a graben structure, with the Udzungwa
mountain ranges and Mbarika escarpments forming the northerly and southerly crests,
respectively, while the middle part (the flood plain) forming the trough extending around
1967 km2 [39,40]. This middle part constitutes one of the largest wetlands in East Africa,
i.e., Kibasira wetland, which is at around 300 m above mean sea level [41], and most of its
area is internationally designated as a Ramsar site for its environmental significance [42].
Kilombero River catchment is the most important catchment with respect to agriculture,
energy production, natural resources, and flow to RRB [42]. Tributaries contributing to the
Kilombero River catchment are Lumemo, Luipa, Mngeta, Kihansi, Mpanga, Mnyela, Ruhuji,
and Furua. Most areas of KRC are situated in the administrative region of Morogoro, where
its most developed center (Ifakara) is found some 400 km from Dar es Salaam.
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2.2. Methods

The study employed GIS and RS techniques to carry out land use/cover assessments.
This started with the acquisition of geospatial data and subsequent image processing and
analysis. Figure 3 below shows a methodological chart to simplify visualization of the
process undertaken in this study.
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2.3. Data Acquisition

Spatial and temporal land use/land cover transformations for KRC were detected
for four time epochs (1991, 2001, 2011, and 2021) based on the analysis of remote sensing
Landsat imagery and GIS. The selection of time epochs was meant to coincide with changes
in national water policies since their first promulgation in 1991. Appropriate Landsat
imageries were acquired from the United States Geological Survey (https://earthexplorer.
usgs.gov/ accessed on 3 November 2022), i.e., 30 m resolution, multispectral level-2 data
with cloud cover less than 10% (Table 1). These were accessed free of charge and proved by
other scholars to Have Had excellent results [43,44], although higher-resolution images are
in existence. Field observations were made prior to image classification to establish accurate
locational point data for each land use/land cover class included in the classification.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Water 2024, 16, 493 5 of 20

During ground truthing, a total of eight (8) major land use/land covers were identified,
which are forest, woodland, bushland, grassland, water bodies, wetland, cultivated land,
and built-up areas (Table 2).

Table 1. Satellite imagery data.

Year Spacecraft ID Sensor ID Path/Row Acquisition Date Cloud Cover (%)

1991 Landsat 5

TM (SAM) 167/65 5 June 1991 4

TM (SAM) 167/66 24 August 1991 10

TM (SAM) 168/65 15 August 1991 2

TM (SAM) 168/66 15 August 1991 8

TM (SAM) 168/67 15 August 1991 4

2001 Landsat 7

ETM (SAM) 167/65 7 July 2000 2

ETM (SAM) 167/66 7 July 2000 1

ETM (SAM) 168/65 6 September 2002 1

ETM (SAM) 168/66 18 June 2002 7

ETM (SAM) 168/67 18 June 2002 10

2011 Landsat 5/7

ETM
(BUMPER) 167/65 8 July 2012 6

ETM (BMPER) 167/66 23 August 2011 10

TM (SAM) 168/65 21 July 2011 3

TM (SAM) 168/66 5 July 2011 3

TM (SAM) 168/67 5 July 2011 5

2021 Landsat 8

OLI_TIRS 167/65 26 August 2021 13

OLI_TIRS 167/66 9 July 2021 1

OLI_TIRS 168/65 5 November 2021 2

OLI_TIRS 168/66 24 November 2021 2

OLI_TIRS 168/67 24 November 2021 1

Table 2. Land use/land cover classification scheme.

Land Use/Land Cover Description

Forest
Area of land covered with at least 10% tree crown cover, naturally
grown or planted and or 50% or more shrub and tree
regeneration cover

Woodland
Area of land covered with low density trees with height between
forming closed to open Habitat with plenty of sunlight and
limited shade

Bushland Area dominated with bushes and shrubs with occasional short
emergent trees

Grassland Land area dominated by grasses

Water body Area within body of land, filled with water, localized in a basin,
which rivers flow into or out of them

Wetland Land area that is saturated with water either permanent or
seasonally including valley bottoms

Cultivated land Area subjected to agricultural production farms with crops
and Harvested crop land

Built-up area Manmade infrastructure (roads and buildings) and settlement
(town and villages)
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2.4. Image Pre-Processing and Classification

Images were geometrically rectified to ensure geometric compatibility and registered
to the UTM map coordinate system, UTM zone 37 South, Spheroid Clarke 1880, Datum Arc
1960. An image mosaic was conducted to merge together images of the same year with the
same path and different rows so as to create a single image that covers the entire cluster. The
unsupervised image classification using the k-means clustering algorithm was conducted
for all images using ERDAS IMAGINE. The k-means algorithm partitions the data into k
distinct, non-overlapping clusters based on the similarity of the data points, which helps
reduce intra-class variability and enhance the separability between different land cover
classes. A maximum of thirty-six (36) land use/land cover classes were formulated. The
formulated classes were visually interpreted and confirmed through the use of ground-
truth data and hybrid Google Maps. Similar classes were joined and re-coded into general
classes based on the classification scheme established during ground truthing (Table 2).

The selection of image processing techniques needed careful consideration of the
balance between interpretability and performance [45,46]. The traditional method yields
results that are more easily interpretable, facilitating a better understanding of the con-
tributions made by different features in the decision-making process. This advantage is
particularly pronounced when dealing with small datasets, as modern techniques typically
necessitate a substantial amount of labeled data for effective training [46]. In the case of
a small dataset, it is often recommended to employ traditional approaches in order to
minimize the likelihood of overfitting the model [45,46]. Therefore, due to the limited
dataset in the study area, this study was performed using a hybrid of supervised and
unsupervised image classification techniques.

2.5. Accuracy Assessment and Change Detection Analysis

The study applied users’ and producers’ accuracies to conduct a cross-tabulation
between the class values and the ground truth, which resulted in an error matrix. To find
out how accurate the classification was, the non-parametric kappa coefficient statistics
were used to assess the accuracy of the final classified image (Equation (1)) by looking
at the diagonal elements in the confusion matrix [47]. The authors adopted the use of
kappa statistics as one of the best-applied accuracy assessment tests performed in many
studies across the region [48–51]. Furthermore, it is now widely used as a chance-corrected
measure of nominal agreement in a variety of application areas [52,53]. In the context of
interobserver agreement studies, different scholars Have persuaded the scientific world
in favor of the usability of this statistic over other measures of agreement that Have been
proposed [53]. However, there are occasional limitations where the percentage of observer
agreement may be high while the kappa coefficient is agreeably low [53]. As such, the
assessment of correctness involved the utilization of 90 pixels per category, based on both
visual interpretation and ground truth data. The reference data utilized for ground-truthing
purposes was acquired from a high-resolution Google Earth platform as well as through a
field visit that involved the use of GPS technology. Additionally, previously classified land
use and land cover (LULC) data were also employed in this study.

K =
N ∑r

i=1 xii − ∑r
i=1(xi+ × x+i)

N2 − ∑r
i=1(xi+ × x+i)

(1)

where N is the total number of sites in the matrix, r is the number of rows in the matrix, xii
is the number in row i and column i, x+i is the total for row i, and xi+ is the total for column.

Change detection analysis was conducted to quantify the extent, rate, and location
of changes in land use between different time epochs. The study used post-classification
comparisons to assess land use and land cover changes. The approach identifies changes
by comparing independently classified multi-date images pixel-by-pixel using a change-
detection matrix [54]. The estimation for the rate of change for the different land covers
was computed based on [55].
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2.6. Predicting Future Land Use/Land Cover Change

Cellular automata and Markov chain (CA-Markov) analysis were used to predict the
spatial distribution of land use/land cover in the future. Classified land use/land cover
maps for 2011, which represent the past, and 2021, which represent the current, were
used to generate conditional transition probabilities (Table 3), which were later used to
simulate land use/land cover for 2031 and 2041. The Markov chain is a statistical tool that
describes the probability of land use/land cover changing from one time period to another
by developing a transitional probability matrix between the first period and second period
based on the spatial neighborhood effects [56–58]. The spatial neighborhood effect is the
ability of neighboring cells to influence the transition of a given cell into different states [27].
This model was based on using and evaluating land use/land cover layers from previous
years to predict the spatial distribution of land use/land cover in the future [59]. CA, on
the other Hand, is a collection of cells arranged in a grid of a specified shape, such that
each cell changes state as a function of time, according to a defined set of rules driven by
the states of neighboring cells [60]. CAs Have been suggested for possible use in public
key cryptography, as well as for applications in geography, anthropology, political science,
sociology, and physics, among others. CA are useful because they are much simpler than
complex mathematical equations but produce results that are more complex; they can be
modeled using precise results (degree of closeness with real-world systems), and CA can
mimic the actions of any possible physical system [61]. For better simulation of temporal
and spatial patterns of land use/land cover changes in quantity and space, a combination
of two techniques—Markov chain analysis and cellular automata (CA-Markov)—was used.

Table 3. Conditional transition probabilities.

Assigned LULC
Class

Probability of Changing to

FRST FRSD RNGB RNGE WATR WETN CULT BULT

FRST 0.5620 0.2071 0.2001 0.0033 0.0004 0.0004 0.0264 0.0004
FRSD 0.1174 0.3510 0.4532 0.0129 0.0002 0.0022 0.0624 0.0006
RNGB 0.0855 0.1676 0.5174 0.0346 0.0003 0.0049 0.1873 0.0023
RNGE 0.0087 0.0087 0.3084 0.3346 0.0003 0.0004 0.3356 0.0033
WATR 0.0413 0.1201 0.0886 0.0035 0.669 0.0260 0.0515 0.0001
WETN 0.0039 0.0303 0.0595 0.0051 0.0028 0.6302 0.2682 0
CULT 0.0592 0.0192 0.1374 0.0176 0.0002 0.0011 0.7540 0.0114
BULT 0.0157 0.0290 0.0844 0.0416 0.0001 0 0.1858 0.6434

Note: FRST = forest; FRSD = woodland; RNGB = bushland; RNGE = grassland; WATR = water; WETN = wetland;
CULT = cultivated land; BULT = built-up area.

2.7. CA-Markov Model Set-Up and Validation

The simulated model was developed using IDRISI Selva v.17.0 software [62]. In the
developing CA Markov model, the classified land use maps of 2011, representing the past,
and 2021, representing the present, developed in QGIS 2.12.1 were converted into IDRISI
data format and selected to be input data into the model to calculate matrices of conversion
probabilities and conversion areas (transition area matrix and transition probability matrix).
For model validation, the simulated land use/cover map for 2021 was compared with the
actual satellite-derived land use/cover map based on kappa statistics. Then, a standard
kappa index was used to assess whether the model was valid or not (usually the kappa
index for a valid model is >70%) [63]. If the model Has a kappa index of less than 70%,
then the suitability map for the land covers and filter used should be repeated based on
several considerations.
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3. Results
3.1. Accuracy Assessment

Table 4 shows the producer’s accuracy (PA), user’s accuracy (UA), overall accuracies,
and kappa statistics of the various land use/land cover classes in the Kilombero River
catchment maps for different periods. The overall land use/land cover classification
accuracy for the years 1991, 2001, 2011, and 2021 is 92.01%, 91.74%, 91.96%, and 92.44%,
respectively, with an overall kappa statistics of 0.90 for all years. The accuracy results show
good agreement, which is acceptable for the classification, detection, and prediction of land
use/land cover in the Kilombero River catchment [64–66].

Table 4. Accuracy assessment for 1991, 2001, 2011, and 2021 images classification at Kilombero
River catchment.

Land Use/Land Cover
1991 2001 2011 2021

PA UA PA UA PA UA PA UA

Forest 90.88 79.12 90.88 79.88 90.36 86.94 87.74 81.38
Woodland 82.10 73.70 82.10 73.70 86.45 72.88 81.86 78.06
Bushland 88.20 96.03 88.20 96.03 88.80 95.23 92.21 96.93
Grassland 95.93 99.87 95.93 99.87 95.93 99.87 96.06 95.88
Water 94.89 89.56 94.89 94.09 97.87 99.57 97.87 100.00
Wetland 99.06 99.66 99.69 99.66 99.08 99.69 99.64 100.00
Cultivated land 99.34 95.45 95.55 93.36 88.80 96.54 88.91 94.88
Built-up area 99.56 100.00 90.63 84.65 99.56 68.36 99.14 68.69

Overall Accuracy (%) 92.01 91.74 91.96 92.44

Kappa 0.90 0.90 0.09 0.90

3.2. Historical Land use/Land Cover Change Pattern

The areas under different land use/land cover types and percentages are given in
Table 5. The land use/land cover percentage graphs and maps for the years 1991, 2001,
2011, and 2021 are presented in Figures 4 and 5, respectively. Table 5 shows that land
use/land cover for the year 1991 was dominated by forest (1,192,996 Ha) followed by
woodland (1,141,382 Ha), bushland (1,019,128 Ha), cultivated land (321,188 Ha), wetland
(302,098 Ha), grassland (34,067 Ha), water (18,641 Ha), and built-up area (7437 Ha). For
the year 2001, land use/land cover was dominated by forest (1,177,109 Ha), woodland
(1,121,891 Ha), bushland (1,029,224 Ha), cultivated land (340,472 Ha), wetland (311,029 Ha),
grassland (33,500 Ha), water (15,075 Ha), and built-up area (8615 Ha). Moreover, the
dominant land use/land cover for the year 2011 was woodland (1,114,763 Ha), followed
by bushland (972,794 Ha), forest (844,527 Ha), cultivated land (776,118 Ha), wetland
(256,250 Ha), grassland (44,310 Ha), built-up area (19,331 Ha), and water (11,578 Ha). For
the last year of the study period, i.e., 2021, the dominant land use/land cover was bushland
(1,253,491 Ha) followed by cultivated land (980,534 Ha), forest (766,835 Ha), woodland
(714,798 Ha), wetland (196,912 Ha), grassland (67,614 Ha), built-up area (19,331 Ha), and
water (10,419 Ha).
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Table 5. Results for land use/land cover for 1991, 2001, 2011, and 2021 showing the area and
percentage of each category at Kilombero River catchment.

Year 1991 2001 2011 2021

Unit Ha % Ha % Ha % Ha %

Forest 1,192,996 29.55 1,177,109 29.16 844,527 20.92 766,835 19.00
Woodland 1,141,382 28.27 1,121,891 27.79 1,114,763 27.61 741,798 18.37
Bushland 1,019,128 25.25 1,029,224 25.50 972,794 24.10 1,253,491 31.05
Grassland 34,067 0.84 33,500 0.83 44,310 1.10 67,614 1.67

Water 18,641 0.46 15,095 0.37 11,578 0.29 10,419 0.26
Wetland 302,098 7.48 311,029 7.70 256,250 6.35 196,912 4.88

Cultivated land 321,188 7.96 340,472 8.43 776,181 19.23 980,534 24.29
Built-up area 7437 0.18 8615 0.21 16,531 0.41 19,331 0.48

Total 4,036,935 100 4,036,935 100 4,036,935 100 4,036,935 100
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The changes in land use/land cover for the study periods of 1991–2001, 2001–2011, and
2011–2021 are given in Table 6 and illustrated in Figures 5 and 6. During the study period
1991–2001, woodland experienced a maximum decrease of 19,492 Ha, followed by forest
(15,887 Ha), water (3546 Ha), and grassland (567 Ha), while a maximum increase was ob-
served in cultivated land (19,284 Ha), followed by bushland (10,096 Ha), wetland (8932 Ha),
and built-up area (1179 Ha). The maximum annual decrease was observed in woodland
(1949 Ha), followed by forest (1589 Ha), water (355 Ha), and grassland (57 Ha), while the
maximum annual increase was observed in cultivated land (1928 Ha), followed by bushland
(1010 Ha), wetland (893 Ha), and built-up area (118 Ha). During the study period 2001–2011,
the results showed an increase in cultivated land (435,710 Ha), grassland (10,810 Ha), and
built-up area (7916 Ha), while a decrease was observed in forest (332,582 Ha), bushland
(56,430 Ha), wetland (54,779 Ha), woodland (7128 Ha), and water (3517 Ha). Furthermore,
a maximum annual decrease was observed in forest (33,258 Ha), followed by bushland
(5643 Ha), wetland (5478 Ha), woodland (713 Ha), and water (352 Ha), while a maximum
annual increase was observed in cultivated land (43,571 Ha), grassland (1081 Ha), and
built-up area (792 Ha). During the study period 2011–2021, a maximum increase was
observed in bushland (280,698 Ha), followed by cultivated land (204,353 Ha), grassland
(23,304 Ha), and built-up area (2800 Ha), while a maximum decrease was observed in wood-
land (372,965 Ha), followed by forest (77,692 Ha), wetland (59,338 Ha), and water (1159 Ha).
Moreover, a maximum annual decrease was observed in woodland (37,297 Ha), followed
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by forest (7769 Ha), wetland (5934 Ha), and water (116 Ha), while a maximum annual
increase was observed in bushland (28,070 Ha), followed by cultivated land (20,435 Ha),
grassland (2330 Ha), and built-up area (280 Ha).
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Table 6. Results for land use/land cover showing the area changed, percentage change, and annual
rate of change at Kilombero River catchment.

Year 1991–2001 2001–2011 2011–2021 1991–2021

Unit Ha % Ha/Year Ha % Ha/Year Ha % Ha/Year Ha % Ha/Year

Forest −15,887 −1.3 −1589 −332,582−28.3 −33,258 −77,692 −9.2 −7769 −426,161−35.7 −14,205
Woodland −19,491 −1.7 −1949 −7128 −0.6 −713 −372,965 −33.5 −37,297 −399,584 −35 −13,319
Bushland 10,096 1.0 1010 −56,430 −5.5 −5643 280,697 28.9 28,070 234,363 23 7812
Grassland −567 −1.7 −57 10,810 32.3 1081 23,304 52.6 2330 33,547 98.5 1118

Water −3546 −19 −355 −3517 −23.3 −352 −1159 −10 −116 −8222 −44.1 −274
Wetland 8931 3 893 −54,779 −17.6 −5478 −59,338 −23.2 −5934 −105,186−34.8 −3506

Cultivated 19,284 6.0 1928 435,709 128 43,571 204,353 26.3 20,435 659,346 205.3 21,978
Built-up 1178 15.8 118 7916 91.9 792 2800 16.9 280 11,894 159.9 396



Water 2024, 16, 493 11 of 20

Water 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

The changes in land use/land cover for the study periods of 1991–2001, 2001–2011, 
and 2011–2021 are given in Table 6 and illustrated in Figures 5 and 6. During the study 
period 1991–2001, woodland experienced a maximum decrease of 19,492 Ha, followed by 
forest (15,887 Ha), water (3546 Ha), and grassland (567 Ha), while a maximum increase 
was observed in cultivated land (19,284 Ha), followed by bushland (10,096 Ha), wetland 
(8932 Ha), and built-up area (1179 Ha). The maximum annual decrease was observed in 
woodland (1949 Ha), followed by forest (1589 Ha), water (355 Ha), and grassland (57 Ha), 
while the maximum annual increase was observed in cultivated land (1928 Ha), followed 
by bushland (1010 Ha), wetland (893 Ha), and built-up area (118 Ha). During the study 
period 2001–2011, the results showed an increase in cultivated land (435,710 Ha), grass-
land (10,810 Ha), and built-up area (7916 Ha), while a decrease was observed in forest 
(332,582 Ha), bushland (56,430 Ha), wetland (54,779 Ha), woodland (7128 Ha), and water 
(3517 Ha). Furthermore, a maximum annual decrease was observed in forest (33,258 Ha), 
followed by bushland (5643 Ha), wetland (5478 Ha), woodland (713 Ha), and water (352 
Ha), while a maximum annual increase was observed in cultivated land (43,571 Ha), grass-
land (1081 Ha), and built-up area (792 Ha). During the study period 2011–2021, a maxi-
mum increase was observed in bushland (280,698 Ha), followed by cultivated land 
(204,353 Ha), grassland (23,304 Ha), and built-up area (2800 Ha), while a maximum de-
crease was observed in woodland (372,965 Ha), followed by forest (77,692 Ha), wetland 
(59,338 Ha), and water (1159 Ha). Moreover, a maximum annual decrease was observed 
in woodland (37,297 Ha), followed by forest (7769 Ha), wetland (5934 Ha), and water (116 
Ha), while a maximum annual increase was observed in bushland (28,070 Ha), followed 
by cultivated land (20,435 Ha), grassland (2330 Ha), and built-up area (280 Ha). 

Table 6. Results for land use/land cover showing the area changed, percentage change, and annual 
rate of change at Kilombero River catchment. 

Year 1991–2001 2001–2011 2011–2021 1991–2021 
Unit Ha % Ha/Year Ha % Ha/Year Ha % Ha/Year Ha % Ha/Year 

Forest −15,887 −1.3 −1589 −332,582 −28.3 −33,258 −77,692 −9.2 −7769 −426,161 −35.7 −14,205 
Woodland −19,491 −1.7 −1949 −7128 −0.6 −713 −372,965 −33.5 −37,297 −399,584 −35 −13,319 
Bushland 10,096 1.0 1010 −56,430 −5.5 −5643 280,697 28.9 28,070 234,363 23 7812 
Grassland −567 −1.7 −57 10,810 32.3 1081 23,304 52.6 2330 33,547 98.5 1118 

Water −3546 −19 −355 −3517 −23.3 −352 −1159 −10 −116 −8222 −44.1 −274 
Wetland 8931 3 893 −54,779 −17.6 −5478 −59,338 −23.2 −5934 −105,186 −34.8 −3506 

Cultivated 19,284 6.0 1928 435,709 128 43,571 204,353 26.3 20,435 659,346 205.3 21,978 
Built-up 1178 15.8 118 7916 91.9 792 2800 16.9 280 11,894 159.9 396 

 
Figure 6. Historical land use/land cover changes for time span 1991–2001; 2001–2011; and 2011–2021. Figure 6. Historical land use/land cover changes for time span 1991–2001; 2001–2011; and 2011–2021.

3.3. Land Use/Land Cover Change Detection Matrix

Tables 7–10 indicate the areas changed based on the change matrix cross-tabulation
from 1991 to 2021, whereby the land use/land cover classes are compared to one another.
For the study period between 1991 and 2021 (Table 7), among all the land use/land cover
types, the forest experienced a maximum net loss (−426,123 Ha), followed by woodland
(−399,615 Ha), wetland (105,187 Ha), and water (−8220 Ha). On the other Hand, cultivated
land experiences maximum net gain (659,346 Ha), followed by bushland (234,373 Ha), grass-
land (33,547 Ha), and built-up area (11,879 Ha). During the study duration (1991–2021), the
maximum amount of land under forest remained intact, i.e., 528,049 Ha. This is followed
by bushland (442,391 Ha), woodland (398,012 Ha), cultivated land (241,550 Ha), wetland
(170,230 Ha), grassland (16,796 Ha), water (8596 Ha), and built-up area (5237 Ha). During
the study period between 1991 and 2001, as summarized in Table 8, woodland experienced
the most net loss (−19,491 Ha), followed by forest (−15,886 Ha), water (−3545 Ha), and
grassland (−568 Ha). The land use/land cover that experienced a net gain in area was
led by cultivated land (19,285 Ha), followed by bushland (10,095 Ha), wetland (8932 Ha),
and lastly, built-up areas (1178 Ha). During the study duration (1991–2001), a total of
1,165,330 Ha of forest remained intact, followed by woodland (1,114,670 Ha), bushland
(987,618 Ha), cultivated land (317,416 Ha), wetland (298,632 Ha), grassland (33,317 Ha),
water (15,076 Ha), and built-up area (6893 Ha). Table 9 indicates the areas that changed
based on the change matrix cross-tabulation from 2001 to 2011. According to this, cultivated
land Had experienced the most net gain (435,721 Ha), followed by grassland (10,809 Ha)
and built-up areas (7915 Ha). Furthermore, forests experienced the most net loss in land
mass (−332,574 Ha), followed by bushland (−56,430 Ha), wetland (−54,778 Ha), woodland
(−7147 Ha), and water (−3516 Ha). During the same study period, the majority of area
under woodland remained intact (830,707 Ha), followed by forest (742,548 Ha), bushland
(684,154 Ha), cultivated land (288,257 Ha), wetland (234,274 Ha), grassland (33,500 Ha), wa-
ter (10,058 Ha), and built-up area (8615 Ha). Table 10 shows the areas that changed based on
the change matrix cross-tabulation from 2011 to 2021. The woodland experienced the most
net loss (−372,978 Ha), followed by forests (−77,686 Ha), wetland (−59,339 Ha), and water
(−1160 Ha). Furthermore, bushland experienced the largest net gain (280,699 Ha), followed
by cultivated land (204,374 Ha), grassland (23,305 Ha), and built-up area (2785 Ha) During
this study period, cultivated land Had the largest area that remained intact (688,477 Ha),
followed by bushland (592,540 Ha), forest (558,295 Ha), woodland (460,304 Ha), wetland
(189,978 Ha), grassland (17,439 Ha), built-up area (12,511 Ha), and water (9112 Ha).
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Table 7. Land use/land cover detection matrix during the period 1991–2021.

Changing
from: 1991

Area Change to 2021 Net Change
(Ha)FRST FRSD RNGB RNGE WATR WETN CULT BULT LOSS

FRST 528,049 234,022 275,309 8531 832 15,163 130,260 829 664,946 −426,123
FRSD 158,889 1991 463,685 10,166 302 3645 106,025 660 743,372 −399,615
RNGB 61,785 92,919 442,391 24,808 148 2193 390,911 3973 576,737 234,373
RNGE 155 316 11,654 16,796 7 10 5071 58 17,271 33,547
WATR 809 1714 2319 196 8596 3288 1690 27 10,043 −8220
WETN 838 8053 17,284 1021 414 170,230 104,073 184 131,867 −105,187
CULT 16,216 6498 40,264 5812 120 2381 241,550 8347 79,638 659,346
BULT 131 235 595 284 0 0 954 5237 2199 11,879

GAIN 238,823 343,757 811,110 50,818 1823 26,680 738,984 14,078 1,561,127

Note: FRST = forest; FRSD = woodland; RNGB = bushland; RNGE = grassland; WATR = water; WETN = wetland;
CULT = cultivated land; BULT = built-up area. The bold numbers on the diagonal represent unchanged land
use/land cover proportions from 1991 to 2021, while the others are the areas changed from one class to another.

Table 8. Land use/land cover detection matrix during the period 1991–2001.

Changing
from: 1991

Area Change to 2001 Net Change
(Ha)FRST FRSD RNGB RNGE WATR WETN CULT BULT LOSS

FRST 1,165,330 3331 12,672 0 0 10,815 835 11 27,664 −15,886
FRSD 3346 1,114,670 23,056 0 0 0 107 202 26,711 −19,491
RNGB 7081 3603 987,618 174 8 31 20,141 473 31,511 10,095
RNGE 2 0 172 33,317 0 0 577 0 751 −568
WATR 1210 197 446 9 15,076 1551 131 21 3565 −3545
WETN 106 89 2289 0 12 298,632 969 0 3465 8932
CULT 31 0 2726 0 0 0 317,416 1015 3772 19,285
BULT 2 0 245 0 0 0 297 6893 544 1178

GAIN 11,778 7220 41,606 183 20 12,397 23,057 1722 70,319

Note: FRST = forest; FRSD = woodland; RNGB = bushland; RNGE = grassland; WATR = water; WETN = wetland;
CULT = cultivated land; BULT = built-up area. The bold numbers on the diagonal represent unchanged land
use/land cover proportions from 1991 to 2001, while the others are the areas changed from one class to another.

Table 9. Land use/land cover detection matrix during the period 2001–2011.

Changing
from: 2001

Area Change to 2011 Net Change
(Ha)FRST FRSD RNGB RNGE WATR WETN CULT BULT LOSS

FRST 742,548 242,722 102,891 493 904 9508 77,577 457 434,552 −332,574
FRSD 80,626 830,707 151,851 589 226 2437 55,434 20 291,183 −7147
RNGB 15,965 33,574 684,154 574 7 1776 292,367 826 345,089 −56,430
RNGE 0 0 0 33,500 0 0 0 0 0 10,809
WATR 1012 389 966 155 10,058 2117 396 1 5036 −3516
WETN 251 2248 11,130 486 319 234,274 62,151 170 76,755 −54,778
CULT 4124 5103 21,821 8512 64 6139 288,257 6441 52,204 435,721
BULT 0 0 0 0 0 0 0 8615 0 7915

GAIN 101,978 284,036 288,659 10,809 1520 21,977 487,925 7915 770,267

Note: FRST = forest; FRSD = woodland; RNGB = bushland; RNGE = grassland; WATR = water; WETN = wetland;
CULT = cultivated land; BULT = built-up area. The bold numbers on the diagonal represent unchanged land
use/land cover proportions from 2001 to 2011, while the others are the areas changed from one class to another.
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Table 10. Land use/land cover detection matrix during the period 2011–2021.

Changing
from: 2011

Area Change to 2021
Net change (Ha)

FRST FRSD RNGB RNGE WATR WETN CULT BULT LOSS

FRST 558,295 135,303 130,717 2172 263 244 17,224 234 286,157 −77,686
FRSD 118,408 460,304 456,918 13,006 200 2219 62,935 604 654,290 −372,978
RNGB 67,442 132,180 592,540 27,325 255 3874 147,745 1776 380,597 280,699
RNGE 350 351 12,452 17,439 12 16 13,550 132 26,863 23,305
WATR 307 895 660 26 9112 194 383 1 2466 −1160
WETN 693 5425 10,667 913 506 189,978 48,062 2 66,268 −59,339
CULT 21,094 6832 48,931 6257 69 382 688,477 4054 87,619 204,374
BULT 177 326 951 469 1 0 2094 12,511 4018 2785

GAIN 208,471 281,312 661,296 50,168 1306 6929 291,993 6803 1,222,121

Note: FRST = forest; FRSD = woodland; RNGB = bushland; RNGE = grassland; WATR = water; WETN = wetland;
CULT = cultivated land; BULT = built-up area. The bold numbers on the diagonal represent unchanged land
use/land cover proportions from 2011 to 2021, while the others are the areas changed from one class to another.

3.4. Future Land Use/Land Cover Simulation for 2031 and 2041

The validation target, the kappa index of agreement (KIA), was used for the 2021 land
use/land cover predictions, which were acceptable to both the actual and the predicted
land use/land cover. All the kappa results showed an acceptable standard greater than
80%, which confirmed that the prediction accuracy was reasonable for future land use/land
cover prediction. The kappa statistics were as follows: Kno is 0.93, Klocation is 0.95, Kstrata is
0.95, and Kstandard is 0.91. The corrected percentage for each type of land use/land cover
was over 90%, so the model was satisfactory for making predictions for 2031 and 2041,
respectively. The predicted areas of land under different land use/land cover types and
percentages are given in Table 11. The respective land use/land cover for this projected
period are presented in Figures 7 and 8 below. Table 11 shows that land use/land cover for
the projected year 2031 will be dominated by bushland (1,309,248 Ha) followed by cultivated
land (1,120,396 Ha), forest (685,239 Ha), woodland (657,047 Ha), wetland (133,897 Ha),
grassland (97,030 Ha), built-up area (25,918 Ha), and water (8159 Ha). For the projected
year 2041, land use/land cover will be dominated by bushland (1,364,920 Ha), followed
by cultivated land (1,260,186 Ha), forest (603,307 Ha), woodland (571,806 Ha), grassland
(126,654 Ha), wetland (71,291 Ha), built-up area (32,742 Ha), and water (6028 Ha).

Table 11. Results for land use/land cover for 2021, projected 2031 and 2041 showing the area and
percentage of each category at Kilombero River catchment.

Year 2021 2031 2041

Unit Ha % Ha % Ha %

Forest 766,835 19.00 685,239 16.98 603,307 14.95
Woodland 741,798 18.37 657,047 16.27 571,806 14.16
Bushland 1,253,491 31.05 1,309,248 32.44 1,364,920 33.81
Grassland 67,614 1.67 97,030 2.40 126,654 3.14

Water 10,419 0.26 8159 0.20 6028 0.15
Wetland 196,912 4.88 133,897 3.32 71,291 1.77

Cultivated land 980,534 24.29 1,120,396 27.76 1,260,186 31.22
Built-up area 19,331 0.48 25,918 0.64 32,742 0.81

Total 4,036,935 100 4,036,935 100 4,036,935 100
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The projected changes in land use/land cover for the periods 2021–2031 and 2031–2041
are given in Table 12 and illustrated in Figure 9. It is expected that from 2021–2031, woodland
will experience a maximum decrease of 84,751 Ha, followed by forest (81,596 Ha), wetland
(63,015 Ha), and water (2260 Ha) while maximum increases will be observed on cultivated
land (139,862 Ha), followed by bushland (55,757 Ha), grassland (29,416 Ha), and built-up area
6587 Ha). The maximum annual decrease is expected in woodland (8475 Ha), followed
by forest (8160 Ha), wetland (6302 Ha), and water (226 Ha), while the maximum annual
increase is expected in cultivated land (13,986 Ha), followed by bushland (5576 Ha), grass-
land (2942 Ha), and built-up area (659 Ha). Moreover, for the projected changes for the
period 2031–2041, a maximum decrease is expected in woodland (85,241 Ha), followed by
forest (81,931 Ha), wetland (62,606 Ha), and water (2131 Ha), while a maximum increase
is expected in cultivated land (13,979 Ha) followed by bushland (55,672 Ha), grassland
(29,624 Ha) and built-up area (6824 Ha). The maximum annual decrease is expected in
woodland (8524 Ha), followed by forest (8193 Ha) and wetland (6261 Ha), while a max-
imum annual increase is expected in cultivated land (13,979 Ha), followed by bushland
(5567 Ha), grassland (2962 Ha), and built-up area (682 Ha).
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Table 12. Projected land use/land cover showing the area changed, percentage change and annual
rate change for 2031 and 2041.

Year 2021–2031 2031–2041

Unit Ha % Ha/Year Ha % Ha/Year

Forest −81,596 −10.64 −8160 −81,931 −11.96 −8193
Woodland −84,751 −11.43 −8475 −85,241 −12.97 −8524
Bushland 55,757 4.45 5576 55,672 4.25 5567
Grassland 29,416 43.51 2942 29,624 30.53 2962

Water −2260 −21.69 −226 −2131 −26.12 −213
Wetland −63,015 −32.00 −6302 −62,606 −46.76 −6261

Cultivated land 139,862 14.26 13,986 139,790 12.48 13,979
Built-up area 6587 34.08 659 6824 26.33 682
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4. Discussion

The assessment of LULC for this paper considered four time epochs, i.e., 1991, 2001,
2011, and 2021. We Have also projected the same for the next two decades, i.e., 2031 and
2041. The selected time epochs were meant to coincide well with the national popula-
tion census, whose growth contributes to most of the LULC changes. Furthermore, the
results of the national census trigger major policy changes, e.g., the national water policy
(NAWAPO) that was first promulgated in 1991, followed by 2002 [67], and the current
drafting that started around 2022 and coincides with the population census of the same
year. The projections were meant to coincide with the 2030 global and African targets, i.e.,
the sustainable development goals (SDG) [68] and the African forest landscape restora-
tion initiative (AFR100), which is a country-led effort to bring 100 million Ha of land in
Africa into restoration by 2030 [69,70]. Across the time epochs, the LULC classification
accuracy was above 90%, whereas kappa statistics was 0.90, which shows high agreement
and is hence acceptable for the classification, detection, and prediction of land use/land
cover [64–66].

Analysis of LULC for each of the study years shows a growing transformation from
domination of forests, woodland, and bushland to bushland and cultivated land as the
top dominant LULC from 1991 to 2021 and as projected to 2031 and 2041. Considering
that bushlands are essentially abandoned farmlands due to the occasional implementation
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of conservation policies and flooded farms [71,72], it means cultivated land Has the most
overall growing dominance in the study area. Furthermore, results show more shrinking
landmass under wetland and water, which raises a red flag on water availability in the
catchment. However, a parallel study by the authors [73] shows a diametric result (i.e., a
consistent increase in water discharge at a rate of 498.6 m3/s/year) at the most downstream
gauge station, i.e., Kilombero at Swero (1KB17), which is located in the protected Selous
game reserve. This can be explained by either the fact that all hydroclimatic parameters
show a favorable trend, as discussed in [73], or that changing LULC generated more
sediment that Has altered the cross-section of the more or less abandoned gauge station due
to budget and accessibility through the game reserve (observed data between 29 November
1957 and 31 December 1981). Otherwise, the huge growing dominance of cultivated
land would Have caused a declining trend of water discharge at this strategic gauge
station. With this in mind, along with the vast knowledge of what impacts are brought
about by expansions in cultivation and settlements, it is safe to expect negative impacts
on the downstream river flow regime (with natural high and low floods necessary for
breeding [74,75]), its ecosystem service (e.g., the largest East African mangrove forest further
downstream) [36–38], and economic flagship projects, i.e., Nyerere HEP. Furthermore, all
these are expected to negatively impact the micro economy as local livelihoods depend
directly on catchment ecosystem services, e.g., farming, fishing, weaving, etc. [41,76]. In
addition, the macro economy may also be impacted given that the catchment is critical for
national food production through expansion in SAGCOT as the Kilombero cluster [28,29]
and the major HEP immediately downstream [35].

In addition, the conversion of LULC to more cultivated land creates loose soils that
are swept by floods, meaning soil and water quality is changed. This is due to the known
detrimental effects of agricultural practices on soil quality, which include erosion, deser-
tification, salinization, compaction, and pollution [77]. On the other Hand, farm inputs
cause eutrophication, which ultimately leads to the reduction of oxygen in water and the
release and accumulation of toxic substances in water and sediments, polluting the aquatic
environment, which can lead to the death of aquatic organisms, ecosystems, and humans
that may inadvertently drink or be exposed to the polluted water [78,79].

This study also studied the specific alteration of LULC from one such LULC to another.
This is based on a change matrix cross-tabulation across the time epoch. The same shows
that in the time span of 1991–2001, 2001–2011, 2011–2021, and overall, 1991–2021, forests and
woodland lost the most landmass as compared to cultivated land and bushland that Have
gained the most. Although there was a consistent increase in land mass under cultivation,
the period between 2001 and 2011 experienced the most significant jump. This could be
attributed to three major government policies, i.e., the Big Results Now (BRN) of 2013, the
Kilimo Kwanza Initiative (KKI), translated as the prioritization of agriculture in June 2009,
and the establishment of the southern agricultural growth corridor (SAGCOT) by 2010. All
of them are based on the need to link the local peasantry farmers with agribusiness actors
across the corridor (including Kilombero, which forms the most consequential cluster).
Furthermore, the privatization and establishment of big sugarcane, which Kilombero Sugar
Company Limited (KSCL) took over in 1998, expanded significantly around 2005–2006
following their initiative to build the Kidatu Bridge and associated road improvements,
which also spearheaded agriculture expansion in the catchment. In addition, Kilombero
Plantations Limited (KPL) was privatized and expanded paddy farming activities by
2008–2010. Both plantations introduced and supported grower farmers, who expanded
just as much as the plantations themselves. However, the implementation of the recently
enacted Water Resources Management Act No. 11 of 2009 and the establishment of a record
number of water users’ associations (WUA) in the catchment saw the decline of cultivated
land within the protected wetland and river buffer. This increased bushland (abandoned
farms) and reduced the declination of areas occupied by water. Wetland continued to
decline since abandoned farms (bushlands) were yet to rejuvenate into proper wetlands.
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5. Conclusions

This study Has carried out LULC assessment and its implications for water availability
in the Kilomebro River catchment (KRC). The former considered four time epochs, viz., 1991,
2001, 2011, and 2021, and were then projected into two subsequent decades, i.e., 2031 and
2041. These were pegged against the key drivers or targets nationally to regionally/globally.
The assessment Has demonstrated the LULC transformation in KRC following major
government policies and/or anthropogenic dynamics. This Has shown an alarming growth
rate of areas under cultivation vs shrinkage of land mass occupied by water and/or
wetlands. However, the growth of the water-thirsty sector seems to not impact the water
availability at the most downstream gauging station, i.e., Kilombero at Swero (1KB17).
Nevertheless, this station is located in an undeveloped game reserve area whose station
assessment is not frequent and Has not been operational since 31 December 1981.

The assessment Has also indicated a steeper LULC conversion to cultivated land
in 2010, during which the government introduced major agricultural programs in the
SAGCOT area, especially the Kilombero cluster. With the ongoing access infrastructure
development and expansion plans in this cluster, more LULC conversion to cultivated
land and settlements is expected, as indicated in the project’s future. This will inevitably
impact water availability in the catchment and hence impact other water uses, especially
the environment and government flagship projects, e.g., the Nyerere hydropower project
downstream of the Kilombero River catchment, which contributes to more than 60% of flow.

The following recommendations are proposed from this assessment:

(a) Develop and support the implementation of guidelines for participatory land use
planning that are responsive to nature conservation but reflect the livelihood means
of poor people.

(b) Re-evaluate modern protection mechanisms vs traditional ones that are inculcated in
the cultural norms of local people.

(c) Reevaluation of the status of Swero (1KB17) gauging station cross-section to ascertain
the credibility of the ratting curve and hence the discharge data generated from its
stuff gauge reading.

(d) Implement agroforest policy to obtain two objectives, i.e., conservation (land and
water) and economic growth from agriculture, which is the main economic activity.

(e) Evaluate the implementability and socio-economic impact of a 60 m buffer zone from
any water source as required in the Water Resources Management Act No. 11 of 2009
and the National Environmental Management Act No. 20 of 2004.

(f) Continuous capacity building for locals (through WUAs and other institutions) and
participatory law enforcement embedding water and natural resources management.
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