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A B S T R A C T   

The transmission of signals to the cell body from injured axons induces significant alterations in primary sensory 
neurons located in the ganglion tissue, the site of the perikaryon of the affected nerve fibers. Disruption of the 
continuity between the proximal and distal ends leads to substantial adaptability in ganglion cells and induces 
macrophage-like activity in the satellite cells. Research findings have demonstrated the plasticity of satellite cells 
following injury. Satellite cells work together with sensory neurons to extend the interconnected surface area in 
order to permit effective communication. The dynamic cellular environment within the ganglion undergoes 
several alterations that ultimately lead to differentiation, transformation, or cell death. In addition to necrotic 
and apoptotic cell morphology, phenomena such as histomorphometric alterations, including the development of 
autophagic vacuoles, chromatolysis, cytosolic degeneration, and other changes, are frequently observed in cells 
following injury. The use of electron microscopic and stereological techniques for assessing ganglia and nerve 
fibers is considered a gold standard in terms of investigating neuropathic pain models, regenerative therapies, 
some treatment methods, and quantifying the outcomes of pharmacological and bioengineering interventions. 
Stereological techniques provide observer-independent and reliable results, which are particularly useful in the 
quantitative assessment of three-dimensional structures from two-dimensional images. Employing the fraction-
ator and disector techniques within stereological methodologies yields unbiased data when assessing parameters 
such as number. The fundamental concept underlying these methodologies involves ensuring that each part of 
the structure under evaluation has an equal opportunity of being sampled. This review describes the stereological 
and histomorphometric evaluation of dorsal root ganglion neurons and satellite cells following nerve injury 
models.   

1. Introduction 

1.1. Sciatic nerve injury types 

The sciatic nerve, one of the largest nerves in the body, is susceptible 
to various types of injuries (e.g., tumor excision lesions, work accidents, 
compression, laceration, etc.). The severity of injury can be mild, 
moderate or severe according to the injury type and effected body parts. 
Two classification systems are still acceptable regarding injury type 
classifications. Seddon classified nerve injuries as neuropraxia (Aegypt. 
Neur, nerve/ apraxis, inaction), axonotmesis (Aegypt. Axono, axon/ 
thmesis, incision) and neurotmesis (Aegypt. Neuro, nerve/ thmesis, inci-
sion), whereas Sunderland increased Seddon’s classification to five 

according to the type of trauma and severity of injury to the tissues. The 
first-degree injury type in Sunderland’s classification is equivalent to 
Seddon’s neuropraxia type injury, resulting in only temporary conduc-
tion disturbance due to demyelination and recovery is usually complete. 
Sunderland’s second-degree injury type is equivalent to Seddon’s 
axonotmesis-type injuries. In such injuries, axonal integrity is impaired, 
but the endoneurium is intact. Axonal regeneration is easy due to the 
integrity of the endoneurium. In Sunderland’s 3rd degree injury type, 
the axon and myelin sheath, including the endoneurium, are damaged, 
but the perineurium remains intact and full recovery is not observed in 
this type of injury. In Sunderland’s 4th degree injury type, the myelin 
sheath, axon, endoneurium, and perineurium are damaged. Nerve con-
tinuity is provided only by the epineurium and spontaneous recovery is 
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not possible. Sunderland’s grade 5 type of injury is equivalent to Sed-
don’s neurotmesis type classification, meaning that the nerve is 
completely severed and complete functional loss occurs. Spontaneous 
recovery is not possible, and surgery is required (Seddon, 1942; Sun-
derland, 1951). 

Investigation of the injury types using in vivo models is critical for 
the clinical translation of these injury types. Compression lesions are one 
of the widely used injury types that can be obtained by crushing the 
epineurium via various surgical tools (Delibas et al., 2021; Serger et al., 
2022; Su et al., 2019). These crush injury models can be used to mimic 
axonotmesis-type injuries where the axonal integrity is disrupted, but 
the connective tissue surrounding the nerve tract remains intact. On the 
other hand, most severe injuries in the nerve can be seen in complete 
transection injuries, where the axonal integrity and the connective tissue 
integrity are disrupted. In this injury model, the continuity between 
distal and proximal stumps is totally impaired. The reunion is prevented 
via suturing the proximal or distal stump to a neighboring muscle 
(Delibas and Kaplan, 2023; Geuna, 2015). Besides these injury models, 
there are various injury models that mimic chronic compression injury 
(Li et al., 2015; Delibas and Kaplan, 2023) and end-to-end neurorrhaphy 
(Felix et al., 2013). There are various in vivo experimental model types 
for nerve regeneration studies. The evaluation of the regeneration can be 
performed using different assessment techniques (functional, behav-
ioral, histological, morphological, electrophysiological, DNA, and 
protein-based analysis, etc.). Although the physiological, functional, and 
cellular outcomes can be obtained using several techniques, evaluation 
of the morphological data using quantitative approaches is the gold 
standard. 

1.2. The dorsal root ganglion tissue following the injury 

Dorsal root ganglion tissue has been widely used in studies of 
regeneration/degeneration. Morphological alterations following axonal 
injury have attracted particular attention. Neuroplasticity, a term 
denoting neurons’ capacity to adapt and change in response to novel 
conditions, encompasses a broad spectrum of mechanisms. These 
mechanisms include not only morphological changes but also 
biochemical and pharmacological adaptations. Furthermore, neuro-
plasticity involves modifications in neuronal networks, including 
changes in connectivity, dendritic remodeling, and the number and 
morphology of dendritic spines. 

Additionally, it encompasses the generation of new neurons, a pro-
cess known as adult neurogenesis. Importantly, neuroplasticity is closely 
linked to functional recovery, as it can induce adaptive behavioral 
changes and predispose functional systems to adaptive plasticity. 
Consequently, the adaptation of the neuron to new physiological con-
ditions leads to various numerical and morphological changes to 
occurring in satellite cells and neurons associated with axons following 
axonal injury. A dramatic increase takes place in the number of mac-
rophages and satellite cells (Pannese, 1981; Yu et al., 2020; Zhang et al., 
1997). The proliferation of macrophages may derive from the mitotic 
division of the resident macrophages, from the peripheral circulation 
(Feng et al., 2023; Guimaraes et al., 2023; Iwai et al., 2021; Yu et al., 
2020). Studies showed that satellite cells express common progenitor 
markers with satellite glial cells, and following the injury, satellite glial 
cells express macrophage genes. This would be evidence for the trans-
formation of these two cells into each other (Feng et al., 2023). Trans-
formations and proliferation of these cells are induced by various 
inflammatory agents or neurotrophic factors (Chadwick et al., 2008; 
Hall and Landis, 1992; Lawrence, 2009; Li et al., 2015; Wee Yong, 
2010). Interleukin-1 beta, TNF-alpha, transforming growth factors, 
s-100 proteins, and several cell adhesion molecules are regarded as the 
most important of these (Levy Bde et al., 2007; Sandelin et al., 2004; 
Xian and Zhou, 1999; Grothe et al., 1997; Takeda et al., 2007; Zhang 
et al., 2000; Gehrmann et al., 1991). 

The up/down regulation of these molecules and various enzymes 

(nucleases and proteases) leads to several morphological changes in the 
sensory neurons and satellite cells. The chromatolysis response, pri-
marily characterized as the reorganization of Nissl bodies and the 
relocation of the structures responsible for protein synthesis within the 
cell, is one of the most remarkable morphological changes (Lieberman, 
1971). Fragmentation in the granular endoplasmic reticulum and 
disruption in polyribosomal structures have been previously demon-
strated as a result of this process at electron microscopic analyses 
(Dentinger et al., 1979). The morphological changes observed in the cell 
vary depending on the type of damage, with mild axonal injuries 
(segmental demyelination, e.g., neuropraxia) being reversible but 
becoming permanent when the damage is more severe (anatomical 
disruption of the nerve trunk, e.g., neurotmesis, severe compression, 
transection, laceration et cetera) (Cragg, 1970; Engh and Schofield, 
1972). Another morphological change observed following injury is the 
presence of large vacuoles, the size of which increases in proportion to 
the severity of the damage. These vacuole structures are apparent not 
only in sensory neurons, but also in satellite cells. Satellite cells in the 
sensory ganglia wrap around sensory neurons, usually in a single 
laminar sheath form. In the case of injury, the number of laminar sheaths 
increases and displays different folding patterns and structural changes 
(Delibas and Kaplan, 2023). 

Previous studies demonstrated that a variety of toxicologic and 
neuropathologic conditions lead to vacuolization of sensory neurons 
(Beiswanger et al., 1993; Cavaletti et al., 2007; Melli et al., 2008). Be-
sides, some chemotherapeutic agents and exposure to toxic agents (e.g., 
3-acetylpyramide) have been reported to develop small vacuoles due to 
decreased Na/K-ATPase activity (Beiswanger et al., 1993). Despite the 
distinct ultrastructural morphological features of the intracytoplasmic 
neuronal vacuoles, there is currently no substantiated evidence 
regarding their origin (Butt, 2010). 

The morphological changes described above can be evaluated using 
qualitative histopathological techniques. Assessment tools in peripheral 
nerve studies can include the neuron number, neuron size, myelinated/ 
unmyelinated axon number, the diameter of the nerve fibers, or the 
myelin sheath thickness. In order to estimate these parameters in an 
unbiased manner, researchers need to adopt quantitative approaches. 
Design-based stereology provides accurate quantitative structural in-
formation from tissue sections. By integrating statistical sampling 
methodology with geometric analysis of tissue microstructure, these 
tools possess the sensitivity needed to detect even minor changes. Unlike 
other morphometric methods that rely on tissue section analysis, design- 
based stereology provides statistically valid estimates that are truly 
three-dimensional and representative of the entire organ. Moreover, the 
predictability of the precision in the stereological analysis process en-
ables the design and empowerment of studies aimed at detecting subtle 
variations. Stereological techniques allow researchers to estimate 3D 
parameters using 2D histomorphometric properties. Design-based ste-
reological techniques can be applied to peripheral nerve tissues and 
ganglia for the precise estimation of parameters such as number, size, 
and volume (Brown et al., 2020; Canan et al., 2008). Morphological 
alterations in nerve and ganglion tissues can also be quantitatively 
assessed and measured using stereological methods. Expressing these 
structural changes as quantitative data can be used to determine the 
success of therapeutic methods or to evaluate the severity of the injury. 
This article discusses using stereological methods to quantitatively 
assess morphological changes in ganglion tissue following axonal injury. 

1.3. The ratio of satellite cells to neurons 

Under normal physiological conditions, satellite cells envelop sen-
sory neurons in a single, thin layer. Following axonal injury, the number 
of satellite cells and the pattern with which they surround the neuron 
both change (Terry et al., 1987; Delibas and Kaplan, 2023). In addition 
to injury, the quantitative ratio between sensory neurons and satellite 
cells also changes during ganglion development. In the early stages of 
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development, satellite cells are fewer in number compared to neurons. 
However, in the later stages of development, their numbers can increase 
through the transformation of undifferentiated cells in the environment 
into satellite cells or through the mitotic division of existing satellite 
cells (Carr and Simpson, 1978). Several studies have provided evidence 
that the number of satellite cells associated with dorsal root ganglion 
neurons is directly correlated with the volume and surface area of those 
neurons (Humbertson et al., 1969; Pannese, 1960). The interrelation-
ships among the surface area, the volume of the satellite cell sheath, and 
the associated neuronal body may provide insights into the mechanisms 
that regulate the growth of neuroglia and nervous tissues during 
ganglionic development, as well as shedding light on the functional 
significance of satellite cells in the sensory ganglia. 

Light microscopy is not suitable for this purpose due to the signifi-
cant variation in the thickness of satellite cell sheaths across different 
regions, which is below the resolving power of such devices. Addition-
ally, the boundary between the satellite cell sheath and neuronal peri-
karyon frequently exhibits a complex course, primarily due to the 
presence of perikaryal projections, only a subset of which can be dis-
cerned using light microscopy. The relationships between the volume of 
the satellite cell sheath and the associated perikaryon can therefore only 
be accurately determined by means of electron microscopy. The ratio of 
satellite cells to neurons can be calculated using the test point counting 
grid of the Cavalieri method (Fig. 1). The Cavalieri principle is a method 
for calculating the volume of a structure sectioned into parallel sections 
at equal intervals. In order to calculate the volume of a structure using 
this method, the sum of the total sectioned surface area of the region in 
the parallel sections should be calculated. This total sectioned surface 
area is multiplied by the average section thickness to yield the volume of 
the structure in question. A point counting grid can be used for area 

estimations. These grids consist of equally spaced “+ ” signs. Each area 
between these signs represents a unit square with a fixed interval (d). 
This unit square or quadrilateral is known as the ’area associated per the 
point’ [a(p)]. 

The number of points hitting the image depends on the size of the 
cross-section and the distance between the points. The area (A) of the 
cross-sectional image can be calculated by multiplying the total number 
of points counted (ΣP) and the area represented by a point [a(p)] 
(Sonmez et al., 2010). This is formulated as 

A =
∑

P • [a(p) ]

1.4. Use of the vertical rotator technique in calculating sensory neuron 
volumes 

The vertical rotator technique is a convenient tool for estimating the 
perikaryon volume of ganglion cells (Jensen and Gundersen, 1993). 
Measurements can be performed on vertical sections sampled by optical 
disectors (Baddeley et al., 1986). The nucleator and rotator principles 
are stereological methods used for estimating the mean volume of par-
ticles. In order to apply either principle, a unique reference point must 
be associated with each particle. This reference point is typically the 
nucleolus of the cell. All sections must be obtained parallel to the ver-
tical axis (but can be selected arbitrarily), and all subsequent measure-
ments must be performed relative to the axis. Using vertical “bars” is the 
most efficient and simplest way of applying this approach (Fig. 2). 

1.5. The estimation of the mitochondrial volume ratio 

Mitochondrial disorders are a diverse group of diseases that can 
affect multiple organ systems and present with a wide range of clinical 
symptoms (Gorman et al., 2016; Wallace, 1999). Ultrastructural analysis 
has shown that mitochondrial morphology is frequently abnormal in 

Fig. 1. : The figure shows the application of Cavalieri’s principle for estimating 
the ratio of satellite cells to neurons. (a) This image shows two neurons (Neu) 
and the satellite cells (St) surrounding them (bar: 10 µm). The boxed area can 
be seen at high magnification in the lower photograph. (b) The red (+) signs 
represent the intersection of the neuron with the counting grid, while the green 
(+) signs represent the intersection of the satellite cell with the counting grid 
(scale: 2 µm). 

Fig. 2. : Application of the vertical rotator technique in estimating neuronal 
size. (a, b) A line parallel to the vertical axis was drawn using the nucleolus as 
the reference point. (c) The upper and lower ends of the perikaryon of the 
ganglion cell were drawn using the mouse and recorded with the software. The 
line was divided into two half-planes by the system. (d) Parallel and uniform 
test lines were applied to the neuron, and the intersection with the neuronal 
border and test lines was determined by the researcher. All intersections 
(crosses) between the profile boundary and the horizontal line are displayed 
(bar: 10 µm). 
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these disorders, with mitochondria appearing swollen and possessing 
unusual and sparse cristae (Delibas and Kaplan, 2023). This highlights 
the importance of morphological analysis in the diagnosis of mito-
chondrial disorders (Brantova et al., 2006). Additionally, the shape and 
size of mitochondria can vary depending on the tissue type and in 
response to physiological, pathological, and metabolic changes. For 
example, mitochondrial permeability transition (MPT) is a process in 
which the inner mitochondrial membrane loses its selective perme-
ability, resulting in swelling of the mitochondrial matrix and distention 
of the outer mitochondrial membrane (Sesso et al., 2012). This can lead 
to rupture of the outer mitochondrial membrane, thus releasing mito-
chondrial contents into the cytoplasm and initiating apoptosis. 

The appearance of mitochondria in electron micrographs can vary 
depending on the section plane, which can lead to inaccurate mea-
surements of mitochondrial sizes and shapes (Fig. 3) Stereology is a 
quantitative method that can be used to accurately measure the 
morphology of irregularly shaped objects, including mitochondria. This 
makes stereology a valuable tool for comparing mitochondria in 
different experimental and pathological conditions (Mandar-
im-de-Lacerda and Del Sol, 2017). Santuy et al. assessed the volume 
fraction encompassed by mitochondria, as well as their distribution 
among dendritic, axonal, and non-synaptic processes, through the 
application of Cavalieri’s principle with stereological grids. Those au-
thors employed a dual-beam electron microscope, which integrates a 
scanning electron microscope and a focused ion beam (Santuy et al., 
2018). In another study, lipid droplet (lipid) content and skeletal muscle 
mitochondrial density calculations were performed on images captured 
using transmission electron microscopy (Broskey et al., 2013). The idea 
behind these studies involved calculating the ratio of the mitochondrial 
volume to the whole tissue volume (West, 2012). 

Morphometric measurements, such as diameter, length, and shape, 
can be employed for assessing mitochondrial morphology with the use 
of the following stereological tools:  

• Volume density: The volume density of mitochondria represents the 
fraction of the total cell volume that is occupied by mitochondria. 
This parameter can be used to assess the overall abundance of 
mitochondria in a cell.  

• Numerical density per area: The numerical density of mitochondria 
per area represents the number of mitochondria per unit area of cell 
cytoplasm. This parameter can be used to assess the spatial distri-
bution of mitochondria within a cell.  

• Cross-sectional area: The cross-sectional area of a mitochondrion 
represents the area of a slice through the mitochondrion at its widest 
point. This parameter can be used to assess the average size of 
mitochondria in a cell.  

• Surface density: The surface density of a membrane represents the 
length of the membrane per unit area of cell cytoplasm. This 
parameter can be used to assess the surface area of mitochondrial 
membranes, such as the inner membrane, outer membrane, and 
cristae. 

Measuring these parameters can yield valuable insights into the 
quantitative changes in mitochondrial morphology that occur under 
different experimental and pathological conditions (Fig. 4). For 
example, these parameters can be used to study how mitochondrial 
morphology changes in response to different metabolic stimuli, such as 
exercise or fasting, or to study how that morphology changes in different 
diseases, such as cancer or neurodegenerative diseases. 

Fig. 3. : The appearance of the mitochondria in various orientations. Round-shaped mitochondria will be obtained from transverse plane sections, while coronal 
plane or sagittal plane sections will yield an elongated mitochondrion appearance. 

Fig. 4. Point counting test grid was performed at the electron microscopic level 
in order to estimate the reference volume (Vref). The proportion of points that 
intersect with mitochondria to the total number of points covering the entire 
area of the electron micrograph is indicated with green (+) signs. The total 
volume fraction of mitochondria can be estimated without requiring any 
knowledge of the area associated with each point on the grid or the magnifi-
cation of the electron micrographs (bars: 2 µm, 1 µm, respectively). 
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1.6. Estimation of total sensory neuron numbers 

Stereology and histomorphometry are two complementary methods 
for quantifying neuron characteristics in normal and diseased peripheral 
nerves. The use of the fractionator technique in combination with 
physical disector permits accurate evaluation of sensory neuron 
numbers in ganglion tissues. The disector counting technique (a volume 
probe) is advantageous over assumption-based methods as it involves 
directly counting objects within a specific structure volume, thereby 
eliminating potential biases. This method shares similarities with the 
counting methods used for serially reconstructed objects, as it does not 
rely on information about the objects’ geometry. The conditions 
required for applying this technique are identical to those for making 
counts of serial reconstructions. The technique represents a practical 
and reliable approach that enables cell counts to be estimated inde-
pendently of the structure’s shape and size. In this method, analyses are 
conducted on sampled sections representing the tissue, and the results 
are multiplied by the sampling rates. The total cell count within the 
entire tissue can thus be estimated using a small portion/section rep-
resenting the entire structure. Sections of disector pairs are obtained 
from the whole tissue based on a sampling interval determined through 
a pilot study (for the physical fractionator method, an average of 15–17 
sampled sections pairs from each block will be sufficient). The disector 
technique is counted using an unbiased counting frame (Fig. 5). Particle 
number counting is performed within the virtual volume between the 
reference and look-up sections using an unbiased counting frame. The 
result is then multiplied by previously applied sampling fractions (sec-
tion sampling, area sampling, and tissue sampling) to estimate the total 
cell number (Gundersen et al., 1988b). 

The elimination of potential bias and improved efficiency have been 
significant considerations in the ongoing development of stereological 
methods (Gundersen and Jensen, 1987; Gundersen et al., 1999; 
Hosseini-Sharifabad and Nyengaard, 2007; West, 1999). The imple-
mentation of an unbiased sampling design in stereology, which involves 
the application of a set of uniformly random points, permits the esti-
mation of reference volume (Vref) values while estimating density using 
the disector method. This approach offers the advantage that the total 
number (N) estimation is not affected by any alterations in tissue vol-
ume, as all measurements are relative and expressed as fractions (Gun-
dersen et al., 1988a; West, 1993, 2002). The disector method, using a 
random systematic sampling design, calculates the number of particles 
(N) by counting the particles (Q-) within a known volume of tissue that 
represents a known fraction (f) of the volume of the region of interest 
(Vref). The total number (N) of particles within the reference volume 
(Vref) is determined by multiplying the number of particles counted (Q-) 
by the inverse of the fraction (f), expressed as N = Q- × (1/f) (Fig. 5). 

The disector, known as a 3D (volume) probe, consists of two 
consecutive sections with a known distance. The volume of the disector 
is determined by the distance between the corresponding surfaces of the 
two sections and the area sampled on one of the sections. When using 
disectors for counting, the objective is to determine whether a specific 
object is associated with a particular disector. In order to ensure equal 
probabilities for all objects, regardless of their size, shape, or orienta-
tion, rules are applied to associate objects with the volume defined by 
the disector. This is achieved by identifying a unique sampling point on 
or within an object and determining whether this falls within the dis-
ector probe. Reducing the object to a single sampling point eliminates 
considerations of its size, shape, and orientation. Various unique sam-
pling points can be employed for counting objects in histological ma-
terial, such as their leading edge. The leading edge refers to the point at 
which the object is first encountered when progressing through a series 
of sections. By applying this approach, each object will be counted only 
once. 

2. In conclusion 

Stereological approaches are becoming a standard method for use in 
quantitative research. In addition to classic histological sections, the 
applicability of stereological methods in immunohistochemical sections, 
electron microscopic images, and confocal microscopic images is also 
growing. In parallel with future technology advancements, as stereo-
logical applications become simpler, quantitative assessments can be 
conducted more efficiently. The elucidation of cellular changes in dorsal 
root ganglia following peripheral nerve injury is crucial for under-
standing nerve degeneration and regeneration studies, as well as 
neuronal plasticity. The examination of dorsal root ganglion tissue is 
important for evaluating pathological processes in the sensory system 
and the morphological assessment of neuronal cell body responses 
exposed to mechanical stress. 

Information obtained through reliable quantitative stereological 
techniques is crucial for the morphological or quantitative observation 
of cell degeneration. In addition to cell death following injury, the 
effectiveness of potential therapeutic agents can be rendered quantifi-
able with the use of stereological methods. Developing methods that 
enhance the survival of primary sensory neurons, and their description 
with numerical data, will become increasingly important in future 
studies. 
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