The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz
Computational and Communication Science Engineering Masters Theses and Dissertations [CoCSE]
2023-08

Modeling the transmission dynamics
and control of cassava mosaic disease
with non-cassava host plants

Erick, Bahati

NM-AIST

https://doi.org/10.58694/20.500.12479/2215
Provided with love from The Nelson Mandela African Institution of Science and Technology



MODELING THE TRANSMISSION DYNAMICS AND CONTROL OF
CASSAVA MOSAIC DISEASE WITH NON-CASSAVA HOST PLANTS

Bahati Erick

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Master’s
Degree in Mathematical and Computer Sciences and Engineering of the Nelson Mandela

African Institution of Science and Technology

Arusha, Tanzania

August, 2023



ABSTRACT

For many years cassava mosaic disease hinders cassava production in Africa. In this study,
the mathematical model for the transmission dynamics and control of cassava mosaic disease
in cassava and non-cassava host plant populations was formulated and analysed. The next-
generation matrix technique was employed to obtain the basic reproduction number (RR;). The
local stability of the disease-free equilibrium point was determined using the Linearization
method while the normalized forward sensitivity index technique was utilized to analyse the
sensitivity of the model parameters. The optimality control technique, based on the Pontraygin
Maximum Principle, with roguing activities and insecticide application as control strategies,
has been applied to achieve the optimality of objective function. Moreover, the Incremental
Cost-effectiveness Ratio approach was used to perform a cost-effectiveness analysis on control
strategies in combating cassava mosaic disease. Lastly, the numerical simulation for the formu-
lated models to assess sensitive parameters, global stability and the optimal solution was per-
formed. The findings reveal the existence and global stability of both disease-free and endemic
equilibrium points when Ry < 1 and Ry > 1 respectively. The most sensitive parameters
for the dynamics of cassava mosaic disease were found to be whitefly mortality rate (w) and
the whitefly carrying capacity per m? (k,,). The findings from numerical simulation and cost-
effectiveness analysis on the optimality system conclude that the combined method of roguing
and insecticide application has higher impacts with a lower cost of controlling the disease com-
pared to the single control approach of roguing activities or insecticide application. Therefore,
for effective and efficient mitigation of cassava mosaic disease, results from this study suggest

the integrated approach of roguing and insecticides application.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the problem

Cassava (Manihot esculenta Crantz) is a perennial tropical woody plant in the Euphorbiaceae
family that produces consumable starchy roots (Alves, 2002). European traders introduced
these cassava plants in Africa from South America in the 16th century (Alaux & Fauquet,
1990). The starchy root is the most commonly used part of cassava and is rich in carbohydrates.
Moreover, cassava leaves are also consumable and contain proteins, minerals, vitamins B1, B2,
C and carotenes (Fasuyi, 2005). Cassava has been praised as a possible climate change crop
due to its tolerance for unfavourable climatic conditions including irregular rainfall (Howeler,

2002).

In Tanzania, cassava is a crucial subsistence crop, especially in mostly dryland where cereal
crops fail to thrive (Mtunguja et al., 2019). Statistics show that in Tanzania, cassava production
accounts for more than 37% of the economy of rural farmers (Mtunguja et al., 2019). But,
the existence and persistence of plant pests and diseases, such as Cassava Mosaic Disease
(CMD) and Cassava Brown Streak Disease (CBSD) hinder the production of cassava in Africa
(Hillocks, 1997). For instance, an average of 34 million tonnes of cassava yields are lost
annually due to CMD (Chapwanya & Dumont, 2021; James et al., 2006). The history of
CMD in Africa can be traced back to 1894 when it was first reported in Tanzania (Chapwanya
& Dumont, 2021).

More than eleven distinct Cassava Mosaic Gemini viruses (CMGs) are the known causes of
CMD (James et al., 2015; Tiendrebeogo et al., 2012). These viruses spread through the whitefly
vector ingestion from the host plant to the healthy cassava plant (Anitha et al., 2020; Macfadyen
et al., 2018). The viruses can also be transported from one area to another through the use of
contaminated stem cuttings (James & Thresh, 2000). Studies also show that yield loss due
to contaminated cuttings ranges between 55% to 77% and when the plant is contaminated
by whitefly the yield loss range between 35% to 60% (Technical Centre for Agricultural and
Rural Cooperation, 1990). The symptoms of infected cassava plants depend on CMGs variant,

climatic conditions, and the susceptibility of the cassava cultivar (Mabasa, 2007).



Figure 1: Cassava leaves infected by cassava mosaic disease
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Figure 2: Transmission mechanisms for cassava mosaic disease (Technical Centre for
Agricultural and Rural Cooperation, 1990)

Various studies have revealed the existence of alternative non-cassava host plants that could
operate as a source of inoculum for whiteflies. For instance, Alabi et al. (2008) studied alterna-
tive host plants for CMD. The study establishes that castor oil plant (Ricinus communis), river
tamarind plant (Leucana leucocephala), soybeans (Glycine max), coffee senna (Senna occi-
dentalis), and a wild cassava species (Manihot glaziovii) can host both African Cassava Mosaic
Virus (ACMYV) and East African Cassava Mosaic Cameroon virus (EACMCYV). These findings
were also supported by Badamasi et al. (2020) where ACMV, EACMYV and co-infection were
found on Asthma-plant (Euphorbia hirta (L) ) and Combretum hispidum which are commonly
found as weeds in cassava plants. Further, Euphorbiaceae plants and 64 species of Solanaceae
plants were found to host Srilankan Cassava Mosaic Virus (SCMV) variant in the study by
Anitha et al. (2020). The results from these studies highlight that these non-cassava host plants

can provide inoculum to the whitefly vector (Milenovic et al., 2019; Sseruwagi et al., 2006;



Tairo et al., 2017).

1.2 Statement of the problem

Since reported in 1894 as shown by Chapwanya and Dumont (2021), CMD has continuously
caused more yield loss that affects the welfare of African farmers. The transmission dynamics
and control of CMD have been studied using a variety of mathematical models (Chapwanya &
Dumont, 2021; Fahad et al., 2021; Fahad & Roy, 2018; Holt ez al., 1997; Magoyo et al., 2019).
However, most of these models did not account the presence of non-cassava host plants in their
model formulation and analyses. This calls for mathematical models incorporating non-cassava
host plants to understand CMD transmission dynamics and potential control methods. Thus,
this study develops the mathematical model and its analysis for the transmission dynamics and

control of CMD with a non-cassava host plant population.

1.3 Rationale of the study

Since 1894, CMD has been one of the significant threats to Africa’s capability to produce
cassava. The transmission dynamics and control methods of CMD can be understood with the
use of mathematical models. Therefore, the present study informs the farmers, policymakers,
and other stakeholders in raising disease awareness and planning for the best time and variety

of measures to reduce disease transmission.
1.4 Objectives
1.4.1 General objective

Generally, this study develops and analyses a mathematical model for transmission dynamics

and control of CMD that incorporates non-cassava host plants.

1.4.2 Specific objectives

To fulfil the stated general objective, the subsequent specific objectives were formulated:

(i) To formulate a deterministic mathematical model for transmission dynamics of CMD

which includes non-cassava host plants population.

(i) To perform theoretical analysis for the formulated CMD Model, like the positivity of the



model solution, parameter sensitivity and stability of equilibrium points.

(iii) To estimate the control parameters and their significance by conducting a numerical sim-

ulation.

(iv) To find the most cost-effective method for disease control.

1.5 Research questions

To accomplish the stated research objectives, the following research questions were proposed

and answered:

(1) How to formulate a mathematical model which represents the dynamics of CMD and

incorporates non-cassava host plants?
(i1) How to theoretically analyse the formulated CMD dynamics model?

(iii)) What control measure parameters help to contain the CMD disease when conducting a

numerical simulation?

(iv) What ideal control approach for CMD control is the most efficient and economical?

1.6 Significance of the study

The obtained findings of this study:

(i) Add to our understanding of how non-cassava host plants influence CMD transmission

dynamics.

(i1) Provides the best information regarding costs and effectiveness to stakeholders such as

policy and decision-makers, farmers and researchers on managing CMD.

(iii) Provides a foundation for future research.

1.7 Delineation of the study

Developing and analysing a mathematical model for the transmission dynamics and control

of CMD that incorporates the non-cassava host plant population is an extensive and sensitive

4



study. This study does not aim to examine every aspect of the CMD’s transmission dynamics
and optimal disease management strategies. However, it focused on simulating the dynam-
ics of CMD transmission while considering the influence of non-cassava host plants on the
transmission dynamics and management of the disease. Further, not all CMD control methods
are covered in the formulation of the optimality system. Instead, it solely employed control

methods, which reduces the impact of the more sensitive parameters.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Numerous deterministic model studies on the transmission dynamics and control of CMD have
been conducted. In this chapter, some studies are examined to show how CMD Models have

been developed thus far and what gaps exist.

2.2 Mathematical models for CMD

Holt et al. (1997) examined the effects of various parameters on the transmission dynamics of
CMD by using the mathematical model. The model incorporates the whitefly vector popula-
tion and cassava population. The system of ordinary differential equations (ODE) comprising
healthy and diseased cassava plants, and non-infective and infective whiteflies compartments
was used to model disease propagation. The study found that the disease’s occurrence depends

little on the use of contaminated cutting tools and roguing of infected cassava.

Magoyo et al. (2019) amended the framework by Holt et al. (1997) by incorporating cultivars
which are susceptible to CMG through contaminated cutting and susceptible breeds that can
acquire CMD virus through the use of infected cassava stem and whitefly contact. The findings
reveal that CMD transmission was highly influenced by the whitefly mortality rate, whitefly

infection rate, vector density, and the roguing rate of infected cassava plants.

Chapwanya and Dumont (2021) studied the dynamics of crop vector-borne disease by using
CMD as a case. The study developed the mathematical model by considering the crop growth
rate and the vector dynamics. According to the study, the most efficient approach to control
CMD is to uproot affected plants (roguing). Further, the study recommends that to reduce
epidemiological risk, the proportion of cassava cultivars which are less susceptible to the virus

can be integrated into a plot.

Jittamai et al. (2021) formulated a deterministic mathematical model to investigate the dynam-
ics of CMD. The model considers infected stem cuttings and whitefly transmission to determine
the most effective and efficient disease management strategy. The findings indicated that the

whiteflies’ visitation rate on cassava plants and the whiteflies’ density have impacts on the dis-

6



ease’s spread. Additionally, the computer simulations showed how whitefly treatment might

reduce disease management costs while effectively suppressing outbreaks.

Fahad et al. (2021) investigated the implications of the time used for vector maturation on CMD
transmission dynamics where young and matured whitefly vectors were included, as well as a
temporal delay that indicates vector maturation. The findings suggest that delaying vector
maturation can help to stabilize the transmission otherwise cyclic epidemiological dynamics

occur.

Different disease management strategies such as using resistant cassava cultivars, using in-
secticides to control whitefly, roguing (uprooting infected plants) and promoting the use of
virus-free cuttings have been recommended to control CMD (Chikoti et al., 2019; Tadesse
& Regessa, 2017). Also, mathematical models have been employed in different scenarios to

examine the efficacy of control measures for plant virus diseases such as CMD.

For example, Kinene et al. (2015) studied the spread of Cassava Brown Streak Disease (CBSD)
by developing a deterministic mathematical model. The simulation results for roguing of in-
fected cassava and killing of whitefly in the plantation as the control strategies reveal that

roguing of infected cassava plants was the optimal solution.

Further, Gao et al. (2016) included impulsive roguing activities as a control strategy when
developing a compartmental model to describe the plant disease dynamics in an irregular envi-
ronment and found that the disease can never be eradicated by implementing roguing activities
alone when there is a high infection rate and suggested the necessity of effective identification

of the latent plant for disease control.

Additionally, the influence of roguing and insecticide application on mosaic disease in Jatropha
curcas plant was studied by Al-Basir et al. (2017). The study found that the disease can be
controlled with roguing activities but to ensure a smooth supply of Jatropha oil to the industry
for biodiesel production the study recommends the use of an integrated approach of spraying

and roguing because it uses less time in controlling the disease compared to roguing alone.

Moreover, Tadesse and Regessa (2017) review on CMD and mealybug revealed that the use
of resistant cultivars, biological control, Phyto-sanitation practices and sound agronomic prac-

tices as a combined pest control strategy is the best control option for combating the disease.



Further, the study signified that the effectiveness of these integrated cassava pest control meth-
ods depends on well-planned training and raising farmers’ awareness, agricultural development

agents, extension officers, and policymakers.

In addition, Rakshit e al. (2019) developed a mathematical model to explore the role of up-
rooting infected plants as a biological control measure in the transmission dynamics of plant
mosaic diseases. The model compartments include an uninfected and infectious vector, as well
as a healthy, exposed, and infected plant. The study observes that infection rate is inversely as-
sociated with illness transmission, whitefly growth, and whitefly infection rate. In other words,
it implies that even when infection rates are low, the dynamic system becomes unstable when
they exceed their threshold values. Furthermore, the study found that if the proper rates and
intervals for roguing can be identified, uprooting infected plants is the most cost-effective way

for mosaic disease management in plants.

Furthermore, Bokil ef al. (2019) studied the disease management strategies for vector plant
diseases by considering frequency and abundance replanting strategies. The study found that
the combined strategy of roguing and insecticide was the most effective disease-control strategy
than a single control but the best control methods with the frequency-replanting model can

differ greatly from those with the abundance-replanting model.

The reviewed literature shows how different researchers developed their models to understand
the transmission dynamics and control of the CMD. All these researchers included cassava
and whitefly vector population only in their model. Since current studies reveal the presence
of many non-cassava host plants which can act as a source of inoculum to whitefly vector,
there is a need to develop a mathematical model which incorporates the non-cassava host plant
population. Therefore, this study addresses that gap by developing a mathematical model which

includes non-cassava hosts.



CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

This chapter illustrates the methods and procedures that were employed to achieve research
objectives. Model formulation approaches, theoretical analysis of the formulated CMD Model
and the estimation of control parameters are all covered. The study covered all non-cassava
host plants which are used regularly by humans or found as weeds in cassava-growing regions

in Tanzania.

3.2 Model formulation

In the model formulation, the model suggested by Bokil ez al. (2019) was modified to include
the exposed cassava compartment and the non-cassava host plant population. The exposed
cassava plant compartment was added because it takes up to 5 weeks for CMD symptoms to
appear and during that time an exposed plant can contaminate other cassava plants with the
CMGs (Fargette et al., 1994). Therefore the formulated model consists of cassava plant (V.),
non-cassava plant (Nj,) and whitefly (N,,) population. The assumptions were made so that
all susceptible plants and whiteflies are recruited logistically such that the recruitment rate is

greater than their harvesting/mortality rate.

The parameters (7.), (r,) and (r},) describe the recruitment rate of susceptible compartments
of cassava plants (S.), whitefly (.5,,) and non-cassava host plants (.S},) respectively while pa-
rameter (¢), (1) and (w) symbolises the harvesting/mortality rate for cassava, non-cassava
and whitefly respectively. Additionally, exposed cassava plants (F,.) were assumed to be the
result of infected whitefly (7,,) ingestion rate (a) on susceptible cassava plants and the logisti-
cal recruitment of harvested exposed stem cuttings relying on the probability of selection (p).
The rate at which susceptible non-cassava host plants (S),) acquire mosaic viruses from in-
fected whitefly (1,,) is presented by parameter (d) while the rate at which susceptible whitefly
(Sw) acquire mosaic viruses from the infected/exposed cassava and non-cassava host (1) is

symbolised by the parameter (b) and (c) respectively.

Lastly, parameters (£), (¢), (k.), (k) and (kj,) were used to symbolize exposure to infected

latent rate, recovering rate of infected cassava (I,.), the carrying capacity of cassava plants, the

9



carrying capacity of whiteflies and the carrying capacity for non-cassava host plants respec-
tively. As commented before, flow diagram Fig. 3 and system of differential equations (1)
were designed to summarise the formulated model of CMD transmission dynamics provided

re—%>0,r,—w>0,andr, —n>0.
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Figure 3: Cassava mosaic disease flow diagram
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with initial conditions, S, (0) > 0, E.(0) >0, I.(0) >0, S, (0) > 0, I, (0) >0, S, (0) >

0, I, (0) > 0.
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3.3 Basic model properties
3.3.1 Invariant region

Lemma 3.1

Given the model system (1) in R’, with the initial conditions S.(0) > 0, E.(0) > 0,1.(0) >
0,5,(0) > 0,,(0) > 0,5,(0) > 0, I,(0) > 0, its solution enters the invariant region {2 =
(Se, By Ie, Swy Ly, Shy 1n) > 01in R

Proof: As used in the study of Chuma (2019) and Daudi et al. (2021) and Nyerere et al.
(2020a), the box invariant method was employed to assess the feasibility of the formulated
CMD Model system. We assume the continuity and the Lipschitz properties of its solution for

dX
our dynamic system i G(X,t), X in R". The model system (1) is reduced to the form,

dx
o AX+Z
= AX ¢

Where, column vector X = (S., E,, I, Sy, I,, Sy, I)" and

N, N, N, N, r
7= <7“C (1 — —) Se, Te <1 - —> pE,, 0, (1 - —> rwNw, 0, T (1 - —h> Sh, 0)
K;C l{c /{w Iih

and the Metzler matrix AVX &€ RZr is defined as:

— (¢ + al,) 0 ¢ 0 0 0 0
0 — (¢ +¢) 0 0 aS. 0 0
0 £ —(p+¢) 0 0 0 0
A= 0 0 0 -P 0 0 0 (2)
0 0 0 J — 0 0
0 0 0 0 0 —(dl,+n) O
0 0 0 0 0 dl,, —n

provided, P, = b(E. + I.) + ¢l + w and P, = b(E. + I.) + cI}, are simplifying factors.

Since we have negative values in the major diagonal of the matrix A in Equation (2) and the
rest are non-negative values we can conclude that all variable solutions will enter and remain in

the feasible area (). This indicates that the developed model system (1) is properly posed and

11



epidemiologically meaningful in the invariant region ().

3.3.2 Positivity of the solution

Utilizing the model equation (1) we have:

N,
ddi’c =Te (1 - _C) Se+ ¢l — aScly, — S, 3)

ds.
dt

> —(aly +¢) Se

employing separating the variables integration technique, we obtain:

/dSSCC 2/—(alw+w)dt

InS. > —(al, + )t +C

Sc (t) > Be—(afw-l-w)t

substituting ¢ = 0 as our initial condition, we obtain:
S.(0) > B

Thus:
Se(t) > S.(0) e~ @tV > 0t > 0

Using the same approach for all equations of the model system (1) for all £ > 0, we obtain the
following results:
E,(t) > E,(0) e~ >0
I.(t) > 1. (0) e~ W+t > 0
Sy (£) > S, (0) e~ OB el >
I, (t) > I, (0)e“" >0
Sy (t) > Sy (0) e~ (wtmt >
Ii(t) > 1,(0) e >0

(4)

Therefore, this assures that the formulated model system (1) has the positive solution for all

t>0.
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3.3.3 Existence of equilibrium points

(i) Disease-free equilibrium point

(ii)

In this sub-section, we obtain the Disease-free Equilibrium Point (DFE) by solving the
system the CMD model (1) when the rate of change of model variables is equal to zero.

As a result, we have:

N*
rc(l— C>SZ+¢[Z—CLS:[;Z—¢S; = 0

c

N*
rc(l— C)pE:—I—aSZIfU—(@D—FE)EZ =0

C

eE—(W+o)l: = 0
(1 - NW> roNE — (b(Ef +IF) + cl}) S5 — wS: = 0 (5)

R

(b(Ef +I¥) +cl}) St —wli = 0
N*
rh<1— h)S;;—dS;;I;,—nS;j =0

Kp

AS;I: —nI; = 0
where (S¥, EX, I¥, Sk, 1%, Sy, I}7) is the set of solution to the system (5). When E =

0,1 = 0,I; = 0,1 = 0 we obtain the DFE point, DFE= (SY, E?, 1%, 89 10 'SP I7)

clr e w? Tw?

given by:

DFE — (“c e =) g, Fulrw =) o fin(rn = 77),0) (©6)

Te Tw (4

Disease endemic equilibrium

The Disease Endemic Equilibrium Point (EEP) refers to the equilibrium point when dis-
ease infection occurs in the population of the model system (Kung’aro, 2016). Consider-

ing the system model equation (1), we obtain EEP= (S, E* I* S* I* Sy, I}), where:

clr) e w?) Tw?

. Dkep+re(ke— NI akeSEL . eE*
Sc = ) c — ) Ic = T N
HC(a];;“'?b) NErep + Ee (¥ +¢e)—1ep) (Y + )
g = rowNE (Kw — N7 I (b(E.+ I.) + clp) Sy and S — nl;
Ko (0 (Ee+ 1) + clp) + w) w dI;

13



Considering equation 5, we obtain:

N*
rc(l— C)s:+¢f:—as;1;—¢s::o
K

C

*
C

implying that r. (L

(&
to this, employing equation number four and six of the system (5) we confirm that «,, —

) S¥+ ¢l > 0, consequently, we have k. — N} > 0. Similar

N;, > 0and k, — N; > 0, respectively. Further, the second equation of the system (5)

verifies that r.p N + (¢ +¢) —rep > 0.

3.3.4 The basic reproduction number

The concept of Basic Reproduction Number () was first introduced in demographic studies.
Later, the concept was expanded to vector-borne diseases and human infection. Currently, the
idea is widely used in studies of infectious diseases, especially in models of in-host population
dynamics (Heffernan et al., 2005). The definition of (Ry) is contextual but generally, the (R)
refers to the anticipated number of offspring that a person will generate throughout the course
of their lifespan (Heffernan er al., 2005). When R, < 1, it indicates that the disease will
disappear in the environment but whenever Ry > 1, the disease will spread (Driessche &

Watmough, 2008).

Different approaches can be used in obtaining 7. In the deterministic model, % can be found
by using the survival function method or next-generation matrix. This study employs the next-
generation matrix concepts as presented by Driessche and Watmough (2008) to compute R.

The infected compartments of the model were written as:
dX .
E :E_Viaz = 17"'ana
where F; is the increased secondary infections rate at i'* disease compartment and V) is the

disease progression and death decrease rate at i"* compartment. The Spectral radius of the

matrix FV ! gives the Ry, thus Ry = p(FV ') where, F = [8}—1] and V = [8Vi]
an (%j

evaluated at DFE point when = = (E,, I., I,,, I},). Now, referring to the model system (1), we

14



find the infected subsystem to be:

(dE. N,
—r.(1-=2)pE I, — E
= rc( Hc)p c+aS.d, — (Y+e)E,

dl
S=cE.—(Y+09)1,
o e+ o
S8 — 0 (Bt L) + ¢ln) Sy — wl
dly,
— =dS,1, — nl
[ = @rlw =0l
Thus: N
e (1 — —c> pE. + aS.I,
Ke
Fi= ! ®)
(b(E. + 1) + cl}) Sy
dSp1,
and,
(¥ +¢) Ee
+ @)1, — ek,
y - [T | ©)
wly,
nip

The Jacobian matrix for F; and V; evaluated at DFE are given by:

0
T (1 — i) p 0 aS? 0
Ke
F: 0 0 0 o0 (10
bSO b 0 eS°
0 0 ds? 0

and

W+e) 0 00
- Y+¢ 00

Y= : (11)
0 0 w 0
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computing V! we get:

1
Ve 0 0 0
© Lo 0
vl | W+o)(+e) v+9¢ ) (12)
0 0 - 0
0 0 0 l
n
accordingly:
¢p 0 a(rc - w) Re 0
Yte wre
, 0 0 0 0
IV =1 (ry—w) ke £ (T — W) Ku (rw — W) Kw
b——-"T— (1 +— ) b——"T— 0
(Y +e)rw ( 1/}+¢> (v +o)r S
0 0 g rn =) K 0
wrp
(13)
If we let:

_ Yp _ (re =) ke (T — W) Ky €
o = g o = o W (1555,

(T — W) Ky (T — W) Ky (rn, — ) kn
—prw T/ =c~Y "7 %and =d—_"—
932 ( " qb) o yg3a = C p— and g43 wr

and compute Ry = p(FV~!) we obtain:

X 1 X X, 1 V3 (X 2X,
= X e R TR gy o it} 14
Ro max{6—i—X 2+3g11, 12 X+3g11 22<6 X)} (14)

1
where, X = (Xo +12v/X1)3 , Xo = 4 (9931913 — 18¢asg3a + 2(g11)*) g1 and

X1 = —3(g11)% (4934943 (1 — 2g34943) + 913931 (913931 + 20934943))

—12 (913931)2 (913931 + 3934943) — 12 (934943)2 (3913931 + 934943)
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1
Xo = 31913 + Ga3g34 + 5(911)2

3.3.5 Local stability analysis for the disease-free equilibrium point

Theorem 3.1

The disease-free equilibrium point (DFE) of the CMD Model system (1) is locally asymptotic

stable when Ry < 1 and unstable otherwise.

Proof: The concept of decomposing the system Jacobian matrix evaluated at DFE and inves-

tigating the eigenvalues of diagonal sub-matrix as used by Mayengo et al. (2022), was used

to verify the local stability of the model system (1). Therefore, matrix (15) is the obtained

Jacobian matrix at DFE.

—(re =v) —(re —7) P; 0 —aS? 0
0 P, 0 0 as 0
0 ¢ —Wte) 0 0 0
JprE = 0 —bS? —bS% Py —r,+ 2w 0
0 bSO b0 —w 0
0 0 0 0 —dS®  —(rh—n)
0 0 0 0 ds 0

Where, P3 = — (1. — ) + ¢, P, = — (¢ (1 = p) +¢),and Ps = — (1, — w)

When decomposing matrix Jprr we obtain a block matrix of the form:

Jii Jiz 0
JprE = | Ja1 Jao  Jog
0 Ji Js3

Where 0 are zero matrices and

—(re=1)  —(re=v)  —(re=v)+¢
Ju = 0 —(W(1—p)+e) 0 ;
0 e (¥ +9)

17
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0
0
—cS?
cSY
—(rn—mn)
-n
(15)
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—(ry —w) =Ty +2w —(rn=m) —(rn—n)
Jog = ) J33 =
0 —w 0 —n

From diagonal sub-matrix .J;; with eigenvalues — (¢ + ¢), —(¥) (1 — p) + ¢) and —(r. — ¥),
Joo with eigenvalues —(r,, — w) and —w, and J33 with eigenvalues — (r, — 1) and —7), if we
utilize the stated assumption (r. —¢) > 0, r, —w > 0 and r, — n > 0) of the model system (1)
we can observe that our diagonal sub-matrices have real and negative eigenvalues. Since that
property guarantees the stability of diagonal sub-matrices it in turn assures the local stability of

the matrix (15) when Ry < 1.
3.4 Sensitivity analysis

The concept of normalized forward sensitivity index technique as used by Kung’aro (2016) was
used to examine parameter contribution on the transmission of CMD using R. Therefore, we
establish that:

T =

— 17
i 8uz % RO ( )

where u; represents the i model parameters as elaborated on Table 1.

With the help of Maple 15 software and the baseline values shown in Table 1 the sensitivity
indices of model parameters of the model system (1) were computed (Appendix 4). The results

are highlighted in Table 1.

The column of sensitivity index in Table 1 shows that the whitefly death rate (w) has the most
negative index while whitefly carrying capacity (k,,) has the most positive index than other

parameters.

Since the increase of the rate of negative indices, parameter causes the decrease of disease
transmission rate and vice versa, these results signify that the increase of whitefly mortality
rate (w) or the decrease of whitefly carrying capacity will reduce the disease transmission
rate. This signifies that for effective control strategies during the outbreak, CMD stakeholders
should implement strategies which accelerate the whitefly death rate and reduce the carrying
capacity of whiteflies. Other negative indices results which can also be accelerated to reduce
the transmission rate of CMD include non-cassava host plant harvesting rate (1), cassava plant

harvesting rate (1)), the cassava plant latent rate (¢) and the cassava plant recovering rate (¢).
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Table 1: Sensitivity indices of model parameters

Parameter Range Baseline Value Reference Index
Te 0.025-0.1 0.05 day~! Jeger et al. (2004)  0.0177
T 0.1-0.3 0.2 day~! Holt et al. (1997)  0.0117
Th - 0.02 day 1 Assumed 0.2141
p 0-1 0.1 Holt et al. (1997)  0.0006
a 0.002-0.032 0.008 plant tday~! Holt et al. (1997)  0.2779
b 0.002-0.032 0.008 white fly~‘day =1 Holt et al. (1997)  0.2779
c - 0.008 white fly ‘day=* Assumed 0.2218
d - 0.008 plant 'day* Assumed 0.2218
€ - 0.033 day ! Jeger et al. (2004)  -0.0202
w 0.06-0.18 0.06 day ™! Holt et al. (1997)  -0.7138
n - 0.001 day—! Assumed -0.2334
0.002-0.004 0.003 day—! Holt et al. (1997)  -0.1579
Ke 0.01-1 0.7 m™2 Holt et al. (1997)  0.2779
Ko 0-350 90 m 2 Bokil et al. (2019) 0.4997
Kh 0.01-1 0.1 m™2 Assumed 0.2218
o) 0.002-0.004 0.003 day~! Jeger et al. (2004) -0.1176

Lastly, we find that the probability of replanting exposed cassava stem (p) has less sensitivity
index compared to other parameters. This implies that the probability of using the exposed
stem cutting does not contribute much to the disease spreading rate and therefore when used as

a disease management strategy it will not bring pleasing results.

3.5 Global stability

The analysis of global asymptotic stability on equilibrium points of dynamical models is one of
the mathematical tools that enable understanding the disease persistence over time. In global
stability analysis, whenever the DFE is globally asymptotic stable, the eradication of the disease
is assured in spite of the initial number of infected individuals introduced into the population,
and if the EEP is globally asymptotic stable, the infection will permanently persist in the pop-
ulation if no control strategies implemented (Driessche & Watmough, 2002; Wangari, 2020).

This information helps stakeholders to plan appropriately on prevention and intervention strate-
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gies for the disease.

Different global stability analysis approaches such as Poincaré—Bendixson theory, Lyapunov
functions, Bendixson and Dulac criteria, the concept of monotone flows, the geometric ap-
proach and the Volterra—Lyapunov matrix theory have been developed and used over time (Liao
& Wang, 2012; Parsaei et al., 2017; Zahedi & Kargar, 2017). The use of these methods highly
depends on the strengths and limitations of the method and the nature of the problem at hand
(Zahedi & Kargar, 2017). The Lyapunov function approach has been frequently utilized and
successful in providing global stability findings for various epidemiological models, despite
the difficulties in determining the proper function coefficients (Liao & Wang, 2012; Zahedi
& Kargar, 2017). To overcome that challenge of determining the proper function coefficients,
Li and Shuai (2010) highlighted the use of graph theory in the construction and estimation of
the derivatives of the Lyapunov functions. Additionally, the introduced family of Lyapunov
functions by Korobeinikov and Maini (2004) and Korobeinikov and Wake (2002) helps in an-
alyzing the global stability of equilibrium points for many epidemiological models. Thus, the
Lyapunov function method is simple to implement and requires little theoretical background

knowledge (Liao & Wang, 2012).

In this section, the concept by Castillo-Chavez et al. (2002) was employed to verify the global
stability of the DFE for the model system (1). Furthermore, we performed a numerical simula-
tion of model population variables on the model system (1) to portray the stability of DFE and

EEP. The numerical simulation results are presented in Chapter Four.

3.5.1 Global stability of DFE

As highlighted in the study by Chuma and Mwanga (2019) and Renald (2020), the CMD Model

system (1) is written in the form:

dX,

7 Q1 (Xs — DFE) 4+ Q:X;

d)? (18)
i )(Z

Where X is the vector for non-transmitting individuals(susceptible) compartments, X; is the
vector for transmitting individuals (Exposed and infected), D F'E is the CMD free equilibrium

point, and ()1, Q)2 and ()3 are matrices we need to find. Therefore, X, = (S,, Sy, Sh)T, X, =
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Wke o,

cyter b
c Tw Th

(E.,I,.1,.1,)" and DFE = ((TC -
.

In order to verify the DFE point of the CMD Model system (1) is globally asymptotic stable

when Ry < 1, we showed that, the matrix (); has real and negative eigenvalues and ()3 is a

Metzler matrix (i.e., the out-diagonal elements of ()3 are non-negative). Now, if we write the

CMD Model system (1) to the form stipulated by equation (18) we get:

N —
Te (1 — —c> S.+ ol. —aS.1, — S, S, — (re — ) Ke
Ke —Tc
N, - .
(1—;f>TwNw—(NEk+LJ+CbJ&H—w&U::Ql Sw_(r w) K
w ,r,w
N, _
T (1 - —") S, — dSpl, — 1S S, — (rn = n)
Rp T
E.
I,
+ Q2
I,
I
and
N,
Te <1 — K—) pE.+aS. I, — (Y +¢) E. E,
_ I.
eE. — (i + §)Le o,
(0 (B, +I.) + cIp) Sy — wl,, Iy
dSh]w — ’f]]h ]h

If we solve for ()1, Q2 and ()3, we find:

Scc
_ 2l 0 0
Re N
Q= 0 == 0
Ry S
O 0 B hT'h
Kh
Scc Scc
_2cle 2l + ¢ —aS, 0
KJC C
Nww
Q= | —bs,  —bs, 22U, _cs,
Raw
0 0 ds, T
Rh
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and

N,
- (—rc (1 - —) p+(e+ @D)) 0 aSe 0
RC
Q3 = € - (iﬁ + (b) 0 0 (23)
bS,, bS,, —w Sy,
0 0 dSh -1
SC C N'Ll) w S
From the obtained results, we can see the eigenvalues of the (), are — 4 ,— ! and — hTh
Ke Ko K,

N,
which are real and negative. Also, from Equation (5) it is evident that —r, ( 1— —) p+(e+

1) > 0, hence, the matrix ()3 is the Metzler matrix. Thus, the DFE point is globally and

asymptotic stable when Ry < 1.

Theorem 3.2
The DFE point of the CMD Model system (1) is globally asymptotically stable when Ry < 1

and unstable otherwise.

3.6 Control model formulation

In this section, the formulated control model includes two-time dependant control parameters
uy(t) € [0,1] and uy(t) € [0, 1] to the basic model (1) as disease management efforts made on
roguing activities and insecticide spraying respectively. Therefore, the control u; (¢)7 intends
to reduce the whitefly virus acquisition from the infected cassava and non-cassava host plants
through roguing activities, while control uy(t)s increases the death rate of whitefly through
insecticide spraying. This implies that 7 and ¢ represent the number of harvested cassava and
non-cassava plants due to roguing activities and the death rate of whiteflies due to insecticide
spraying respectively. When u4 (t) and us(t) equals zero it implies that no controlling measures
are taken to mitigate the disease and when set to one, it means that the control strategy is fully

implemented.

The definitions of variables and parameters remain the same as in the model system (1) except
for model assumptions. For the control model, the assumptions are; r. — (¢ + ui7) > 0,
Tw — (W4 ugs) > 0, and r, — (n + uyT) > 0. Figure 4 and the system of equations (24)

summarize the formulated control model.
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Figure 4: Cassava mosaic disease flow diagram with control measure

ddStc =7, (1 — —C) Se+ ¢l. —aS.I, —PS.

(¢

dFE. N,
o =7, (1 — —) pE.+aS.Il, — (Y +¢) E.

C

dl,

o= B, — (Y + ¢ +uir)I.

dsS,, Ny

% - (1 a n_) TwlNy — (b (Ee + 1) + clp) Sw — (w + 126) Sy (24)
dl,, B

— = (0(Be+ 1) + el) Su = (@ + us) Ly

d N,
% =T <1 — —h) Sh —dShIw —USh

Rh
dly,
\ dt
provided, S, (O) >0, E, (0) >0, I, (0) >0, .5, (0) >0, I, (0) >0, .95, (O) >0, I (0) > 0.

= dSh]w — (7] + UlT)]h

3.7 Basic model properties for the control model
3.7.1 Invariant region

Lemma 3.2

With the initial conditions S.(0) > 0, E.(0) > 0,1.(0) > 0,S,(0) > 0, ,(0) > 0,S5,(0) >

23



0, 1,(0) > 0, the solution of the model system (24) in RZr enters the invariant region ) =

(Se, B¢, Ie, Sw, L, Shy 1) > 0in RY.
Proof: As in the Subsection 3.3.1 we utilize the box invariant approach to examine the feasi-

bility of the CMD control model. We write the model system (24) as:

dx
L AX+ Z
o AX +

Where, column vector X = (S, E., I., Sw, Tw, Sn, In)" and

N, N. N, N, T
7 = (rc (1 — —) S.. 7, (1 — —) pE,., 0, 1y (1 — —) Ny, 0, 7, (1 _ —’“‘) Sh, 0)
HC K;C /ﬁ?w K/h

and the Metzler matrix A VX € R is expressed as:

~(W+al,) 0O ¢ 0O 0 0 0
0 (W+e) 0 0 asS, 0 0
0 € P 0 0 0 0
A= 0 0 0 —F 0 0 0 (25)
0 0 0 P —(w+u) 0 0
0 0O 0 0 0 —(dI,, + 1) 0
0 0o 0 0 0 dl,, —(+wy7)

Where, Ps = —(¢Y + ¢ +ui7), Pr = b(E. + 1) + ¢l + w + uss, and Py = b(E. + 1.) + clj.

Since we have negative values in the major diagonal of the matrix 4 in equation (25) and the
rest are non-negative values we can conclude that all variable solutions will enter and remain
in the feasible area (2. This indicates that the developed control model system (24) is properly

posed and epidemiologically meaningful in the invariant region §2.
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3.7.2 Positivity of the model solution

As in Subsection 27, using the first equation of the control model equation (24) we obtain:

dCZC =Tc (1 - %) Sc + ¢Ic - aSch - wSC (26)

ds.
dt

Z - (a]w +,‘7Z}) Sc

through separating the variables, we integrate both sides to obtain:

/dic Z/—(a]w+1/1)dt

InS,>—(al, +)t+C

S, (t) > Be~(alutv)t

At the point ¢ = 0, we obtain:
S.(0)> B

Hence:

Se (t) > S, (0) e~ @tV > gyt > 0

Following the same procedure for ¢ > 0, we establish:

E.(t) > E.(0) e~ @Wtat >

I (t) > I, (0) e-WHotmnt >

Sy (t) > S, (0) e~ GBI telntwtu)t > ()
I, (t) > I, (0) e @29t >

Sy (t) > Sy, (0) e~ dlwtnt >

L (t) 2 I (0) e~ (1t > 0

(27)

The results infer that for all ¢ > 0 the formulated control model (24) has the positive solution.

3.7.3 Disease-free equilibrium

As in Subsection 3.3.3, we equate the rate of change of model variables of the formulated

control model (24) equal to zero and solve the model system simultaneously to obtain:
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Te Tw Th

DFE = <M 0,0, Bulrn =@ H ) o n (s =) 0) %)

3.7.4 The effective reproduction number

Here, the same concept of the next generation matrix as used in the previous Subsection 3.3.4
of the basic model (1) was employed to obtain the effective reproduction number(R.) for the
control model (24). The concept of R, refers the same as R, except R. is computed when
control measures are applied to the basic model (Nyerere et al., 2020b). It helps in examining

the potentiality of control parameters in the dynamics of the disease. If we assign:

_ P :CL(TC_w)'%c — bk (Tw—(W+U2§))(UlT+¢+¢+5)
g11 —¢ T 5’913 —(w n uzg)rc7g31 w (7# n s) (u17‘ o+ @D)Tw )
e —(@tuss)) ke (e — (W usS)) K ~(rn—m) Ka
932 = (T +v+é)ry M= (N + uT)Ty and g3 = d(w + ugs)1y,
we find:

Y 2X 1 Y X 1 V3. /Y 2X
Re:maﬂf{g‘ir?"‘ggn,—ﬁ—?‘i‘ggni?Z<———)} (29)

1
where, Y = (Yb + 12\/371) 5. Yy =4 (9931913 — 18943934 + 2(911)?) g1,

Vi = —3(911)* (4931943 (1 — 2934943) + 913931 (913931 + 20934943))
—12 (913931)2 (913931 + 3934943) — 12 (934943)2 (3913931 + 934943)

g11)°
3

and X = g13931 + 943934 +
3.8 Optimal control

In this section, we develop the objective function to minimize the costs of applying our time-

dependent controls u, (t) and us (). Our objective function is defined as:

J = /Ot <A1 (1(t) + In(t)) + Aol (t) + Ag%t)2 + &%ﬁ) dt (30)
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where parameters A; and A, describe the positive weight constant associated with the appli-
cation of roguing to the infected population of cassava and non-cassava hosts plants and in-

secticides to the whitefly population. Parameters A3 and A, represent the application costs for
uy (t)? ug(t)?
10) and A4 2(1)
2 2
for the cost of each control strategy intends to avoid linearity on cost and avoid singular cases

roguing and insecticides control strategies respectively. The estimate Aj

for the optimal control solution.

The aim is to minimize J (u1, u2) and obtain optimal control u} and u} in the time interval [0,

t], such that:
J(uy, uy) = min(J (u1,us)) : (u1,us € U), subject to model (24)
where U = Uy x Uy and u; € [0,1],uy € [0, 1]

Theorem 3.3
There exists an optimal control set u, u5 € U and the state solutions of the model system (24),

(S¥, EX I¥, Sk, I¥, Sy, 1) that minimizes the objective function J (uy, us).

clroc)Tw) Tw)

The condition stated by Heimann (1979) as cited by Kinene et al. (2015) verifies Theorem
3.3. Since by definition U is convex and closed, and the set of controls and the corresponding
state variables are non-negative, then the integrand K(uy, us2) of J(uy, uz) with respect to U
is convex if there exist a;,as > 0 and w > 1 such that, the integrand K(u1,us) > a9 +

ar (Jur] + Juz) .

Theorem 3.4
For an optimal control uy,us € U, there exist an adjoint function A : R — R" such that
x(t,u}), uf, X satisfy the model (24) with initial conditions and the adjoint system for i = 1,2
At) = 2+
) =3%

A(t) =0
where H is a Hamiltonian function defined as H (¢, X, u;) = f(t, X, u;) + A\g(t, X, u;), f is the

integrand of equation (30), g is the state system (24) and X = (S, E., I, Sw, L, Sk, I1)-

Proof

Suppose u} and u} € U are the optimal control, given X = (S., E., I., Sw, Ly, Sk, I1,), then the
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Hamiltonian function is described as:

ui |, U3
H=A(.+1) + A1, + A3E + A45

N,
+XA (rc (1 — m_c) Se+ ¢l. —aS.1, — ¢SC>

Cc

N,
+ A <rc (1 — —C) pE.+ aS.I, — (Y +¢) EC>

Re
+X3 (B, — (Y + ¢+ wiT) 1)
+\4 (<1 — &> TwlNw — (b(E.+ 1) + clp) Sy — (w+ u2§)5w>
X5 ((b(Ee+ 1) + clp) Sw — (w + u2s) 1)

N,
+X¢ (rh (1 - ?h) Sy — dSpl, — nsh>
h

+ A7 (dSpLy — (n 4+ uiT)1p)

OH . OH OH OH . OH . OH OH
L Ny e Ny = e N = e N = e N = — e N= T
08, 0B, o1, 08,”"" or,”"° 08, oI,

there exist adjoint variables \; ,7 = 1,2,3,4,5, 6,7, that assures:

, N, E
)\1:>\1 (Tc <1—Sc+ < _a]w_w>+)\2 (a[w—rcp C>

Re Re
)\17“05(: Ec + Nc

Re

for, Xl =

X2=— +)\2(7’c,0<1— )—¢_5)+/\35_()‘4_/\5>wa

Cc

, E
)\3 _ Al +)\1 <¢_ TCSC i )\QTCp c

K Ke

— A3 (U1 T + ¢+ P) — (Mg — A5) bS,,

. QNC
A= Mg (rw (1 — —w) —b(E.+ 1.) — cly — uss — w> + X5 (b(E. + 1) +cI) (31

K

, 2N,
)\5 = Ag — ()\1 — )\Q)GSC + )\4 (’I"w (1 — —)) — )\5 (U,2§ + OJ) — ()\6 — )\7) dSh

Ruw
, N
Xo = Ao (rh (1— Sh: h) _dr, —n) + edl,
h
, A6ThS
\)\7:141 — ()\4—)\5)C5w—)\7 (77+U17') — 6/;; h

given transversality conditions: A;(t) = A2(t) = A3(t) = Ay(t) = A5(t) = As(t) = A(8) =0
To obtain the optimality equation (32), we compute the partial derivatives of the Hamiltonian

equation (31) with respect u; and u» and obtain:

H
a = A3u1 — )\3[07' — )\7[hT

?;ﬁ 32)
= A4U2 - /\4SwC - /\5]w§

Oy
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OH
Solving for u; and us from (32) when — and — = 0, we obtain:
(‘9u1 8u2

Ml + A1,
= %7

As
A1Sy + Asly, (33)
= — % g

Ay

*

Uy

u

N ¥

hence, we can characterize the optimal control u; and us as:

A3l + A7l
uy = min {mam <O, Aslet Arlh * 7’> , 1} (34)
Az
I
Uy = Min {mam <O, )\457”14& * g) , 1} (35)
4

Equations (34) and (35) give the optimal solution for the objective function (30). Since system
equation (24) and adjoint equation (31) are bounded and satisfy Lipschitz conditions, the opti-
mality system is unique for some small ¢.Therefore, the uniqueness of the optimal solution is

guaranteed by the restriction on the length of the time interval [0, ¢] (Kinene et al., 2015).
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CHAPTER FOUR

RESULTS AND DISCUSSION
4.1 Introduction

The numerical simulation results for the basic model (1), optimal control model (24) and time
series plots to depict the global stability of DFE and EEP are presented in this chapter. Fur-
ther, the chapter presents the Incremental Cost-Effectiveness Ratio (ICER) results for the CMD

management strategies as used on the optimal control model (24).

4.2 Numerical simulation and results

The fourth-order Runge-Kutta method was used to simulate the formulated model (1) and ob-
serve the trajectories of the population over time, the effects of varying the whitefly mortality
rate (w) and whitefly carrying capacity (x,,). We use S.(0) = 0.35, E.(0) = 0.05,1.(0) =
0.05, S, (0) = 40, I,,(0) = 10, .5,(0) = 0.2, 1,(0) = 0.1 as our initial state values for model
system variables and parameter baseline values as highlighted in Table 1 to simulate the for-

mulated model system (1).
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Figure 5: Cassava population dynamics

In Fig. 5 it was clearly observed that during the first 100 days, infected cassava plants per m?
increased from 0.05 per m? to 0.35 per m? and drop slightly up to 0.3 per m? after 300 days.

Conversely, the susceptible cassava plant population per m? decreases exponentially from 0.35

30



per m? to 0.05 per m? during the first 300 days. Further, it was noticed that during the first 25
days the exposed cassava per m? increases from 0.05 plants per m? and reaches the top value of
0.2 plants per m? prior to exponential decrease to 0.05 per m?. This result implies that in 300
days, infected cassava plants per m? will be greater than the exposed and susceptible cassava
plants when the outbreak occurs with the same variable and parameter values as used in the

simulation.
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Figure 6: Whitefly population dynamics

For the case of the whitefly population, it was witnessed in Fig. 6 that, there is a slight decrease
in the number of infected whiteflies per m? from 10 whiteflies per m? to the constant rate of
five infected whiteflies per m? in less than 50 days. Contrarily, the increase in the number
of susceptible whitefly populations per m? from 40 to around 58 per m? in less than 50 days

before it maintained for the rest of 300 days was observed.

Fig. 7 presents the dynamics in non-cassava host plants. It was observed that during the first
100 days, the number of susceptible non-cassava host plants drops to zero while the infected
plants increase to approximately 0.33 per m?. Further, after 300 days the number of infected

non-cassava plants per m? is anticipated to be 0.27 per m?.

In Fig. 8 the impacts of altering the whitefly mortality rate (w) on the infected population of
the model system (1) is portrayed. In all infected populations, it was evident that when (w)
increases, the number of infected individuals per m? decreases and vice versa. This result

reveals that control strategies that increase the whitefly mortality rate are vital in combating the
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Figure 7: Non-cassava hosts population dynamics

spread of CMD.

Similarly, Fig. 9 depicts the impacts of altering the whitefly carrying capacity (k) on in-
fected populations of the model system (1). Contrary to what was observed when changing the
whitefly mortality rate (w), an increase in the density of whiteflies (k,,) speeds up the spread
of infection in the population. This scenario highlights that the stakeholders can mitigate the
intensity of the CMD by reducing the number of infected or unnecessary plants that helps to

accommodate whitefly in farms and surrounding areas.
4.3 Numerical simulation for the global stability analysis

Table 2 was used as used in Erick and Mayengo (2022) to illustrate the numerical stability of
DFE and EEP of the model system (1) by using time series plots. The parameter values were
twisted within their respective range to obtain values that give Ry < 1 and Ry > 1. For DFE
we select a = 0.002,b = 0.002,c = 0.002,d = 0.002,¢ = 0.033,n = 0.002,p = 0.001,¢ =
0.004,%¢ = 0.004,r, = 0.5e — 1,7, = 0.2,7r,, = 0.01, k. = 0.5, k;, = 0.3,k = 70,w = 0.06
with Ry = 0.7747, whilst in EEP the selected values were a = 0.01,b = 0.01,¢ = 0.01,d =
0.0l1,e = 0.033,7 = 0.001,p = 0.1,¢ = 0.003,v = 0.003,w = 0.06,7. = 0.05,r, =
0.2,r, =0.07, k. = 0.7, k, = 0.7, k,, = 160 with Ry = 12.2879. Fig. 10 and 11 present the
simulated global stability for DFE and EEP respectively for the model (1).

From Fig. 10 it can be noticed that using different initial conditions the trajectories for all
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Figure 8: The impact of altering the whitefly mortality rate (w) on the infected popula-
tion. Subplots (a), (b) and (c) represent the simulation of the infectious cassava
plants, whiteflies and non-cassava host plants respectively

infected population (E.), (1.), (I,) and (I;) converges at a given fixed point on the time axis.
This indicates that the disease can distinct from the population when sufficient control strategies

are applied and hence proves the existence and global stability of DFE whenever Ry < 1.

Moreover, the trajectories in the Fig. 11 presents the number of infected population £, I., I,
and [, when Ry > 1. It was observed that with different initial conditions, the trajectories
converge at a given point above the time axis. This implies that the disease will prevail in the
environment when significant control strategies are not implemented. The Figure also confirms

the existence and global stability of EEP whenever Ry > 1.

4.4 Numerical simulation for optimal control model

This section presents the numerical simulation results of suggested control measures in the
model system (24). The roguing (u;7) (uprooting and burning of infected cassava and non-
cassava host plants), insecticides application (us<), and the combination of roguing (u,7) and
insecticides application (u9<) were considered as control strategies for eradicating CMD. The
forward and backward fourth-order Runge-Kutta iterative scheme was employed to solve the
system model equation (1) and adjoint equation (31) respectively. Firstly, the forward Runge-
Kutta method was used to compute the state solution then the obtained state solution and the

transversality conditions were used to solve the adjoint equations through the backward fourth-
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Figure 9: The impact of altering the whitefly carrying capacity (x,) on the infected popu-
lation. Subplots (a), (b) and (c¢) represent the simulation of the infectious cassava
plants, whiteflies and non-cassava host plants respectively

order Runge-Kutta method. Furthermore, the convex combination of the previous controls
and the value from the characterizations values was used to update controls. This process
repeats whenever the unknown values from the previous iteration are not noticeably closer to

the unknown values from the current iteration.

The collection of weight factors was theoretically selected for simulation purposes as follows:
A; =10,A5 =5, A3 = 50 and A, = 100 and initial state variables S, = 0.35, E. = 0.05, I, =
0.05, S5, = 40,1, = 10,5, = 0.2 and I;, = 0.1. The roguing rate and whitefly death rate due
to insecticide spraying was set to 0.1 day~! and 0.18 day " respectively as used by Bokil et al.

(2019) and Jittamai et al. (2021). Other parameters are as shown in baseline values in Table 1.

4.4.1 Strategy 1: Roguing

Under this strategy, the insecticides application effort (uy) was set to zero while roguing of
infected cassava and non-cassava host plants (u;) alone was used to optimize the objective
function (30). The results in Fig. 12 portray that, in the first 200 days, the number of infected
whiteflies (/,,), cassava (I.) and non-cassava host plants (I;,) drop significantly to less than
0.1 m~2, 2 m~?2 and approximately zero respectively. The Figure also reveals a significant
difference between the implementation of roguing activities and the case of no applied control

measure. Furthermore, in Fig. 13 it was witnessed that, during the first 120 days roguing
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Table 2: The range and baseline values for the model parameter

Parameter Range Baseline Value

Te 0.025-0.1 0.05 day ™!

Tw 0.1-0.3 0.2 day~*

Th - 0.02 day !

p 0-1 0.1

a 0.002-0.032 0.008 plant 'day*

b 0.002-0.032 0.008 white fly~‘day*
c - 0.008 white fly *day~!
d - 0.008 plant~tday=*

€ - 0.033 day !

w 0.06-0.18 0.06 day~!

n - 0.001 day™*

0.002-0.004 0.003 day !

e 0.01-1 0.7 m™2
Fow 0-350 90 m 2

Kh 0.01-1 0.1 m™2

0] 0.002-0.004 0.003 day !

activities were fully implemented before it stops and dropped to zero. Then, after 230 days the
roguing activities resume to full implementation for 40 days before it sharply decreases to zero
after 300 days. The results also reveal that strategy 1 does not affect the number of exposed
cassava plants in the first 100 days. This implies that for significant results, roguing needs to
be implemented at its full scale in the first 120 days and the last 70 days if it is used as the only

control strategy.

4.4.2 Strategy 2: Insecticides application

In strategy 2, only insecticide application was employed to optimize the objective function (30).
From Fig. 14 it was witnessed that the application of insecticides alone reduces the number of
infected populations of cassava, whitefly, and non-cassava host plants, and exposed cassava
compared to the case of no control. When compared to strategy 1(roguing activities) it was

evident that the number of infected cassava and non-cassava host populations is higher but
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Figure 10: A graphical depiction of global stability for DFE

whitefly and exposed cassava plants population attain their disease-free equilibrium points in
less than 200 days. Moreover, the control profile Fig. 15 portrays that, insecticides application

was fully implemented in the first 100 days only then drops to zero for the remaining 200 days.

4.4.3 Strategy 3: Roguing and insecticides application

Here considerations were made on the combination of roguing activities and insecticides appli-
cation in optimizing the objective function (30). The outcomes portrayed in Fig. 16 tell that the
combination of strategy 1 and strategy 2 was able to reduce the disease in all infected popula-

tions significantly compared to the previous strategies. In Fig. 17 we observed that roguing was
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Figure 11: A graphical depiction of global stability for EEP

fully implemented in the first 50 days and approximately 70% implementation in the last 50
days. On the other hand, the application of the insecticide was fully implemented for 50 days
after the first 25 days before it drops to zero and starts again after 240 days for approximately
25 days before it drops sharply to zero. As witnessed in the control profile Fig. 17 roguing

activities and insecticides application were not fully implemented throughout the year.
4.5 Cost-effectiveness analysis

In this part, the Incremental Cost-Effectiveness Ratio (ICER) as expressed by Mwasunda et
al. (2022) and Nyerere et al. (2020b) and Alemneh et al. (2020) was employed to rank the

implemented strategies in mitigating CMD. The ICER results provide useful information to
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Figure 12: Infected population dynamics when roguing activities are implemented

stakeholders and policymakers on how to mitigate the disease with limited resource allocation.

As in the study by Kinene et al. (2015) and Nyerere et al. (2020b) ICER was defined as;

ICER — The costs difference between two control methods 0
"~ The difference of the total number of their infections averted

The optimality simulation results were arranged in increasing order of effectiveness based on
cases of infection averted as shown in Table 3. In Table 3, it was observed that strategy 2 has
the highest ICER value compared to the results of strategies 3 and 1. This signifies that strategy
2 is strongly dominated, with more running costs and less effective than other implemented

strategies. Therefore, strategy 2 was removed from the set of control strategies since it does not
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Figure 13: The control profile for roguing activities

Table 3: Total infection averted with their respective ICER in ascending order

Strategy Infections Averted Total Cost ICER
No control 0 0 -
Strategy 3 534.0185351 2114.501713 3.959603599
Strategy 2 534.1025494 2455.927458 4063.896286
Strategy 1 534.1233924 2376.048165 -3832.440744

consume limited resources. Then, ICERs were recalculated by using strategies 3 and 1 only

and the results were presented in Table 4.

Table 4: Recalculated ICER for strategy 3 and 1

Strategy Infections Averted Total Cost ICER
No control 0 0 -
Strategy 3 534.0185351 2114.501713 3.959603599
Strategy 1 534.1233924 2376.048165 2494.308129

Again, the observed recalculated ICER value in Table 4 reveals that strategy 1 has a greater
ICER value than strategy 3. The results imply that strategy 3 is cheaper and more effective than
strategy 1. Therefore, the implementation of strategy 3 (roguing and insecticide application)
is regarded as the less expensive and most effective strategy in combating CMD compared to

insecticide application or roguing activities when implemented alone.
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Figure 14: Infected population dynamics for optimal insecticides application
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40



N T
L 0.4 [
S / —~—y —— -
803! ’ ==
o /
© / P
§02 ; u.# 0,i=1,2
o / - - —ui=0, i=1,2
201! :
Q V\/—\/
Q
£ o - -
0 100 200
(a) Time (Days)
NE 10
E,_ u.# 0,i=1,2
q—?‘ \ —— —Ui=0, i=1,2
()]
P2 | RN — _
e o = I
s
]
9
(8}
Q
: _
£ o0 - :
0 100 200
(c) Time (Days)

300

300

N

EE ().22 , ‘\ :

‘g,_ R u# 0, i=1,2

0.157 ) 1

S ‘ol - —u=0,i=1,2

© |

(7))

g 0.1

(8)

D -

Q0051 0 oSN~—T === - -
o

<

L 0 : :

0 100 200 300

e (b) Time (Days)

$ ——

o 0.2t / = - -~ -

(/2] =~ -

o I = - -
< I

c 0.15 1
— I

7] i—

@ 0.1 u.+ 0,i=1,2
‘é’ - - —ui=0, i=1,2
0 0.05¢

c

o

(4] 0 | !

©

2 0 100 200 300
£ (d) Time (Days)

Figure 16: The dynamics of the infected population when roguing and insecticides appli-
cation was implemented

Control Profile
© o ©o o o o o o
n w = (6] (2] ~ (s © -
|

o

--Ui¢ 0, i=1

w— U 0, =2

o

100

150 200

Time (Days)

250 300

Figure 17: The control profile for roguing implementation and insecticides application

41



CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Cassava mosaic disease (CMD) has affected cassava production in Africa for many years. This
study develops and examines a deterministic model by incorporating the non-cassava host plant
population. The study particularly: develops a mathematical dynamics model for CMD that
takes non-cassava host plants into account; analyses the model theoretically to look at things
like the solutions’ positivity, the stability of model equilibrium points, and sensitivity analysis;
estimates the control parameters and their importance by simulating the model numerically;

and finally, determine the most economical disease control method.

In this work, the non-cassava host population were incorporated in the formulation and analysis
of the ordinary differential equation (ODE) model for the transmission dynamics and optimal
control strategies of CMD. The basic model properties analysis results ensure the positivity and
boundedness of the model solution for all time ¢ > 0. The analysis of the local stability of the
formulated model confirms that the DFE is asymptotic stable when Ry < 1 and unstable when
Ry > 1. These stability results imply that CMD can persist and spread in the environment when
Ry > 1, and can perish when Ry < 1. Furthermore, the sensitivity analysis and simulation
of the model (1) highlighted that the whitefly death rate (w) and whitefly carrying capacity
per m? (k,,) as the most sensitive parameter compared to other parameters. These findings
portray that the control strategies such as using insecticides to increase (w) and removing the
infected population of cassava and non-cassava to decrease (k,,) could have promising impacts

in fighting CMD compared to other model parameters.

Furthermore, the concept by Castillo-Chavez et al. (2002) and numerical simulation were em-
ployed to explore the existence and global stability of DFE and EEP on the model (1). The
findings reveal that the DFE is globally stable when Ry < 1 and unstable otherwise. The
performed numerical simulations using time series plots to confirm the global asymptotical sta-
bility of DFE and EEP reveal that for DFE when Ry < 1 as the infected population converges
to zero, the susceptible population converges to a distinct point above the time axis regardless
of the initial condition used. This assures that the disease can perish when significant control

strategies are applied. Further, the simulation for EEP shows that irrespective of the initial state
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of the model variables, the infected compartments converge to a distinct point above the time

axis, indicating that the disease will eventually spread across the population.

Additionally, the optimality system for CMD was developed by using roguing of infected
cassava and non-cassava host plants (u;7), and insecticides application (us¢) as our disease
management strategies. The concepts of Pontryagin’s Maximum Principle were used for the
analysis of the control model (24). Further, the cost-effectiveness analysis to find the most ap-
propriate control strategies for combating CMD was performed by using ICER. Moreover, the
numerical simulation was performed after solving the state equation (24) and adjoint equation
(31) by utilizing forward and backward fourth-order Runge-Kutta iteration schemes respec-
tively. Numerical simulation results reveal that strategy 3 (combination of roguing and insecti-
cides application) performs better in reducing the number of infected populations compared to

strategy 2 (insecticide application) and strategy 1 (roguing activities).

Lastly, the cost-effectiveness analysis reveals that strategy 3 has a high impact and a reduced
cost of disease control compared to others. These results concur with the study of Bokil e?
al. (2019) and Fahad and Roy (2018) which also suggests integrating roguing activities and
insecticide application in combating CMD against the single control approach. Therefore, we

recommend strategy 3 for effective and efficient mitigation of CMD.
5.2 Recommendations

Research findings on the global stability of equilibrium points assure that the CMD can be
controlled when appropriate and sufficient control strategies are applied. Therefore, the study

recommends the following:

(1) The use of the combined strategy of roguing and insecticides application during the out-

break of CMD as suggested by results on numerical simulation and ICER analysis.

(i) Based on sensitivity analysis, the whitefly carrying capacity influences the spread of
CMD. Therefore, we recommend the removal of all non-potential host plants in the farm

and the surrounding area. This will help to reduce the spread of the disease.

(ii1) The education programs to raise awareness on the symptoms of infected cassava and non-
cassava host plants should be provided to farmers and other stockholders for effective

roguing programs.
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(iv) Biological control strategies, such as using whitefly predators should be studied and im-

plemented to reduce the effects of insecticides in the control of the CMD.

(v) The influence of seasonal weather variation on the whitefly population should be investi-

gated.

(vi) The formulation of a stochastic model to incorporate uncertainty in the dynamics of

CMD.
(vii) Incorporation of weather seasonality variation in the CMD Model.

(viii) To include the preditors of whitefly vectors such as Phytoseiidae and spiders in the control

strategies of CMD.
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APPENDICES

Appendix 1: Code for the basic model simulation

% Your MATLAB code here

\begin{verbatim}

clc

clear

close all

tspan=[0 300];

% initial condition for model wvariable

y0=[0.35 0.05 0.05 40 10 0.2 0.1];

[t,y]=0ded5 (@population, tspan,y0);

$plotting cassava population

figure (1)

plot(t,y(:,1),"9", t,y(:,2),'b", t,y(:,3),"x");

1=1legend ('’ Susceptible plants’,’Exposed plants’,’Infected plants’
)i

x1=xlabel (' Time[days]');

yl=ylabel (' Cassava Population [per m"2]');

set (yl,’FontWeight’, ’bold’);

set (x1,"FontWeight’, ’'bold’);

set (1, ’FontSize’,12);

grid on

%plotting Whitefly population

figure (2)

plot(t,y(:,4),"g9", t,y(:,3),"c");

1=legend ('’ Susceptible Whitefly’,’ Infected Whitefly’);

x1l=xlabel (' Time[days]');

yl=ylabel ('Whitefly Population [per m~2]'");

set (yl, " FontWeight’, ’bold’);

set (x1,"FontWeight’, ’'bold’);

set (1,’FontSize’,12);

grid on
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%plotting Non-cassava host plant population

figure (3)

plot(t,y(:,6),"9", t,y(:,7),"c");

l=legend (’ Susceptible Non-Cassava Host’,’Infected Non-Cassava
Host’);

x1=xlabel (' Time [days]');

yl=ylabel (' Non Cassava Host Population [per m"2]’");

set (yl, " FontWeight’, ’'bold’);

set (x1,’FontWeight’, ’bold’);

set (1, 'FontSize’,12);

grid on

\end{verbatim}

e e 2 S S L A

\begin{verbatim}

function dy=population(t ,y)

dy=zeros (size(y));

Sc=y (1) jEc=y (2);Ic=y(3);Sw=y(4);Iw=y(5);Sh=y(6);Ih=y(7);

Nc=Sc+Ec+Ic;

Nw=Sw+Iw;

Nh=Sh+TIh;

a = 0.008; b = 0.008;c = 0.008; d = 0.008; varepsilon = 0.033;
eta = 0.le-2;rho = .1;phi = 0.003;psi = 0.003; omega = 0.06;

rc = 0.5e-1; rw = .2;rh = 0.02; kc = 0.7; kh = 0.7; kw=90;

dy (1)=rc=* (1-Nc/kc) *Sc+phirIc-a*Sc+Iw-psi*Sc;

dy (2)=rc#* (1-Nc/kc) rrhoxSc+a*Sc*Iw— (psi+varepsilon) xEc;
dy (3)=varepsilonxEc— (psi+phi) xIc;

dy (4) =rw=* (1-Nw/kw) *Nw— (b* (Ec+Ic)+c*Ih) *Sw—omega*Sw;

dy (5)=(bx (EctIc)+tc*Ih) *Sw-omegax*Iw;

dy (6) =rh=* (1-Nh/kh) *Sh—-d*ShxIw-eta=*Sh;

dy (7)=dxSh*xIw-etax*Ih;

end

\end{verbatim}

e e B e o e L o O B B
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\begin{verbatim}

clc

clear

close all

tspan=[0 300];

% initial condition for model variable

y0=[0.35 0.05 0.05 40 10 0.2 0.1];

[t,y]=0ded’ (Romegl, tspan,y0);

[tl,yl]=0ded45 (@omeg2, tspan,y0);

[t2,y2]=0ded45 (domeg3, tspan,y0);

% omega

%$Plotting Infected Cassava plant with different values of omega

subplot (1,3,1)

plot(t,y(:,3),'b", t1,y1(:,3),’g", t2,vy2(:,3),"x");

legend (' \omega=0.06", " \omega=0.12",’\omega=0.18")

xlabel (! Time[days]')

ylabel (" Infected Cassava Population [per m~2]’)

title(’ (a)’, ’"FontSize’, 15);

grid on

%$Plotting Infected vector with different values of omega

subplot (1,3,2)

plot(t,y(:,5),'b", t1,y1(:,5),"g", t2,v2(:,5),'c");

legend (' \omega=0.06',’ \omega=0.12", " \omega=0.18")

xlabel (! Time [days]’)

ylabel (" Infected Vector Population [per m™2]")

title(’ (b)’, '"FontSize’, 15);

grid on

%$Plotting Infected Non-cassava plant with different values of
omega

subplot (1, 3, 3)

plot(t,y(:,7),'b", t1,v1(:,7),’g", t2,v2(:,7),"'c");

legend (' \omega=0.06",’'\omega=0.12", " \omega=0.18")

xlabel (' Time[days]')

ylabel (' Infected Non-cassava Hosts Population [per m"2]7)
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title(’ (c¢)’, '"FontSize’, 15);

grid on

% extending figure space

fig = gcf;

fig.Position(3) = fig.Position(3) + 400;
\end{verbatim}

T e s L e o a e a O O ae
\begin{verbatim}

clc

clear

close all

tspan=[0 300];

% initial condition for model variables

y0=[0.35 0.05 0.05 40 10 0.2 0.11];

[t,y]=0ded5 (@vector, tspan,y0);

[tl,yl]=0ded45 (@vectorl, tspan,y0);

[t2,y2]=0ded5 (@vector2, tspan,y0);

% Carring capacity of white fly vector k[w]
$Plotting Infected Cassava plant with different values of k[w]
subplot (1,3,1)

plot(t,y(:,3),'b", t1,y1(:,3),’g", t2,y2(:,3),"c");
legend (' \kappa_w=10", " \kappa_w=100’, ' \kappa_w=350")
xlabel (! Time[days]')

ylabel (! Infected Cassava plan Population [per m~2]7)
title(’ (a)’, '"FontSize’, 15);

grid on

%$Plotting Infected vector with different values of k[w]
subplot (1,3, 2)

plot(t,y(:,5),'b", t1,y1(:,5),’g", t2,vy2(:,5),"x");
legend (' \kappa_w=10", " \kappa_w=100", ' \kappa_w=350")
xlabel (! Time[days]')

ylabel (" Infected vector Population [per m™2]")
title(’ (b)’, ’"FontSize’, 15);

grid on
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%$Plotting Infected Non-cassava plant with different values of k][
w]

subplot (1, 3, 3)

plot(t,y(:,7),'b", t1,y1(:,7),’g", t2,vy2(:,7),"x");

legend (" \kappa_w=10", " \kappa_w=100",’ \kappa_w=350")

xlabel (! Time[days]')

ylabel (! Infected Non-cassava hosts Population [per m"2]7")

title(’ (¢)’, '"FontSize’, 15);

grid on

% increasing figure space

fig = gcf;

fig.Position(3) = fig.Position(3) + 400;

\end{verbatim}
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Appendix 2: Main file for global stability simulation

\begin{verbatim}

clc

clear

close all

tspan=[0 607;

% initializing model variables

y0=[0.2 0.05 0.05 40 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (1)

plot(t,y(:,1),":c");

grid on

hold on

% initial condition for model variables
y0=[0.4 0.05 0.05 40 10 0.2 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (1)

plot(t,y(:,1),'x");

grid on

hold on

% initial condition for model variables
y0=[0.6 0.05 0.05 40 10 0.2 0.17];
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (1)

plot(t,y(:,1),'m");

grid on

hold on

% initial condition for model variables
y0=[0.8 0.05 0.05 40 10 0.2 0.11];

[t,y]=0ded5 (@population_stab, tspan,y0);
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%$plotting cassava population

figure (1)

plot(t,y(:,1),"b");

hold on

%initial condition for model variables
y0=[1 0.05 0.05 40 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (1)

plot(t,y(:,1),"g")

legend (' Sc=0.2","Sc=0.4","5Sc=0.6","Sc=0.8","5Sc=1")
xlabel (! Time[days]')
ylabel (" Susceptible cassava plants [per m™2]")
grid on

hold off

tspan=[0 1000];

% initial condition for model wvariables
y0=[0.2 0.05 0.05 40 10 0.2 0.17];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (2)

plot(t,y(:,2),"c");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.1 0.05 40 10 0.2 0.17;
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (2)

plot(t,y(:,2),"x");

grid on

hold on

% initial condition for model variables
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y0=[0.2 0.3 0.05 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (2)

plot(t,y(:,2),'m");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.5 0.05 40 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (2)

plot(t,y(:,2),"'D");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.7 0.05 40 10 0.2 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (2)

plot(t,y(:,2),"9");

legend ('Ec=0.05","Ec=0.1","Ec=0.3","Ec=0.5","Ec=0.7")
xlabel (! Time[days]')

ylabel (' Exposed cassava plants [per m™2]')
grid on

hold off

tspan=[0 3000];

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (3)

plot (t,y(:,3),’c’);
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grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.1 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (3)

plot(t,y(:,3),"¢");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.3 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (3)

plot(t,y(:,3),'m");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.5 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (3)

plot (t,y(:,3),'b");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.7 40 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (3)

plot(t,y(:,3),"9");

legend (' Ic=0.05","Ic=0.1","Ic=0.3","Ic=0.5","Ic=0.7")

xlabel (! Time[days]')
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ylabel (' Infected cassava plants [per m"2]7)

grid on

hold off

tspan=[0 30];

% initial condition for model variables

y0=[0.2 0.05 0.05 40 10 0.2 0.11];

[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (4)

plot (t,y(:,4),"c");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 160 10 0.2 0.171;
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (4)

plot(t,y(:,4),"r");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 200 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (4)

plot(t,y(:,4),'m");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 260 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (4)
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plot(t,y(:,4),"b");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 300 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (4)

plot(t,y(:,4),"9");

legend (' Sw=90",’Sw=160", " Sw=200",’ Sw=260", " Sw=300")
xlabel (' Time[days]')
ylabel (' Susceptible whitefly [per m”"2]7)
grid on

hold off

tspan=[0 150];

% initial condition for model variables
y0=[0.2 0.05 0.05 40 90 0.2 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (5)

plot(t,y(:,5),"¢c");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 160 0.2 0.1];
[t,y]=0ded’ (@population_stab, tspan,y0);
$plotting cassava population

figure (5)

plot(t,y(:,35),"x");

grid on

hold on

% initial condition for model variables

y0=[0.2 0.05 0.05 40 200 0.2 0.1];
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[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (5)

plot(t,y(:,5), 'm");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 260 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (5)

plot(t,y(:,5),"b");

grid on

hold on

% initial condition for model wvariables
y0=[0.2 0.05 0.05 40 300 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (5)

plot (t,y(:,5),"9");

legend (' Iw=90",’ Iw=160",’ Iw=200",’ Iw=260",’ Iw=300")
xlabel (! Time[days]')

ylabel (! Infected whitefly [per m"2]")
grid on

hold off

tspan=[0 60];

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.5 0.17;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (6)

plot(t,y(:,6),"c’);

grid on
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hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.4 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (6)

plot(t,y(:,6),"x");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.6 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (6)

plot(t,y(:,6),'m");

grid on

hold on

% initial condition for model wvariables
y0=[0.2 0.05 0.05 40 10 0.8 0.17];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (6)

plot(t,y(:,6),"D");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.9 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (6)

plot(t,y(:,6),"9");

legend (' Sh=0.2","Sh=0.4",’3h=0.6","’Sh=0.8",’Sh=0.9")
xlabel (' Time[days]')

ylabel (' Susceptible non-cassava host plants [per m"2]7)
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grid on

hold off

tspan=[0 100007];

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.17];
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

figure (7)

plot(t,y(:,7),"c");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.31;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (7)

plot(t,y(:,7),"x");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.6];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

figure (7)

plot(t,y(:,7), 'm");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.8];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

figure (7)

plot(t,y(:,7),'b");
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grid on

hold on

% initial condition for model variables

y0=[0.2 0.05 0.05 40 10 0.2 0.91];

[t,y]=0ded5 (@population_stab, tspan,y0);

$plotting cassava population
figure (7)

plot(t,y(:,7),"g");

legend (' Ih=0.1",’Ih=0.3",’Ih=0.6"'

xlabel (' Time [days]')

ylabel (" Infected non-cassava host plants

grid on

hold off

,"ITh=0.8","ITh=0.9")

[per m"2]")

At B o

figure (8)
tspan=[0 1000];

% initial condition for model variables

y0=[0.2 0.05 0.05 40 10 0.2 0.11];

[t,y]=0ded5 (@population_stab, tspan,y0);

%plotting cassava population
subplot (2,2,1)

title (' (a)’)
plot(t,y(:,2),"c");

grid on

hold on

% initial condition for model variables

y0=[0.2 0.1 0.05 40 10 0.2 0.17];

[t,y]=0ded5 (@population_stab, tspan,y0);

%$plotting cassava population
plot(t,y(:,2),"r");
grid on

hold on

% initial condition for model variables

y0=[0.2 0.3 0.05 40 10 0.2 0.1];
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[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population
plot(t,y(:,2),'m");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.5 0.05 40 10 0.2 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population

plot (t,y(:,2),"b");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.7 0.05 40 10 0.2 0.11];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population
plot(t,y(:,2),"9");
m=legend(’'Ec=0.05","Ec=0.1",’Ec=0.3",’Ec=0.5","Ec=0.7");
set (m, "FontSize’,11);
pp=xlabel (' Time [days]');
mm=ylabel (' Exposed cassava plants [per m~2]'");
set (pp, 'FontWeight’, ’bold’);

set (mm, 'FontWeight’, 'bold’);

grid on

title (' (a)’)

hold off

tspan=[0 3000];

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population

subplot (2,2, 3)

plot (t,y(:,3),’c’);
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grid on
hold on
% initial condition for model variables
y0=[0.2 0.05 0.1 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population
plot(t,y(:,3),"x");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.3 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population
plot(t,y(:,3),'m");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.5 40 10 0.2 0.11;
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population
plot(t,y(:,3),"'b");

grid on

hold on

% initial condition for model variables

y0=[0.2 0.05 0.7 40 10 0.2 0.11];

[t,y]=0ded5 (@population_stab, tspan,y0);

%$plotting cassava population

plot(t,y(:,3),"9");
g=legend(’Ic=0.05","Ic=0.1","Ic=0.3","Ic=0.5","Ic=0.7");
set (q,"FontSize’,11);

pp=xlabel (' Time [days]');

mm=ylabel (' Infected cassava plants [per m"2]7");

set (pp, "FontWeight’, ’'bold’);

set (mm, ' FontWeight’, 'bold’);
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grid on

title (' (b))

hold off

$+++++++++++H+HHH AR
tspan=[0 150];

% initial condition for model variables

y0=[0.2 0.05 0.05 40 90 0.2 0.11];

[t,y]=0ded5 (@population_stab, tspan,y0);

$plotting cassava population

subplot (2,2, 2)

plot (t,y(:,5),"c");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 160 0.2 0.171;
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population
plot(t,y(:,5),"x");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 200 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
%$plotting cassava population
plot(t,y(:,5),'m");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 260 0.2 0.1];
[t,y]=0ded5 (@population_stab, tspan,y0);
$plotting cassava population
plot(t,y(:,5),"b");

grid on

hold on
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o)

% initial condition for model variables

y0=[0.2 0.05 0.05 40 300 0.2 0.11;

[t,y]=0ded5 (@population_stab, tspan,y0);

%$plotting cassava population

plot(t,y(:,5),"g9g");

p=legend ('’ Iw=90",’ Iw=160",’ Iw=200"," Iw=260",’ Iw=300");
set (p,"FontSize’,11);

pp=xlabel (' Time[days]');

mm=ylabel (' Infected whitefly [per m"2]');

set (pp, 'FontWeight’, ’"bold’);

set (mm, 'FontWeight’, 'bold’);

grid on

title (' (c)”)

hold off

S++++++++++++H+HHH A
tspan=[0 1000017;

% Initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.17;
[t,y]=0ded5 (@population_stab, tspan,y0);
%plotting cassava population

subplot (2,2, 4)

plot(t,y(:,7),"c");

grid on

hold on

% initial condition for model variables
y0=[0.2 0.05 0.05 40 10 0.2 0.31;
[t,y]=0ded’ (@population_stab, tspan,y0);
$plotting cassava population
plot(t,y(:,7),"x");

grid on

hold on

% initial condition for model variables

y0=[0.2 0.05 0.05 40 10 0.2 0.6];

[t,y]=0ded5 (@population_stab, tspan,y0);

70



%$plotting cassava population
plot(t,y(:,7),'m");

grid on

hold on

% initial condition for model variables

y0=[0.2 0.05 0.05 40 10 0.2 0.8];

[t,y]=0ded5 (@population_stab, tspan,y0);

%$plotting cassava population

plot(t,y(:,7),"b");

grid on

hold on

% initial condition for model wvariables

y0=[0.2 0.05 0.05 40 10 0.2 0.9];

[t,y]=0ded5 (Rpopulation_stab, tspan,y0);

$plotting cassava population

plot(t,y(:,7),"9");

l=legend (' Ih=0.1","'Ih=0.3’,’Ih=0.6",’Ih=0.8","Ih=0.9");
set (1,’FontSize’,11);

x1=xlabel (' Time [days]');

mm=ylabel (' Infected non-cassava host plants [per m"2]’);
set (x1,’FontWeight’, ’'bold’);

set (mm, ' FontWeight’, 'bold’);

grid on

title (' (d)’)

hold off

\end{verbatim}
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Appendix 3: Main file for optimal control model

$main file for optimal control

\begin{verbatim}

clc;

clear;

close all;

format long

t0 = 0; tf=300; N=100;

time =linspace(t0,tf,N);

%initializing state variable

y0O = [0.35 0.05 0.05 40 10 0.2 0.1];% initial conditions

$+++++++++++++++H++ A

par_val=[0.008 0.008 0.008 0.008 0.033 0.1le-2 .1 0.003 0.003
0.06 0.5e-1 .2 0.02 0.7 90 0.3 10 5 50 100 0.1 0.18];

a=par_val(l);b = par_val(2);c= par_val(3);d = par_val (4);
varepsilon = par_val(5);eta = par_val(6);rho = par_val(7);phi
= par_val (8);psi =par_val(9);omega= par_val(l0);rc= par_val
(11) ;rw = par_val(12);rh = par_val (13);kc = par_val(1l4);kw=
par_val (15); kh =par_val (1l6);Al =par_val(l7);A2 = par_val(l8)
;A3 = par_val(l19); A4 =par_val (20);tau= par_val(21l);varsigma=
par_val (22);
S++++++++++++H+H A
1f = [0 0 0O0O0O0 O0];

% TEST SECTION

init =y0;
init2 =1f;
h = (tf-t0)/N;

u = linspace(0,0,N+1);
ul=u’,; u2=u’;
U = [ul u2]l;

% algorithm implementation
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%$Test 1

delta = 0.5;

X=1init;

i=0; % iteration_c initialization

mm=size (X) ;

NumXX =10e10;

Xnew = rand (N+1l,mm(2)) .* (repmat (X,N+1,1));
DenXnew=norm (Xnew) ;

while NumXX/DenXnew>delta

Xold = Xnew;

oldu = U;

S++++++++++++H+H A

% RK_4WD FOR STATES

[Tx, X]=rkd4foward(@kims,tO, tf,N, init,U,par_val);
S++++++++++++H+H

% RK_BACK FOR CO-STATES

[Tp, Pl=rkdback (@kims_costate,t0,tf,N,init2,U,X,par_val);
S++++++++++++H+H+HH A+
%$Updating control parameter

fl = X(1,:);9 = X(2,:);r = X(3,:);s = X(4,:);

v= X(5,:);x = X(6,:);z = X(7,:);

S+++++++++++H A

L1

Il
)
S
=
N
Il
e}
®
=
w
Il
e}
o
=
NN
Il
e}
=
=
o
Il
lav]
o

L6 = P(6,:); L7 =P(7,:);

R o L st s S O SR SRR AL A A

o\°

CaseO: No control,

% ul = zeros(1l,N+1);

o\

u2

zeros (1,N+1);

S+++++++++++tt+tttt bt
$Implementation of all controls

% Casel:ul\neqg 0, u2\neq 0, u3\neg 0, ud4\neq O,
% ul =min (max (0, ((L3.*r+L7.xz)./A3)xtau),1);

% u2 =min (max (0, ((L4.*s+L5.%v)./Ad)*xvarsigma),l);

R A e O L L e
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$Implementation of roughing only

o°

Case3:ul\neg 0, u2\neg 0, u3\negq 0, ud4= 0,

o\

ul =min (max (0, ((L3.*xr+L7.*xz)./A3)xtau),1);

o\°

u2 =zeros (1l,N+1);

S+++++++++++++H+H

$Implementation of Insecticides alone

% Case2:ul\neq 0, u2\neq 0, u3\neg 0, ud\neq O,

ul =zeros(l,N+1);

u2 =min (max (0, ((L4.*s+L5.xv)./Ad)xvarsigma),l);

S+++++++++++++++ AR

Uu=[ul’ u2’1];

U = 0.5+Uu + 0.5%x0ldu; % control conv_combination

S++++++++++++++H+H AR

Xnew = X’;

NumXX =abs (norm(Xnew—-Xold)) ;

DenXnew =norm (Xnew) ;

i=i+1; %Updating counter

end

% simulating

X=X’;

Tx =Tx';

XX=X(:,1); YY=X(:,2); VV=X(:,3); 72Z=X(:,4); LL=X(:,5);

AA=X(:,06); BB=X(:,7);

E++++++++++++++ 4+

Up = [0 0];

[T,Y] = oded45(@kims,time,y0, [],Up, par_val);

S++++++++++H+++H+H

%$0Objective Function

J =sum((Al.*(VV(l:end)+BB(l:end))+A2.x+LL(l:end))+((A3/2)
(:,1) .xUu(:,1)+(A4/2) .xUu(:,2).xUu(:,2)));

S++++++++++++H+H A

S=[Tx,X];

S++++++++++H+++H A

figure (1)
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subplot (2,2,1)

plot (Tx,X(:,3),’'-b’",T, Y(:,3),’——r’,"LineWidth’,1.5);
yl=ylabel (' Infected cassava per m"2');
x1=xlabel (' Time (Days)’);

title(’ (a)’)

[o)

% legend(’u_i=0, i=1,2’,’u_1i=0, i=1,2")

% legend(’u_i \neq, 0,i=1',’u_1i = 0,i=1,2")
$legend( u_i \neq, 0,i=2 , u_i = 0,i=1,2 )

[}

% legend(’u_i\neq0O, i=1,2’, ’'u_i=0, i=1,2")

set (yl, " FontWeight’, ’bold’);

set (x1,"FontWeight’, ’'bold’);

S+++++++++++ A+
subplot (2,2, 2)

plot (Tx,X(:,2),’'-b’",T, Y(:,2),’——xr’,’LineWidth’,1.5);
yl=ylabel (' Exposed cassava per m 2');
x1=xlabel (' Time (Days)’);

title(’ (b))

% legend(’u_i=0, i=1,2',’u_1i=0, i=1,2")

% legend(‘u_i \neq, 0,i=1',’u_i = 0,1i=1,2")
$legend( u_i \neq, 0,1i=2 , u_i = 0,i=1,2 )

% legend(’u_i\neq0O, i=1,2’, ’'u_i=0, i=1,2")

set (yl,’FontWeight’, ’bold’);

set (x1,"FontWeight’, ’'bold’);
E++++++++++++++
subplot (2,2, 3)

plot (Tx,X(:,5),’-b’",T, Y(:,5),’——r’,’LineWidth’,1.5);
yl=ylabel (' Infected whitefly per m"2');
x1=xlabel (' Time (Days)’);

title (' (c)’)

jo)

% legend(’u_i=0, i=1,2",’u_1i=0, i=1,2")

% legend(’u_i \neq, 0,i=1’,’u_i = 0,1i=1,2")
$legend( u_i \neq, 0,i=2 , u_i = 0,i=1,2 )

o)

% legend(’u_i\neq0O, 1i=1,2’, ’'u_1i=0, i=1,2")

set (yl,’FontWeight’, ’'bold’);
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set (x1,"FontWeight’, ’bold’);

S++++++++++++++ 4+
subplot (2,2, 4)

plot (Tx,X(:,7),’'-b",T, Y(:,7),’——xr’,"LineWidth’,1.5);
yl=ylabel (' Infected non-cassava host per m"2');
x1=xlabel (' Time (Days)’);

title (' (d)’)

% l=legend(’u_i=0, i=1,2’,’u_i=0, i=1,2");
l=legend(‘u_i \neq 0,i=1",’u_1i = 0,1i=2");

% l=legend(’u_i \neq 0,1=2',’u_i = 0,i=1");

% l=legend(’u_i\neq 0, 1i=1,2’, ’'u_i=0, i=1,2");
set (yl,’FontWeight’, ’'bold’);

set (x1,"FontWeight’, ’'bold’);

set (1,’FontSize’,12);

++++++++
figure (2)

plot (Tx,Uu(:,1),’'-r’",Tx,U0u(:,2),"-k’",Tx,2.0,’ linewidth’,1.5);
ylim ([0 0.05])

x1im ([0 300.5])

yl=ylabel (' Control Profile’);

set (yl,’FontWeight’, ’'bold’);

x1=xlabel (' Time (Days)’);

set (x1,"FontWeight’, ’'bold’);

$ title (' (d) ")

% l=legend(’u_i=0, i=1'",’u_i=0, i=2");
l=legend(’u_i \neq, 0,i=1',’u_1i = 0,1i=2");

% l=legend(‘u_i = 0,1i=1’,’u_1i \neq 0,i=2");

% l=legend(’u_i\neqg 0, i=1’, "u_i\neq 0, 1i=27);
set (1, 'FontSize’,12);

S++++++++++++ A

X=XX'"; % solution of the optimal control

U =[0 0]; % when no control
[Tx,Y] = ode4d5(@kims,time,y0,[],U, par_val);
Y=(Y);
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S+++++++++H+++H+H AR+

% Infection Averted

Inew=sum(Y (:,3))—-sum(X(:,3))+sum(Y (:,5))—-sum(X(:,5))+sum(Y(:,7))
—sum (X (:,7));

S+++++++++++++H+H

Output=[J Inew]

\end{verbatim}

A el e S L o s s a SR

\begin{verbatim}

% state eqn solving function definition

$File Name: kims

function ydot = kims(t,yy,U,par_val)

fl=yy(1); g=yy(2); r=yy(3);s=yy(4);

v=yy (5);ix=yy (6); z=yy(7);

Nc=fl+g+r;

Nw=s+v;

Nh=x+z;

E+++++++++++++++ A

a=par_val(l);b = par_val(2);c= par_val(3);d = par_val (4);

varepsilon = par_val(5);eta = par_val(6);rho = par_val(7);phi =
par_val (8) ;psi =par_val (9);omega= par_val (1l0);rc= par_val(ll)
;rw = par_val(l2);rh = par_val (13);kc = par_val(1l4);kw=
par_val (15); kh =par_val(l6);Al =par_val(l7);A2 = par_val(1l8)
;A3 = par_val(l19); A4 =par_val (20);tau= par_val(2l);varsigma=
par_val (22);

$++++++++++++++++++ AR

ul = U(1l); u2=U0(2);

S+++++++++++ A+

ydotl=rc.* (1-Nc./kc) .xfl+phi.*+r-a.»fl.xv-psi.*fl;

ydot2=rc.* (1-Nc./kc) .*rho.xg+ta.»fl.*v- (psi+varepsilon) .xg;

ydot3=varepsilon.*xg—- (psi+phi+ul.*tau) .*r;
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ydotd=(1-Nw./kw) . *rw.*Nw— (b.* (g+r) +c.*z) . *s— (omega+u2.+varsigma)
. xS;

ydot5=(b.* (g+r)+c.*z) .*xs— (omega+u2.*varsigma) . *v;

ydot6=rh.* (1-Nh./kh) .*x-d.*»x.*v—-eta.*x;

ydot7=d.xx.xv— (etatul.xtau) .*z;

ydot = [ydotl; ydot2; ydot3; ydot4d; ydotb5; ydot6; ydot7];

\end{verbatim}
T I I I

\begin{verbatim}

%$co—-state (adjoint) egn solving function definition

$File Name: kims_ costate

function ydot = kims_costate(t,y,U,X,par_val);

Ll=y(1); L2=y(2); L3=y(3);L4=y(4);L5=y(5);L6=y(6);

L=y (7);
a=par_val(l);b = par_val(2);c= par_val(3);d = par_val (4);
varepsilon = par_val(5);eta = par_val(6);rho = par_val(7);phi =

par_val (8) ;psi =par_val (9);omega= par_val (10);rc= par_val(ll)
;rw = par_val(l2);rh = par_val(13);kc = par_val (14);kw=
par_val (15); kh =par_val(l6);Al =par_val(l7);A2 = par_val(l8)
;A3 = par_val(l9); A4 =par_val (20);tau= par_val(21);varsigma=
par_val (22);

$+++++++++++++H+H++ AR

ul = U(1l); u2=U0(2);

% Variables

% Sc=fl;Ec=g;Ic=r;Sw=s, Iw=v;Sh=x; Th=z;

fl = X(1,:);9 = X(2,:);r = X(3,:);s = X(4,:);

v= X(5,:);x = X(6,:);z = X(7,:);

Nc=fl+g+r;

Nw=s+v;

Nh=x+z;
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ydotl=L1l.* (-rc.*fl./kh+rc.»(1-(Nc)./kc)-a.*v-psi)+L2.x (-rc.*rho
.xg./kcta.*v);

ydot2=-L1l.*rc.*fl./kc+L2.x(-rc.+rho.*g./kc+rc.* (1-(Nc)./kc) .*xrho
-psi-varepsilon) +L3.*varepsilon-L4.*b.*s+L5.xb.x*xs;

ydot3=A1+L1l.* (-rc.xfl./kc+phi)-L2.*rc.*rho.*xg./kc+L3.* (-tau.*ul-
phi-psi)-L4.xb.xs+L5.*b.xs;

ydotd=L4.* (—rw.* (s+V) . /kw+ (1-(s+Vv) /kw) . rw—b.* (g+r)—Cc.+z-u2.*
varsigma-omega) +tL5.* (b.* (g+tr)tc.*xz);

ydot5=A2-Ll.*a.*fl+L2.*xa.+xf1+L4.* (—rw.* (s+V) ./kw+ (1-(s+Vv) ./kw) .*
rw) +L5.* (-u2.*xvarsigma-omega) -L6.*d.*x+L7.xd.xx;

ydot6= L6.* (-rh.*x./kh+rh. (1-(x+z)./kh)-d.*v-eta)+L7.xd.*Vv;

ydot7=A1-L4.*c.*s+L5.*c.xs-L6.*rh.*x./kh+L7.* (-tau.xul-eta);

ydot = [ydotl; ydot2; ydot3; ydot4; ydoth; ydot6; ydot7];

\end{verbatim}
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Appendix 4: Maple code for sensitivity indices

:} restart;
= #Computing senstivity indices
# Set up numerical values for all problem paramcters
#
params:= {a= 0008, b= 0.008,c = 0.008, d = 0008, varepsilon = 0.033, eta = 0. le-2,rho = .1 ,phi = 0003, psi = (L3,
fe] = 0.5¢-1, rjw] =.2. r[n] = 0L02, k[c] = 0.7, k[n] = 0.1, k[ w]=%0). omega = 0.06 }:
params = { a=0.008 b= 0008, c=0.008 d =0.008 n = 0.001, w=0.06, ¢ =0.003, y=0.003.p=01¢ (1)

=0.033 k =07,k =01,k =90,r =005,r =002, r__=ﬂ.1l-

> # Define main function

R:= (1/6)* (8*psi®3 *tho™3 / (psi + varepsilon) 3 + 36*b* (r[w]-omega] *k[w]* {1 + varepsilon/ [ psi
+phi) | *psi®*rho®*a® (r[c]-psi) ®* k[c]/(r[w]® {psi +varcpslon) 2 *r[c]®* omega) -T2 *d * (r[n]-cta)
*k[n]*c* (r|w]-omega) *k[w]*psi®* tho/(r[n]* omega® r[w]* cta® { psi + varepsilon]) ) + 12 *sqri{
=12%* pai*d *rho*4* c® (r[w|-omega) *k[w]®*d®* (r[n]-ew) *k[n]/ | (psi + varcpsilon) “4 *r[w ] * e
*rim]*omega) -3* psi®2®* rho 2% a*2* (r|c]-psi) 2% k[c]*2*b"2* (r[ w]-omega) " 2* k[w]*2% (1
+ varepsilon/ { psi + phi) ]2/ (psi + varcpsilon] 4 * r[ ¢]*2 *omega*2®* r[w]"2) -60* psi*2* o2 * a
*(rle]-psi) *k[ec] *b* (r[w]-omega) "2 *k[w]"2* (1 + varepsilon/ (psi + phi) ) *c*d * (r[n]-eta)
*k[n]/((pst + varepsilon} "3 * r[c] * omega®2 *r[w]"2*ea*r[n]) + 24" psi*2 *rho" 2% c"2* (r[w]
—omega) “2* k[w]*2*d*2* (r[n]-cta) “2 *k[n]*2/( ( psi + varepsilon) “2 *r[w]*2 * eata*2*r[n|"2
*omega™2)-12*a"3* (r[c]-psa) 3 *k[c]*3* b 3 * (r[w]-omega) "3 *k[w]"3* [ ] + varepsilon/ { psi
+phi) 13/ 0r[e]"3* omega®3 * r[w]*3 * [ pai 4+ varepsilon ) ~3) -36% a2 % (r|c]-ps) "2 % k[c]"2 * b2
*(r[w]-omega) "3 *k[w]*3* (1 + varepsilon/{psi + phi) |*2*c*d® (r[n])-ea) *k[n]/ (r[c]*2* omega
A3 [ w]*3® (psi + varepsilon) “2* eta®*r[n])-36%a®* (r[c]-psi) *k[c]®*b* (r|w]-omega) “3* k[ w]"3
® [ 1 + varepsilon/ (psi + phi) ) *c*2*d*2* (r[n]-eta)"2* k[n]*2/ir[c] *omega 3 r[w]"3* [psi
+ varepsilon) *ea*2*r[n]"2)=12%¢*3 * (r|w]-omega) *3* k[w]*3*d°3%* (r[n]-em) 3 *k[n]*3
frfw]*3*ea*3*r[n |3 omega®3 ) )1 (1 /3)=(6*(-(0/3)"a® (r[c]-psi) *klc]®*b* (r[w]
—omega) *k[w]® (1 +varepsilon/{ psi +phi) ) /(r[¢]® omega® r[w]® (psi + varepsilon] }-(1/3) *d
*lrln]-eta) *k[n]*c® (r[w]-omega)l *k[w]/(r[n] *omega®r[w]®ea)-{1./9) *psi2 * tho"2 /  psi
+wvarepsibon) 2} ) /(8 ® psi®3® cho”3 /{ psi + varepsilon] *3 +36*b* (r[w]-omega) *k[w]* (]
“ varepsilon/ (psi - phi) ) *psi®*rho®* a® (rlc]-psi) *k[c]/(r[w]® (pa <+ varepsilon) 2 *r[¢] * omega)
=T2*d* (r[n]-ca) *k[n]®*c® {r[w]-omega) * k[w]*psi®*rho/ (r[n] *omega®*r[w] *cia® (psa
+ varepsilon) ) 4+ 12% sqrt| =12 ® pai®d4 ®* rho*4 * ¢® (r[w]-omega) * k[w ] *d® (r[n]-cta) *k[n]/{ (psi
+ varepsilon ) *4* r[w]*cta®*r[n]* omega) =3* psi*2 *rho*2* a2 * (r[c]-psi) *2 *k[c]*2*b 2% (r[w]
-omega) 2 * k[w]*2% (1 + varepsilon/ ( pai < phi) 2270 { psi + varepsilon ) *4 * ¢[c]*2 * omega™2 *r[w]
#2)-60% psi*2 *rho*2* a® (rlc]-psi) *k[c]*b* (r[w]|-omega) 2 * k[w]*2* (1 + varepslon/ ( psi
+phi) ) *c*d* (r[n]=ca) *k[n] /i (pst +varepsilen)*3* r[c]* omega®2 *r[w]*2*ca®*r[n]) -+ 24 *psi
~2% ghon2 * ¢*2® (r|w]-omega)~2* k[w]*2*d"2* (r[n]-ea) "2 * k[n]"2/( (psi + varepsilon) *2 *¢[w ]
"2%ea"2® r[n]"2 *omega®2) -12% a3 "* (r[e]-psi) "3 *k[c] "3 *B 3 * (r[w]-omega) 3" k[w]"3* (]
+ varepsilon, { psi 4+ phi) )23/ 0r[e] 3 * omega™3 * r[w]"3* [ psi 4+ varcpslon©3) -36% a2 * (r[c]-psi) "2
*kle]*2*b"2* (rlw]-omega] *3 *k[w]*3 ™ (1 + varepsilon/ (psi + phi) ) *2*c¢*d* (r[n]=-cta) *k(n]
fr[e]*2* omega™3 * r[ w]*3® (psi 4+ varcpsilon) "2 *eta®*r[n]) -36%a® (r[c]-psi) *k[c]*b*® (r[w]
—omega) 3 * k[w]*3* (1 +varcpsilon/ (psi+phi) ) *c"2*d"2* (r[n]-cta) *2*k[n]*2/(r[ <] * omepa"}
#r[w]*3* (psi + varepsilon) *eta2* ¢[n]"2)1=12%c*3% (r[w]-omega) "3 * k[w]*3*d*3 * {r[n]-eta)
A ek[n]™ 3 (r[wltd*etat3*r[n] "3 ® omega®3 ) ) )A(1/3) 4 (1/3) *psi® tho/ [ pst + varepsilon);

36h(r —w) k |1 + —— _—
1 Sl-l-l'jpj . ':rw :I' h[ w+*praf'r: "I"} ¢
f {'-I-"""!F r__qu+t}2 rw

@)

R=

T2d(r,—m)k clr, —o)k wp
rowe {qr+¢}

) 12y p'e (r, —o) k d(r —7) k,
(w+e)? roMr

+12
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360 (1, =) kb (1, 0) 6 (14 52 (=)

3 2
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24\|;2p2c2<rw—w)2kfvd2(rn—n)2 - W v+ o
(y+e)’An’Ro Po R (yte)
2
2(r =) BB (r, - 312[ s]dr— k
_36a< ‘V)c (r, w)wl+w+¢ c(nn)n
ricoBr:'V(\p—l—s) nr,

_ y+o
ro R (1|J+e)n2r2n
12 1/3
3 3 3
3 12¢ (rw (0) .d (rn—n) k’31 +l vp
A S we

| > # Evaluating the eigenvalue for the first expression basing on baseline values

> eval(R,params )
3.792797569 + 0.1 A3)

=> abs( (3
(®) 3.792797569 @)

| > # The second eigenvalue function

>R:=-(1/12) * (8 * psi*3 * tho”3 / (psi + varepsilon) *3 +36* b * (r[ w]-omega) * k[w]* (1 + varepsilon/ (psi
+phi) ) *psi*rtho*a* (#[c]-psi) *k[c]/(r[w]* (psi+ varepsilon) "2 * r[c] * omega) -72 * d * (r[n]-eta)
*k[n]*c* (rlw]-omega) *k[w] *psi*rho/ (r[n]* omega* r[ w] * eta* (psi + varepsilon) ) + 12 * sqrt( -12
* psitd *rtho™ * c* (r[w]-omega) *k[w]*d* (r[n]-eta) *k[n]/( (psi+ varepsilon) *4 * r[w] *eta* r[n]
*omega) -3 *psi®2 *rtho™2 * a2 * (r[c]-psi) "2 *k[c]"2* b 2 * (r[w]-omega) "2 * k[w] 2 * (1
+ varepsilon/ (psi + phi) ) *2/ ( (psi + varepsilon) *4 * r[ ¢]*2 * omega”2 * r[ w]"2) -60 * psi*2 * tho"2 * a
*(rlc]-psi) ¥k[c]*b* (r[w]-omega) "2 * k[w] 2 * (1 + varepsilon/ (psi + phi) ) *c*d* (r[n]-eta)
*k[n]/((psi+ varepsilon) "3 * [ c] * omega™2 * r[w]"2 *eta* r[n]) + 24 * psi*2 * rho™2 * "2 * (r[w]
-omega) "2 ¥ k[w]"2*d"2* (r[n]-eta) "2 * k[n]"2/ ( (psi+ varepsilon) "2 * r[ w]"2 * eta™2 * r[n ]2
*omega”2 ) -12* a3 * (r[c]-psi) "3 *k[c]"3 *b 3 * (r[w]-omega) "3 * k[ w]"3 * (1 + varepsilon/ (psi
+phi) ) "3/ (r[c]"3 * omega”3 * r[ w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[c]-psi) "2 *k[c]"2* b2
* (r[w]-omega) 3 * k[ w]"3 * (1 + varepsilon/ (psi + phi) ) "2*c*d* (r[n]-eta) *k[n]/ (r[c]"2 * omega
A3 ¥ p[w]”3 * (psi+ varepsilon) 22 *eta* r[n])-36*a* (r[c]-psi) *k[c]*b* (r[ w]-omega) "3 * k[w]"3
* (1 + varepsilon/ (psi +phi) ) ¥*c"2*d"2* (r[n]-eta) "2*k[n]"2/(r[c]* omega”3 * r[w]"3 * (psi
+ varepsilon) *eta”2 * r[n]"2) -12 * ¢"3 * (r[w]-omega) "3 * k[w]"3 *d"3 * (r[n]-cta) "3 *k[n]"3
/(r{w]”3 *eta”3 *r[n]"3 *omega™3) ) ) (1/3) + (3*(-(1/3) *a* (r[c]-psi) ¥*k[c]*b* (r[w]
-omega) *k[w]* (1 + varepsilon/ (psi +phi) ) / (r[c] * omega* r[w]* (psi + varepsilon) ) -(1/3) *d
*(r[n]-eta) *k[n]*c* (r[w]-omega) *k[w]/(r[n] * omega* r[w] *eta) - (1/9) * psi*2 * rho”2 / (psi
+ varepsilon) *2) ) / (8 * psi*3 * tho”3 / (psi + varepsilon) "3 +36 * b * (r[ w]-omega) * k[w]* (1
+ varepsilon/ (psi + phi) ) *psi*rtho*a* (#[c]-psi) *k[c]/ (r[w]* (psi+ varepsilon) 2 * r[ c] * omega)
=72*%d* (r[n]-eta) *k[n]*c* (r[w]-omega) *k[w] *psi*rtho/ (r[n] * omega* r[w] * eta* (psi
+ varepsilon) ) + 12 *sqrt( -12 * psi*4 *rho™4 * ¢ * (r[w]-omega) * k[w] *d* (¢[n]-eta) *k[n]/ ( (psi
+ varepsilon) "4 * r[w] *eta* r[n] * omega) -3 * psi®2 * tho™2 * a2 * (r[c]-psi) "2 *k[c]"2* b2 * (r[w]
-omega) "2 * k[ w]"2 * (1 + varepsilon/ (psi + phi) ) *2/ ( (psi + varepsilon) *4 * r[ ¢]"2 * omega’2 * r[ w]
A2)-60 * psi”2 *rho”2 *a* (r[c]-psi) *k[c]*b* (r[w]-omega) "2 * k[w]"2 * (1 + varepsilon/ (psi
+phi) ) ¥*c*d* (r[n]-eta) *k[n]/ ( (psi+ varepsilon) "3 *r[c] * omega”2 * r[w] 2 *eta* r[n]) + 24 * psi
A2 *rtho™2 * ¢2* (r[w]-omega) "2 * k[w] "2 *d"2* (r[n]-eta) "2 * k[n]"2/( (psi + varepsilon) 2 * r[ w]
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A2 *eta™2 * [ n]"2 * omega2) =12 * a3 * (r[c]-psi) "3 *k[c]"3 * b 3 * (r[w]-omega) N3 * k[ w]"3* (1

+ varepsilon/ (psi + phi) ) 23/ (r[ ¢]"3 * omega’3 * r[ w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[ c]-psi) "2
*k[c]™2* b2 * (r[w]-omega) "3 * k[w]~3 * (1 + varepsilon/ (psi +phi) ) "2 *c*d* (r[n]-eta) *k[n]
/(r[ c]"2 * omega™3 * r[ w]"3 * (psi + varepsilon) "2 *eta* r[n]) -36 *a* (r[c]-psi) *k[c]*b* (r[w]
-omega) 3 *k[w]"3 * (1 + varepsilon/ (psi + phi) ) * 2 *d"2* (r[n]-eta) "2 * k[n]"2/(r[ c] * omega3
*r[w]”3 * (psi + varepsilon) * eta”2 * r[n]"2) =12 * ¢"3 * (r[w]-omega) "3 * k[ w]"3 *d"3 * (r[n]-eta) "3
*k[n]"3/ (r[w]”3 *eta”3 *r[n]"3 *omega™3) ) )~ (1/3) + (1/3) *psi*rho/ (psi + varepsilon) + (1/2
*T) *sqrt(3) * ((1/6) * (8 * psi®3 * tho”3 / (psi + varepsilon) *3 +36* b * (r[w]-omega) * k[w] * (1

+ varepsilon/ (psi + phi) ) *psi*rho*a* (r[c]-psi) *k[c]/ (r[w]* (psi + varepsilon) 2 * [ ¢] * omega)
=72%d* (r[n]-eta) *k[n] *c* (r[w]-omega) *k[w] *psi*rtho/ (r[n]* omega* rw] * eta* (psi

+ varepsilon) ) —I— 12 *sqrt( =12 * psi*4 *rho™4 * ¢ * (r[w]-omega) * k[w] *d* (r[n]-cta) *k[n]/( (psi

+ varepsilon) "4 * rfw] *eta* r[n] * omega) -3 * psi*2 * tho™2 * a2 * (r[c]-psi) "2 * k[ c]"2* b 2 * (r[ w]
-omega) "2 * k[w]"2* (1 + varepsilon/ (psi + phi) ) *2/ ( (psi + varepsilon) *4 * 7[ ¢]"2 * omega’2 * r[ w]
A2)-60 * psi”2 *rho2 *a* (r[c]-psi) ¥*k[c]*b* (r[w]-omega) "2 * k[w]"2 * (1 + varepsilon/ (psi
+phi) ) ¥*c*d* (r[n]-eta) *k[n]/( (psi—+ varepsilon) *3 *r[ c] * omega™2 * r[w]" 2 *eta* r[n]) + 24 * psi
A2 *tho2 * ¢™"2* (r[w]-omega) "2 * k[w]™"2 *d 2 * (r[n]-eta) "2 * k[n]"2/( (psi+ varepsilon) 2 * r[ w]
A2 *eta”2 * r[n]”2 * omega2) -12* a3 * (r[c]-psi) "3 *k[c]"3 * b 3 * (r[w]-omega) "3 * k[w]"3 * (1

+ varepsilon/ (psi + phi) ) 3/ (r[ ¢]"3 * omega™3 * r[w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[c]-psi) "2
*k[c]™2* b2 * (r[w]-omega) "3 * k[w]"3 * (1 + varepsilon/ (psi +phi) ) "2 *c*d* (r[n]-eta) *k[n]
/(r[c]”2 * omega™3 * rl w]”3 * (psi+ varepsilon) "2 *eta*r[n])-36*a* (r[c]-psi) ¥*k[c]*b* (r[w]
-omega) "3 * k[ w]"3 * (1 + varepsilon/ (psi + phi) ) *¢"2*d"2* (r[n]-eta) "2*k[n]"2/(r[c]* omega”3
*r[w]”3 * (psi + varepsilon) *eta™2 *r[n]"2) -12* "3 * (r[w]-omega) "3 * k[ w]"3 *d"3 * (r[n]-ecta) "3
*k[n]"3/(r[w]”3*eta”3*r[n]”3 *omega”3) ) )~ (1/3) + (6* (-(1/3) *a* (r[c]-psi) *k[c]*b

* (rlw]-omega) * k[w]* ( + varepsilon/ (psi + phi) ) / ([ c¢] * omega™* r[ w] * (psi + varepsilon) ) - (1/3)
*d* (rln]-eta) ¥*k[n]*c* (rfw]-omega) *k[w]/ (r[n] * omega* r[w] *eta) -(1/9) * psi*2 * tho"2 / (psi
+ varepsilon) ~2) ) /(8 *psiAB *tho”3 / (psi + varepsilon) *3 +36* b * (r[w]-omega) *k[w]* (1

+ varepsilon/ (psi + phi) ) * psi*rho*a* (r[c]-psi) *k[c]/ (r[w]* (psi + varepsilon) 2 * r[ ¢] * omega)
=72*%d* (r[n]-eta) *k[n] *c* (r[w]-omega) *k[w] *psi*rtho/ (r[n]* omega* r[w] * eta* (psi

+ varepsilon) ) + 12 * sqrt( —12 *psit4 *rho™ * ¢ * (r[w]-omega) *k[w]*d* (r[n]-eta) *k[n]/( (psi

+ varepsilon) "4 * rfw] *eta* r[n] * omega) -3 * psi*2 *tho™2 * a2 * (r[c]-psi) "2 *k[c]"2* b 2 * (r[w]
-omega) "2 * k[ w]"2 * (1 + varepsilon/ (psi + phi) ) 2/ ( (psi + varepsilon) 4 * r[ ¢]"2 * omega™2 * r[ w]
72) =60 * psi™2 *tho™2 *a* (r[c]-psi) *k[c]*b* (r[w]-omega) "2 * k[ w]"2* (1 + varepsilon/ (psi
+phi)) *c*d* (r[n]-eta) *k[n]/( (psi+ varepsilon) *3 *r[c] * omega™2 * r[w]" 2 *eta*r[n]) + 24 * psi
A2 *tho 2 * ¢™"2* (r[w]-omega) "2 * k[w]™"2 *d 2 * (r[n]-eta) "2 * k[n]"2/ ( (psi+ varepsilon) 2 * r[ w]
A *eta™2 * r[n ]2 * omega2) -12* a3 * (r[c]-psi) "3 *k[c]"3 *b 3 * (rlw]-omega) "3 * k[w]"3 * (1

+ varepsilon/ (psi + phi) ) *3/ (r[ ¢]"3 * omega™3 * r[w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[c]-psi) "2
*k[c]M2* b2 * (r[w]-omega) "3 * k[w]”3 * (1 + varepsilon/ (psi + phi) ) "2 *c*d* (r[n]-eta) *k[n]

/ (r[ c]"2 * omega”3 * r[ w]~3 * (psi + varepsilon) "2 *eta* r[n]) -36 *a* (r[c]-psi) *k[c]*b* (r[wW]
-omega) "3 * k[w]”3 * (1 + varepsilon/ (psi + phi) ) * "2 *d"2* (r[n]-eta) "2 * k[n]"2/ (r[ c] * omega3
*r[w]”3 * (psi + varepsilon) *eta™2 *r[n]"2) -12* ¢"3 * (r[w]-omega) "3 * k[ w]"3 *d"3 * (r[n]-eta) "3
*k[n]"3/ (r[w]r3 *eta”3 *r[n]”3 * omega”3) ) )~ (1/3))
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3 3
12 (rw—(n) k‘:’vd3 (rn —n) ki
3 3
i AINAD
| > # Evaluating the value of the second eigenvalue basing on baseline values
> eval( R, params)

i —1.892232117 + 1. 10191 4 (-1.094618498 — 5.000000000 1071°1) /3~ (6)
[ > abs((6))
i J (1892232117 — 1.094618498 V3 )" + (1. 10°1° — 5.000000000 10-10 ") 7
[ > simplifi( (7))

3.788166971 8)

| > # The third eigenvalue function

>R:=-(1/12) * (8 * psi*3 * tho”3 / (psi + varepsilon) *3 +36* b * (r[ w]-omega) * k[w]* (1 + varepsilon/ (psi
+phi) ) *psi*rho*a* (r[c]-psi) *k[c]/(r[w]* (psi+ varepsilon) 2 * r[ c] * omega) -72*d * (r[n]-eta)
*k[n]*c* (r[w]-omega) *k[w] *psi*rtho/ (r[n]* omega* r[w] * eta* (psi + varepsilon) ) + 12 * sqrt( -12
*psit4 *rtho™ * c* (r[w]-omega) *k[w]*d* (r[n]-eta) *k[n]/( (psi+ varepsilon) *4 * r[w] *eta* r[n]
*omega) -3 * psi®2 *tho”2 * a2 * (r[c]-psi) "2 *k[c]"2 * b 2 * (r[w]-omega) "2 * k[ w] 2 * (1
+ varepsilon/ (psi + phi) ) *2/ ( (psi + varepsilon) *4 * r[ ¢]*2 * omega”2 * r[ w]"2) -60 * psi*2 * tho"2 * a
*(rlc]-psi) ¥k[c]*b* (r[w]-omega) "2 * k[w] 2 * (1 + varepsilon/ (psi + phi) ) *c*d* (r[n]-eta)
*k[n]/( (psi—+ varepsilon) "3 * r[ c] * omega™2 * r[w] "2 *eta*r[n]) + 24 * psi®2 * tho™2 * c"2 * (r[w]
-omega) "2 * k[w]"2*d"2* (r[n]-eta) "2 * k[n]"2/ ( (psi+ varepsilon) "2 * r[ w]"2 * eta™2 * [ n ]2
*omega’2 ) -12* a3 * (r[c]-psi) "3 *k[c]"3 *b 3 * (r[w]-omega) "3 * k[ w]"3 * (1 + varepsilon/ (psi
+phi) ) "3/ (r[c]"3 * omega”3 * r[ w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[c]-psi) "2 *k[c]"2*b"2
* (r[w]-omega) "3 * k[ w]"3 * (1 + varepsilon/ (psi + phi) ) "2*c*d* (r[n]-eta) *k[n]/(r[c]"2 * omega
A3 ¥ p[w]"3 * (psi+ varepsilon) A2 *eta* r[n]) -36*a* (r[c]-psi) *k[c]*b* (r[w]-omega) "3 * k[w]"3
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* (1 + varepsilon/ (psi + phi) ) *¢"2*d"2* (r[n]-eta) "2 *k[n]"2/ (r[c] * omega™3 * r[w]"3 * (psi

+ varepsilon) * eta”2 *r[n]"2) -12* "3 * (r[w]-omega) "3 * k[ w]"3 *d"3* (r[n]-eta) "3 *k[n]"3
/(r[w]”3 *eta”3*r[n]"3 *omega™3) ) )N (1/3) + (3* (-(1/3) *a* (r[c]-psi) ¥*k[c]*b* (r[w]
-omega) * k[w]* (1 + varepsilon/ (psi + phi) ) / (r[ c] * omega™® r[ w] * (psi + varepsilon) ) -(1/3) *d
*(rln]-eta) *k[n]*c* (rlw]-omega) *k[w]/(r[n]* omega* r[w]*eta)-(1/9) * psi*2 * tho”2 / (psi

+ varepsilon) *2) ) / (8 * psi*3 * rho”3 / (psi + varepsilon) "3 + 36 * b * (r[w]-omega) * k[w] * (1

+ varepsilon/ (psi + phi) ) *psi*rho*a* (r[c]-psi) *k[c]/ (r[w]* (psi + varepsilon) 2 * [ ¢] * omega)
-72*d* (r[n]-eta) *k[n]*c* (rlw]-omega) * k[ w] *psi*rtho/ (#[n]* omega* r[ w] * eta* (psi

+ varepsilon) ) + 12 *sqrt( -12 * psi®4 * rtho™4 * ¢ * (r[w]-omega) * k[w] *d* (r[n]-eta) *k[n]/ ( (psi

+ varepsilon) "4 * rfw] *eta* r[ n] * omega) -3 * psi*2 *tho™2 * a2 * (r[c]-psi) "2 * k[ c]"2* b 2 * (r[ w]
-omega) "2 * k[w]"2 * (1 + varepsilon/ (psi + phi) ) 2/ ( (psi + varepsilon) *4 * [ ¢]"2 * omega’2 * r[ w]
72) =60 * psi™2 *tho™2 *a* (r[c]-psi) ¥*k[c]*b* (r[w]-omega) "2 * k[ w]"2* (1 + varepsilon/ (psi
+phi) ) *c*d* (r[n]-eta) *k[n]/( (psi—+ varepsilon) *3 *r[ c] * omega™2 * r[w]"2 *eta* r[n]) + 24 * psi
A2 *tho2 * ¢"2* (r[w]-omega) "2 * k[w]™"2 *d 2 * (r[n]-eta) "2 * k[n]"2/( (psi+ varepsilon) 2 * r[ w]
A2 *eta”2 *r[n]”2 * omega2) -12* a3 * (r[c]-psi) "3 *k[c]*3 * b 3 * (r[w]-omega) "3 * k[w]"3* (1

+ varepsilon/ (psi + phi) ) 3/ (r[ ¢]"3 * omega™3 * r[w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[c]-psi) "2
*k[c]"2* b2 * (rlw]-omega) "3 * k[ w]”3 * (1 + varepsilon/ (psi + phi) ) "2 *c*d* (r[n]-eta) *k[n]

/ (r[ c]"2 * omega™3 * r[ w]~3 * (psi + varepsilon) "2 *eta* r[n]) -36 *a* (r[c]-psi) *k[c]*b* (r[w]
-omega) "3 * k[w]"3 * (1 + varepsilon/ (psi + phi) ) *c"2*d"2* (r[n]-eta) "2*k[n]"2/(r[c]* omega”3
*r[w]”3 * (psi + varepsilon) *eta™2 *r[n]"2) -12* ¢"3 * (r[w]-omega) "3 * k[w]"3 *d"3 * (r[n]-eta) "3
*k[n]"3/ (r[w]”3 *eta®3 *r[n]”3 * omega™3) ) )~ (1/3) + (1/3) *psi* rho/ (psi + varepsilon) - (1/2 * )
*sqrt(3) * ((1/6) * (8 * psi*3 * rho”3 / (psi + varepsilon) *3 +36 * b * (r[w]-omega) * k[w] * (1

+ varepsilon/ (psi + phi) ) * psi*rtho* a * (r[c]-psi) *k[c]/ (r[w]* (psi+ varepsilon) *2 * [ c] * omega)
=72*%d* (r[n]-eta) *k[n]*c* (r[w]-omega) *k[w] * psi*tho/ (r[n] * omega* r[w] * eta* (psi

+ varepsilon) ) + 12 *sqrt( -12 * psi*4 * rtho™4 * ¢ * (r[w]-omega) * k[w] *d* (r[n]-eta) *k[n]/ ( (psi

+ varepsilon) "4 * r[w] *eta* r[n] * omega) -3 * psi®2 * tho™2 * a2 * (r[c]-psi) "2 *k[c]"2* b2 * (r[w]
-omega) "2 * k[ w]”2 * (1 + varepsilon/ (psi + phi) ) *2/ ( (psi + varepsilon) *4 * r[ ¢]"2 * omega’2 * r[ w]
"2)-60 * psi*2 *rtho™2 *a* (r[c]-psi) *k[c]*b* (r[w]-omega) "2 * k[ w]"2 * (1 + varepsilon/ ( psi
+phi) ) ¥*c*d* (r[n]-eta) *k[n]/ ( (psi+ varepsilon) "3 *r[c] * omega”2 * r[w]"2 *eta*r[n]) + 24 * psi
A2 *rho”2 * ¢"2* (r[w]-omega) "2 * k[w] 2 *d 2 * (r[n]-eta) "2 *k[n]"2/( (psi + varepsilon) "2 * r[ w]
A2 *eta”2 * r[n]”2 * omega”2 ) -12 * a3 * (r[c]-psi) "3 *k[c]"3 * b 3 * (r[w]-omega) "3 * k[w]"3 * (1

+ varepsilon/ (psi + phi) ) 23/ (r[ ¢]"3 * omega’3 * r[ w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[ c]-psi) "2
*klc]M2*b"2* (rlw]-omega) "3 * k[w]"3 * (1 + varepsilon/ (psi + phi) ) "2 *c*d* (r[n]-eta) *k[n]
/(r[ c]"2 * omega™3 * r[ w]"3 * (psi + varepsilon) "2 *eta* r[n]) -36 *a* (r[c]-psi) *k[c]*b* (r[w]
-omega) "3 * k[ w]"3 * (1 + varepsilon/ (psi + phi) ) * 2 *d"2* (r[n]-eta) "2 *k[n]"2/(r[ c] * omega3
*r[w]”3 * (psi + varepsilon) * eta”2 ¥ r[n]"2) -12* ¢"3 * (r[w]-omega) "3 * k[ w]"3 *d"3 * (r[n]-eta) "3
*k[n]"3/ (r[w]"3*eta®3 *r[n]"3 *omega™3)) )~ (1/3) + (6* (-(1/3) *a* (r[c]-psi) *k[c]*b

* (r[w]-omega) * k[w] * (1 4+ varepsilon/ (psi + phi) ) / (r[ ¢] * omega* r[ w] * (psi + varepsilon) ) - (1/3)
*d* (rln]-eta) ¥*k[n]*c* (rlw]-omega) *k[w]/ (r[n] * omega* r[w] *eta) - (1/9) * psi*2 * tho™2 / (psi
+ varepsilon) *2) ) / (8 * psi*3 * tho”3 / (psi + varepsilon) 3 +36 * b * (r[ w]-omega) * k[w] * (1

+ varepsilon/ (psi + phi) ) * psi*rtho* a * (r[c]-psi) *k[c]/ (r[w]* (psi+ varepsilon) *2 * [ c] * omega)
=72%d* (r[n]-eta) *k[n] *c* (r[w]-omega) *k[w] *psi*rtho/ (r[n]* omega* r[w] * eta* (psi

+ varepsilon) ) + 12 *sqrt( -12 * psi*4 *rho™4 * ¢ * (r[w]-omega) * k[w] *d* (r[n]-eta) *k[n]/ ( (psi

+ varepsilon) "4 * r[w] *eta* r[n] * omega) -3 * psi®2 * tho™2 * a2 * (r[c]-psi) "2 *k[c]"2* b2 * (r[w]
-omega) "2 * k[w]"2* (1 + varepsilon/ (psi + phi) ) *2/ ( (psi + varepsilon) *4 * r[ ¢]"2 * omega’2 * r[ w]
72)-60*psi*2 *tho™2 *a* (r[c]-psi) *k[c]*b* (r[w]-omega) "2 * k[ w]"2* (1 + varepsilon/ (psi
+phi) ) *c*d* (r[n]-eta) *k[n]/( (psi—+ varepsilon) *3 * [ c] * omega™2 * r[w]"2 *eta* r[n]) + 24 * psi
A2 *rho”2 * ¢"2* (r[w]-omega) "2 * k[w] 2 *d 2 * (r[n]-eta) "2 *k[n]"2/( (psi + varepsilon) "2 * r[ w]
A2 *eta”2 * r[n]”2 * omega”2 ) -12* a3 * (r[c]-psi) "3 *k[c] 3 * b 3 * (r[w]-omega) "3 * k[w]"3 * (1

+ varepsilon/ (psi + phi) ) "3/ (r[ ¢]"3 * omega’3 * r[ w]"3 * (psi + varepsilon) *3) -36 * a2 * (r[ c]-psi) "2
*k[c]™2* b2 * (r[w]-omega) "3 * k[w]"3 * (1 + varepsilon/ (psi + phi) ) "2 *c*d* (r[n]-ecta) *k[n]
/(r[c]"2 * omega™3 * r[ w]"3 * (psi + varepsilon) "2 *eta*r[n])-36*a* (r[c]-psi) ¥*k[c]*b* (r[w]
-omega) "3 * k[ w]"3 * (1 + varepsilon/ (psi + phi) ) *c"2*d"2* (r[n]-eta) "2 *k[n]"2/(r[c]* omega’3
*r[w]”3 * (psi + varepsilon) * eta”2 ¥ r[n]"2) -12* "3 * (r[w]-omega) "3 * k[ w]"3 *d"3 * (r[n]-ecta) "3
*k[n]"3/ (r[w]”3 *eta”3 *r[n]”3 * omega™3) ) )~ (1/3));

€

36b(rw—0))kw(1+ ¢]\upa(rc—\p)kc

33

1] 8vp
3 2

1201 (y+e) ro(y+e) ro

€)

88



~ v+o
;%(,3373‘}(\”4-8) ns,

36a(r, =) kb (rw—w)3k3v(l +L]Czd2 (n=n)°%

~ y+oé
ro R (y+e)n’ 2
1/2 1/3
128 (r.—0)’Bd (r —n)’
e T
A
€
R R Gt b vy B IR TR LR T
3 r.orn, (y+e) 3 Ta @11 ? (y+e)’

E X 36b (r, — o) kw[l +—\vi¢ )\Vpa(rc—\ll) k,

(y+e)’ nlte)ro

~ 72d (r, =) ke (r, — o)k, vp
r,or,M (l|!+8)

89



_ y+é
}"3(1)37':)(“14-8) nr,

rca)3rfv (y+e)n° P2

n

12 1/3

1203(r —u))3k3d3(r —n)3k3 1 yp 1 1 S\VSP3
_ w w 3 n n +_—_EI\/? = L S

’fvﬂ3 - @ 3 oy+te 61 (y+e)

£
366 (1, — o) kw[l + vio ]\ppa(rc—w) k, ) 72d (r,—n) ke (r, — o) k,wp

rw(w+s)2rca) roorm (y+e)

12yt (r,—0) kd (r,—n)k

4
(y+e)'rnro

+12

90



36a(rc—\p)kcb(rw—(0)3kfv[l+ £ ]czdz(rn—n)zkzn

91




€

36b(r —o)k |1+
(y+e)’ r, (\|/+e)2rc(o

vpa(r,— )k,
3 voa )

B 72d(rn—n> knc<rw—(o) kwwp
r,or.mM (\|I+8)

12yt (r,—0) kd(r,—n)k

+12 -
(y+e)'nnro

_ " v+0
(y+e)Po
OV () kb (5, 0) R 1 e (o),

3 2
(v+e) rornr

n

3
3 3 €
uiEe (e R (o) 2P (R (e R (14 )
(\u—l—e)zrzwnzrﬁwz 033'3(\I1+8)3

c w

w

_ y+o
r?co3r3 (\p—l—e)znrn

w

2
%J(Q—wygﬁ(m—mfﬁ[1+ e ]cd@,m)@

"
o 7 (y+e)n’ 2

12 1/3

128 (r,—0) B (r,—n)’ 8
e

;> # Evaluating value of the third eigenvalue function basing on baseline values
> eval( R, params)

i — 1.892232117 + 1.1071°T 4 (1.094618498 + 5.000000000 1071°1) /3~ 10)
[ abs( (10) )
i J(-1892232117 + 1.094618498 Y3 )" + (1. 10°1° + 5.000000000 10-105") (11)
> simplif( (11))

0.003702431633 (12)

| > # Therefore, the first function is the spectral radiusreproduction number of the system
| > # Computing the sensitivity indices for the reproduction number.
| > # defining the reproduction number
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>R:= (1/6) * (8 * psi*3 * rho”3 / (psi + varepsilon) "3 +36* b * (r[ w]-omega) * k[ w] * (1 + varepsilon/ (psi

+phi) ) *psi*tho*a* (r[c]-psi) *k[c]/ (r[w]* (psi+ varepsilon) "2 * [ c] * omega) -72* d * (r[n]-ecta)
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€
36b(r,—o0)k |1+ —— |ypa(r,—V)k,
_1| vy ( ) ( w+¢] (=) (13)
6| (y+e) rw(qH—s)zrcw

B 72d(rn—n) knc<rw—m) kwwp
r,or.m (l|l+8)

12yt (r,—0) kd(r,—n)k
(w+s)4rwn ro

+12

60’ pla (r,—w) kb (r, —m)zkfv(l +

3 2
(y+e) r.o rfvnr

93



3
3 3
R T W S Gk i G ] ey
(vt 22 26y re)
2
362—2k2b2—3k3[1 8]ar—k
) a (rc \p) - (rw 0)) - +\u+¢ c (rn T]) ”
rfco3r':’v(\p+£)2nrn
3 3 2
36 —w)kb(r —0) K |1 & (r,—m) K
) a(rC \u) . (rw 0)) W( +l|1+¢] (rn n) .
rcco3rz’v(\p+s)n212n
12 1/3
3 _w\33 3 _ )3
B 12¢ (rw (1)) ;c‘;’vd3(rn n) kft e
AR
£
1 a<rc_w)kcb(rw_w)kw(l+W+¢J 1 d(rn_n)knc(rw_w)kw_l szz
3 r.or (y+e) 3 r or M 9 (y+e)?
36b -—o)k 1+L]wp -V k
8W3p3 . (rw ) w[ w0 a(rc ) c
(y+e)’ rw(w+e)2rco)
72d (r, =) k,c (1, — ©) k,yp
roorm (y+e)
4 4
1 _12\|1pc<rw—(o)kwd(rn—n)kn
(\|!+€)4rw1’]rn0)
2
3\|12p2a2(rc—\|1) kzbz(rw—(o)zkzw[l+ € ]
_ v+o
(\|1+£)4r3032rfv
2 2 2 £
60 —y)kb(r —o) |1 d(r —m)k
OV () kb (5 0) R 1 e (o),
(y+e)raPnr,
3
3 3
PR (r— o) R (r—n)te 20 (W R (o) R (14t

94



_ y+o
rw3r3(l|l+8)n2r2n
12\'/3
3 3 3 3
B 12 ¢ (rw—o)) kfvd (rn—n> k;31 _,_l vp
An' R 3 y+e

;> # Normalized forward sensitivity index technique
> #
seq( [j,Re(eval( j*diff ( R,j) /R,params ) ) ], jinindets(R,name) );

>

[a, 0.2779368186], [b, 0.2779368186], [c, 0.2217571744], [d, 0.2217571744], [n, -0.2334286048 ], [ e, 14)

-0.7138485611], [d, -0.1175886540 ], [y, -0.1579296918], [ p, 0.0006120126956 ], [ €, -0.02015912070],
[k, 0.2779368184], [k, 0.2217571745], [k, 0.4996939930], [r, 0.01774064797], [ r,, 0.01167143023],

[rw, 0.2141545685]
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ARTICLE INFO ABSTRACT

Keywords: Cassava Mosaic Disease (CMD) is the prominent cassava disease which compromises cassava production in
Numerical simulation Africa, both qualitatively and quantitatively for many years. In this study, the mathematical model for the
Stability analysis dynamics of CMD with Non-cassava host plant population is formulated and analysed. The analysis of basic

Basic reproduction number

o model properties confirmed the positive boundedness of the model solution for all time ¢ > 0. Utilizing the
Cassava Mosaic Disease

next generation matrix the basic reproduction number R is derived and stability of disease-free equilibrium
point (DFE) is analysed. Analytical results confirmed that, the disease-free equilibrium point (DFE) is locally
asymptotically stable whenever R, < 1 and unstable otherwise. The sensitivity index analysis identified
mortality rate and the carrying capacity of whiteflies as the most sensitive parameters of model. This implies
that, any deliberate efforts towards controlling CMD should be directed into reducing the number of whiteflies.
This can be implemented by either increasing the mortality rate of whiteflies or reducing their carrying
capacity. In view of this, it is clear that deliberate measures such as the use of pesticides and entomopathogenic
fungi which increases the parameter value of w, and removing non-cassava host plants which will eventually
decrease the parameter value of k,, may bring significant results in combating CMD compared to the control of
other model parameters. The decision regarding the best approach out of the two requires optimal control and
cost-effective analysis of available control strategies. Furthermore, the numerical simulation results suggested
that Cassava Mosaic Disease (CMD) can be controlled by increasing mortality rate of whiteflies, and the
decreasing in the carrying capacity of whiteflies.

1. Introduction first recorded in Tanzania [7]. Studies identify seven different Cassava
Mosaic Gemini-viruses (CMGs) and their variants as the causal agents of
Cassava (Manihot esculenta Crantz) is a Euphorbiaceae family peren- CMD [8,9] which spread through the use of contaminated cassava stem

nial tropical woody plant with consumable starchy roots [1]. The plant
was introduced in Africa in the 16th century by Portuguese traders from
South America [2]. Although both the roots and the leaves are useful,
cassava roots are the most commonly used [3]. While cassava roots are
rich in carbohydrates, the leaves are associated with proteins, vitamins
B1, B2, C and carotenes [3]. Cassava plant is identified as a potential
climate change crop because of its tolerance to unfavourable climatic

cuttings and whiteflies (Bemisia tabaci) ingestion on plants [10,11]. The
effects of CMD in the production of Cassava may not be overempha-
sized. For instance, available literature reveals that CMD is responsible
for the annual loss of more than 34 million tonnes in Africa [12]. The
average yield loss is approximated to be between 55% and 77% when
contaminated stem cuttings are used and from 35% to 60% when CMD

circumstances such as unreliable rainfall [4]. It is a vital subsistence is caused by whitefly [13].

food crop in Africa, particularly in semi-arid locations where cereal The observable CMD symptoms are highly influenced by the viral

crops fail to grow. In Tanzania, cassava production support around 37% species, climatic circumstances, and the susceptibility of the cassava

of rural farmers [5]. plants. The common symptoms include yellow or light green wilt mo-
Cassava production in Africa is hampered by the presence and saic leaves, followed by deformation and wrinkling of the leaves [14].

persistence of plant pests and diseases such as Cassava Mosaic Disease
(CMD) and Cassava Brown Streak Disease (CBSD) [6]. The history of
CMD incidences in Africa can be traced back to 1894 when it was

Studies identify at least 64 Solanaceous species and plants such as
Leucana leucocephala, Glycine max, Ricinus communis (castor oil plant),

* Corresponding author.
E-mail address: maranya.mayengo@nm-aist.ac.tz (M. Mayengo).
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Fig. 1. Cassava Mosaic Disease flow diagram.

Senna occidentalis, Combretum confertum, Manihot glaziovii which are
susceptible to CMGs [10,15-17]. These alternative host plants can
be colonized by whiteflies and are commonly found in cassava plots
and surrounding areas as leguminous plant species, hedge plants or
weeds [15,18,19]. They promote the spread of CMD by acting as the
source of CMGs to whiteflies [10,16,17].

Mathematical models provide useful tools to understand the trans-
mission dynamics of CMD. For instance, Holt et al. [20] studied the
impacts of different variables on the spread of CMD. The study revels
that, the use of infected cutting tools and elimination of infectious
cassava have insignificant effects on the occurrence of the disease. On
the other hand, Magoyo et al. [21] modified the work of Holt et al.
[20] by including cassava cultivar which can be affected by CMGs
through unhealthy cutting only. In this study, the susceptible breed
acquired CMGs through unhealthy cutting and whitefly contacts. The
study identified death rate, infection rate, whiteflies carrying capacity,
and the rate of loss of infected cassava due to disease are the most
sensitive parameters in the system.

The effects of whitefly maturation time on the transmission dynam-
ics of CMD was studied by Fahad et al. [22]. The study establishes that,
the whitefly maturation time may stabilize epidemiological dynamics.
On the other hand, Jittamai et al. [23] includes both planting of
infected cuttings and whitefly transmission in the model to identify the
most cost-effective method for CMD management. The study establishes
that, the spread of the disease is influenced by the density of whiteflies
and the number of visited cassava plants. The numerical simulations
was used to prove the effectiveness of whiteflies population control in
elimination of CMD outbreak at minimum costs.

In this paper, we modify the framework of Jittamai et al. [23]
by considering non-cassava host plants population in the transmission
dynamics of CMD.

2. Model formulation

We formulated the model consisting three population species; cas-
sava plant (N,), whitefly (N,,) and non-cassava host plant (N,). Cassava
plant population is divided into Susceptible (.S.), Exposed (infected with

no symptoms) (E,) and Infected (I,) population compartments. On the
other hand, whitefly population comprises Susceptible (S,,) and In-
fected (1,,) compartments, similarly non-cassava hosts plant population
is categorized into Susceptible (S;,) and Infected (/) compartments.

Susceptible cassava plants are recruited logistically at the rate r, and
can acquire CMD through whitefly at the rate a. The exposed cassava
plants are replanted logistically depending on the probability of select-
ing the exposed cassava cuttings p. Further, the rate at which exposed
plants are converted to infected plants is represented by . The infected
cassava plants are recovered at the rate ¢ and become susceptible to
CMD. The model assumes that the cassava plant population is harvested
at the rate of y.

The whiteflies are recruited logistically at the rate r,, and acquire
virus from both exposed and infected cassava plants, and infected non-
cassava host plants at the rate b and ¢ respectively. The mortality rate
of the whitefly is represented by w. Susceptible non-cassava host plants
are recruited logistically at the rate r, and acquire CMD through the
whitefly at the rate d. Lastly, the non-cassava host plants are harvested
at the rate of n. The above information is summarized in the flow
diagram presented in Fig. 1 below.

The following assumptions based on characteristics of the CMD were
made to the formulated CMD model.

i. The replanting rate of cassava plant is higher than its harvesting

rate i.e., r, —y > 0.

i. The recruitment rate of whiteflies is higher than its death rate
ie, r,—w>0.

iii. The replanting rate of the non-cassava host plant is higher than

its harvesting rate i.e., r, — 5 > 0.

iv. All model populations grow logistically.

. All model parameters and variables are non-negative.

Cassava plants get CMD through contact with infected whitefly

and the of unhealthy cutting.
Non-cassava host plant gets CMD through contact with infected

whitefly only.

vi.

vii.
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The system of differential equations (1) describes the transmission
dynamics of CMD by considering all stated assumptions.

ds N,
—L = (1 - K—f) S, +¢l. —aS, I, —yS,

c

dE, N,
— =r.\l-—|pE . +aS.1,—-(y+e)E,

dt A
dl
—£ = eE. — (w+ @),
ds N,
1 === (1——w>rwNw—(b(Ec+IC)+clh)Sw—wa @
dt Ky
dl,
d—t” =(b(E. +1,)+cl;) S, —wl,
ds, N,
— =" <1 - K—h> S, —dSyI, —nS,
dI,
2 =4Sl —nl,

with initial conditions, S.(0) > 0, E.(0) > 0, I.(0) > 0, S, (0) >
0, 7,0 > 0, S,(00 > 0, I,(0) > 0. The equations for the total
population of Cassava plants, whitefly, and non-cassava host plants are
given by:

dN, N, N,
e =r,. l—K— S.+r, 1—K— PE.—wN,

C (4
dN N
d_l‘w:<l__w rwNw_a’Nw (2)
dN, N,
7=’h<1‘7h>5h‘"Nh

w

3. Basic model properties
3.1. Invariant region

Lemma 1. Given the model system (1) in ]RZr with the initial conditions
S.(0)>0,E.(0) 20,1.(0)>0,5,(0) > 0,1,(0) > 0,5,0) >0, 1,(00>0,
its solution enters the invariant region 2 = (S, E.. I, S, I,,, Sy, 1) >0
in R7

"

Proof. The box invariant method as used by Chuma [24], Daudi et al.
[25] and Nyerere et al. [26] was used to establish the feasible region of
the CMD system. We assume the continuity and the Lipschitz properties
of its solution for our dynamic system ax = G(X,1), X in R". The model
system (1) is reduced to the form, !

ﬂ:AX+Z
dt

where, column vector X = (S,, E., I, S, I, S, Ih)T and

Nc Nc
Z= (rc 1- K_ _aIw)Sc’ rc(l - K—C)P’ 0,

c
a Nw) S .0 1= Mg 0 !
Koy T s Vs Th Ky h>

and the Metzler matrix AVX € Rzr is defined as,

-y 0 ¢ 0 0 0 0

0 -y +¢) 0 0 as, 0 0

0 € —(v + @) 0 0 0 0
NM

A=]0 0 0 -0, (1 - ) [ 0 0
Kw

0 0 0 0, -w 0 0

0 0 0 0 —(dI,+n) 0

0 0 0 0 0 dl, -n

3

where, Q) = b(E +1.)+cl,+wand Q, = b(E.+1,)+cI, are simplifying
factors.
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Since the principal diagonal of a reduced matrix A in Eq. (3) has
all negative values, while the off-diagonal has all non-negative values,
it proves that, all variables enter and stay in the feasible region €. This
implies that the formulated model system (1) is well-posed in invariant
region .

3.2. Positivity of the solution

From the model equation (1) we have,

as. N,
—=r \1l-—) S +¢l. —aS.1,-yS, ()]
dt K,

ds
dtc > —(al, +w) S

Separating the variables and integrating both sides, we get

/dSC 2/—(alu,+y/)dt
SC

InS, >—(al,+w)t+C

S. (1) > Be—(alu,ﬂ/)r

If we substitute ¢ = 0 as our initial condition, we get
S, (0)> B

Hence,

S, ()2 S, (0)e~@et¥) > 0 v >0

Applying the same procedure to all equations of model system (1) for
all ¢ > 0, the following results are established,

E.()> E, (0)e” W+ >0 )

I, > 1, 0)e ¥ >0 ©)

S, () =S, 0) o~ (Ec+lotelpro) 5 *
I, =1,0)e >0 ®

S, (1) > S, 0)e (@t > o ©

I, > I,(0)e™™ >0 10)

This concludes that, the model system (1) has the positive solution
for all t > 0.

3.3. Existence of equilibria and basic reproduction number

3.3.1. Disease free equilibrium

The equilibrium points of the CMD model (1) is obtained by setting
the RHS to be equal to zero and solving the system simultaneously.
Thus, we have
S+ @Il —aS i —wS; = 0

cw

22|

r. <1 -
rc(l— - pE; +aS) 1 —(w +e)E; =
c
N eEl —(w+ I =
w « ® % _
(1 - K—> roNE = (b(EX +1F) +cI}) St — oS, =

’ (b(E%VtI:)+cIZ)S;}—wI;‘) =

an

" (1 - K—") SE—dSiIE —nS; =
h

S © o o o ©

dSir: —nli =
where (Sj,E:,I:,S;,I;,S;,IZ) is the solution set to the system (11).
When E* = 0,1} = 0,1} = 0, I;: = 0 we have the disease-free
equilibrium point, DFE = (S, E9, 12,89, 19, 89, 1?) given by

ctePw tw

DFE = (K“ (e ) o0, Kl - ) 0, (7 _"),o> 12)

re Ty Tp
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3.3.2. Disease Endemic Equilibrium

The equilibrium points at which there is disease infection in model
system population is referred to as Disease Endemic Equilibrium point
(DEE). Considering the system model equation (1), we get, DEE =
(SE EN Y Sy 1, Sp 1), where

c’ e’ T w T w?

5 o 'k, +r. (k. — N¥) . ax, STI;

¢ k(al? + ¢) e Nirep + k. ((l[/+6) - rcp)’
PR
CT W+
5 = N (K0 = N2 e (b(E.+1.)+cIy) S, and
Yok ((B(E + 1) +cly) +o) " o
nl;
Si= a1
.

When the first equation of the system (11) is deployed, we have

N*
re <1— K—C>S:+¢Ic*—aS*I* —wSi=0

cTw
c

*
K. — N;

implying that r,

S* + @I > 0, consequently, we have

k.—N¥>0.Ina similar vein, utilizing the fourth and sixth equations of
the system (11) we prove that x,,—N;; > 0 and x,— N, > 0, respectively.
On the other hand, the second equation of the system (11) proves that
repN +(w+e)—r.p>0.

3.4. The basic reproduction number, R

The basic reproduction number refers to the number of secondary
infections that an infected individual is likely to cause over their
infectious life [27]. It is a measure which tells the potentiality of disease
to spread within a population. If R, < 1, then a few infected individuals
introduced into a completely susceptible population will, on average
fail to replace themselves. On the other hand, if R, > 1, then the
number of infected individuals will increase with each generation and
the disease will spread [28]. We adopt the next generation matrix
method proposed by Van den Driessche and Watmough [28], as also
used by Mayengo et al. [29] in the computational of R, from the CMD
model system (1). The basic reproduction number was obtained by
splitting the infected subsystem of the model into the form

dX .

? = F,- —V,-,l = 1,...,’1,

where F; is the rate of secondary infections increase at ith disease
compartment and V, is the rate of disease progression and death
decrease at ith compartment. The basic reproduction number is given

by the dominant eigenvalue (Spectral radius) of the matrix FV~!, thus
oF,; av,
Ry = p(FV~!) where, F = [—| and V = [a—‘] evaluated at DFE

X -
J

point when x = (E,, I, I, I,). Now, considering tllle model system (1),

the infected subsystem are,

dE, N,
' =r, 1——£ pE, +aS.1,— (v +¢e)E,
dl
d; =¢E,—-(w+¢) I,
141 13)
d—t“’ =(b(E.+1.)+cl,) S, —wl,
dI,
— =dSy1, —nl
dt ntw =My
Thus,
NL‘
re({1——)pE . +aS.1,
c
F, = 0 a4

(B(E, + 1)+ cI)S,,
dS,I,
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and,
(v +e)E,
v, = ("’+¢:);C'EEC . (15)
nT:

The Jacobian matrix for 7, and V, evaluated at DFE are given by,

SO
re (1 - K—j> p 0 aS® 0
F= 0 0 0 0 (16)
bSO bSO 0 eSO
0 0 4ds) o0
and
(y+¢) 0 0 0
—£ wv+¢p 0 O
= 1
v 0 0 o 0 a7
0 0 0 7z

The computational of V™! gives,
1

0 0 0
v +e

£ 1 0 0
vl=|Ww+dw+e) w+o ) 18)

0 0 - 0

PO

0 0 0 =

n

consequently as given in Box L. If we let

_ _a(rc_W)Kc _b("w_w)’(w 14 —E
&1l 1//+¢£7g13 wr, > 831 W +er, v+ ¢
r, —w)K,, r, — @K rp, —1n)K,
’g32=b(u ) w,g34=c(w ) wandg43=d(h ) h
w+e)r, nry, wry,
and compute R, = p(FV~!) we obtain,
1 2 1, oo\ 1
Ry=2X+ = ( + +3@?) + 3 20
0= % 5% 831813 T 843834 3(311) 3g11 (20)

1
where, X = (Xo+12¢/X7) 3, Xo =4 (931815 — 188083 + 2&117) €11
and
X; = =3(g)* (4g33g43 (1—2g34843) + 213831 (813831 +20834843))
—12(g13831) " (213831 + 3834843)

-12 (g34g43)2 (3813831 + £34843)

3.5. Local stability of disease free equilibrium

Theorem 2. The disease-free equilibrium point (DFE) of the CMD model
system (1) is locally asymptotic stable when R, < 1 and unstable otherwise.

Proof. Following Mayengo et al. [30], we investigate the real part
of the eigenvalues of the decomposed Jacobian matrix of the system
evaluated at DFE. Thus the result is established as in Box II. The matrix
Jprp can be decomposed into the block matrix of the form

Ju Jp 0
Jpre=Jd21 I Ja3 (22)
0 Jp Jy
where 0 are zero matrices and
=(re—w) =(re—w) —(re—yw)+d
Ji = 0 —w(d-p)+e) 0 )
0 3 (v +¢)
Jo = —(rpy—w)  —r,+2w Jo=(" (rn=n) —=(ra=n)
22 0 —w > 33 0 —n .

We can easily observe that, the eigenvalues for matrix J;; are
—(w + ¢), —(w (1 —-p) +¢) and —(r, — w). Based on assumption i, it is
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rF. — K,
L 0 a—( L 0
v+e wr,
0 0 0 0
Fy-l = 5 (rp—o) K, <1 R > (rp—) K, 0 (ro—o) K, |. (19)
(W +e)r, v+ W+, Ny
Fp — K,
0 0 PLIL 0
ry
Box I.
—(r, —w) —(r, —w) —(re—w)+¢ 0 -as? 0 0
0 —w(d-p)+e) 0 0 aS? 0 0
0 3 -y +9¢) 0 0 0 0
JprE = 0 —bS0 -bS? —(rp—®) -r,+20 0 -S89 (2D
0 bS° bS° 0 -® 0 S0
0 0 0 0 -dsy = (ra=n) —(rn—n)
0 0 0 0 sy 0 -n
Box II.
Table 1

clear that —(r, —y) < 0 suggesting that the matrix J;; has negative real
eigenvalues. Similarly, the eigenvalues for matrix J,, are —(r,, — w)
and —w. Again, utilizing assumption ii we know that —(r,, — ) < 0 sug-
gesting that matrix J,, has negative real eigenvalues. Furthermore, the
eigenvalues of matrix Js; are — (r, —#) and —y. Utilizing assumption
iii it is clear that matrix J3; has negative eigenvalues. This property
assures the stability of the diagonal sub-matrices J;;, Jy,, and J3; and
hence the local stability of the matrix Jj; when R, < 1.

4. Sensitivity analysis

The assessment on the contribution of each parameters featured in
the computation of R, was conducted by using normalized forward
sensitivity index method. Following Kung’aro [31] and Mayengo et al.
[32] we establish that;

Ry _ 9Ro o i

T = ou R_U

23)
1
where u; represents the ith parameter of the model as depicted on
Table 1.

Applying normalized forward sensitivity index method using the
baseline values, we obtain the following sensitivity indices presented
in Table 1;

From Table 1 we observe that the natural mortality rate of whiteflies
(w) is the most negative sensitive parameter in the transmission of
CMD while the carrying capacity of whiteflies (k) is the most positive
sensitive parameter of the CMD model system. Other negative sensitive
parameter includes the harvesting rate of the non-cassava host plant
(n) followed by the harvesting rate of cassava plant y, the CMD latent
rate (¢) and the recovering rate of cassava plant (¢). Sensitivity index
results suggest that, increasing the death rate of whiteflies (w) and
reducing the carrying capacity of whiteflies are the most important
control strategies of CMD. Further, we observe that the probability
of replanting exposed cassava plant (p) have less contribution to the
spread of the disease. Thus, any deliberate control efforts with the focus
of increasing removal rate of the whiteflies from the field is likely to
be of success in the controlling CMD. This can be successfully done
by either increasing whiteflies death rate or decreasing their carrying
capacity in the non-host cassava plants.

Model parameter values and their sensitivity indices.

Parameter  Range Baseline value Source Sensitivity index
r, 0.025-0.1 0.05day~! [33] 0.0177
o 0.1-0.3 0.2day™! [20] 0.0117
r,, - 0.02day™! Assumed  0.2141
P 0-1 0.1 [20] 0.0006
a 0.002-0.032  0.008plant'day~! [20] 0.2779

b 0.002-0.032  0.008whitefly'day~!  [20] 0.2779

c - 0.008whitefly'day™" Assumed  0.2218
d - 0.008plant™'day™! Assumed  0.2218
€ - 0.033day™! [33] —0.0202
2] 0.06-0.18 0.06day™! [20] —-0.7138
n - 0.001day™! Assumed  —0.2334
"4 0.002-0.004  0.003day~! [20] -0.1579
K, 0.01-1 0.7m™! [20] 0.2779
K 0-350 90plant™ [34] 0.4997
Kp 0.01-1 0.1m™! Assumed  0.2218
) 0.002-0.004  0.003day™! [33] -0.1176

5. Numerical simulation and results

Utilizing Runge—Kutta fourth order method by using MATLAB codes,
the numerical simulation on the CMD model system (1) was performed
and the effects of identified sensitive parameters to the system were
illustrated. We simulate the CMD model system (1) using baseline
parameter values as shown in Table 1 and S.(0) = 0.35,E,(0) =
0.05,1,(0) = 0.05,5,(0) = 40,1,,(0) = 10,5,(0) = 0.2,1,(0) = 0.1 as
initial condition values for model variables.

In Fig. 2 we observe that, in the first 100 days the number of
susceptible cassava plants decreases from 0.35 per m” to 0.05 per m?,
remains to this level for sometimes before it stabilizes. It is observed
further that, in less than 25 days, the exposed cassava plants attains
the maximum value of 0.2 plants per m? before it starts decreasing
exponentially to 0.05 plants per m? in 200 days. On the other hand,
the infected cassava plant population raises from 0.05 per m? to 0.35
plants per m? in first 100 days.

Fig. 3 shows that, the number of susceptible whiteflies population
increases from 40 to approximately 58 susceptible whiteflies per m?
within the first 50 days. After 50 days the population of susceptible
whiteflies population remain constant at the rate of approximately
58 per m2. Conversely, the number of infected whiteflies population
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Fig. 3. Whitefly population dynamics.

decreases from 10 to its stability rate of 5 infected whiteflies per m? in
less than 50 days.

The results in Fig. 4 reveal that, the number of susceptible non-
cassava host plants decreases from 0.2 to 0 per m? in less than 100
days while the number infected non-cassava host plant increases from
0.1 to its peak value of approximately 0.22 per m? in 50 days before it
starts decreasing to 0.17 per m? in 300 days.

Three scenarios of the model simulation on infected cassava plants,
infected whiteflies and infected non-cassava host plants against the
variation of different values of mortality rate of whiteflies (w) are
observed in Fig. 5. It is clear that the increase in the mortality rate
of whiteflies causes the decrease in number of infected cassava plants,
infected whiteflies and infected non-cassava host plants (see Fig. 5).
This confirm that controlling the number of whiteflies by increasing its
mortality rate is vital in the fight against the spread of the disease.

Fig. 6 portrays the effects of varying the carrying capacity of white-
flies on infected populations. It is observed that, an increase in number

of whiteflies per m? leads to the increase in number of infected popula-
tion of cassava, whitefly and non-cassava host plant. The result portrays
that the severity of the CMD can be influenced by the maximum number

of whiteflies per m?.

6. Conclusion

In this paper, an ordinary differential equation (ODE) model with
non-cassava host plant population was formulated and analysed. The
analysis of basic model properties confirms that, formulated CMD
model has positively bounded solutions for all time ¢+ > 0. Local
stability analysis of R, confirms that the DF E is asymptotically stable
whenever R, < 1 and unstable otherwise. This implies that, CMD
will be endemic when R, > 1, and can be eliminated when R, <
1. Moreover, the sensitivity analysis on R, and numerical simulation
of the system model (1) revealed that, mortality rate of whiteflies
(w) and the carrying capacity of whiteflies per m? (x,) are the most
sensitive parameter of the CMD model. This implies that, any deliberate
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Fig. 5. Infected population of cassava plant (a), infected whiteflies (b) and infected non-cassava host plants (c) against different values of mortality rate of whiteflies.

efforts towards controlling CMD should be directed into reducing the
number of whiteflies. This can be implemented by either increasing
the mortality rate of whiteflies or reducing their carrying capacity. In
view of this, it is clear that measures such as the use of pesticides
and entomopathogenic fungi which increases the parameter value of w,
and removing non-cassava host plants which will eventually decrease
the parameter value of x,, may bring significant results in combating
CMD compared to the control of other model parameters. The decision
regarding the best approach out of the two requires optimal control and
cost-effective analysis of available control strategies.

The immediate future study therefore, will be development and
analysis of optimal control model on CMD with the aim of minimizing
the cost of controlling parameters » and k,. Stochastic modelling
approach which incorporates uncertainty in the dynamics of CMD may
also be considered.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data used in this study were found from different similar studies
and some were assumed.

Acknowledgements
The authors acknowledge the assistance they got from the Nelson

Mandela African Institution of Science and Technology (NM-AIST) and
the Ministry of Education, Science and Technology (MoEST).



B. Erick and M. Mayengo

Informatics in Medicine Unlocked 33 (2022) 101086

(c)

0.4 T T

o

0

a
T

Infected Cassava plan Population [per m2]
o o
—~ o o o
[$,] n (4] w
1 1 1 A/
Infected vector Population [per m?2

o
T
L

L

0.24 T T

nw=10

!

Infected Non-cassava hosts Population [per m2]

0.05 - -
0 100 200

Time[days]

0
300 0

100

200

Time[days]

0.1 - -
300 0 100 200

Time[days]

300

Fig. 6. Infected population of cassava plant (a), infected whiteflies (b) and infected non-cassava host plants (c) against different values of whiteflies carrying capacity.

References

[1]

[2]

[31

[4]

[5]

[6]

[71

(8]

[91]

[10]

[11]

[12]

[13]

Alves Alfredo Augusto Cunha. Cassava botany and physiology. Cassava: Biol Prod
Util 2002;1:67-89, Publisher: CABI Publishing: Oxon, UK.

Chapwanya Michael, Dumont Yves. Application of mathematical epidemiology
to crop vector-Borne diseases: The cassava mosaic virus disease case. In: Teboh-
Ewungkem Miranda I, Ngwa Gideon Akumah, editors. Infectious diseases and our
planet. Mathematics of planet earth, Cham: Springer International Publishing;
2021, p. 57-95. http://dx.doi.org/10.1007/978-3-030-50826-5_4.

Fasuyi Ayodeji O. Nutrient composition and processing effects on cassava leaf
(Manihot esculenta, Crantz) antinutrients. Pak J Nutr 2005;4(1):37-42, ISBN:
1680-5194 Publisher: Citeseer.

Howeler Reinhardt H. Cassava mineral nutrition and fertilization. Cassava: Biol
Prod Util 2002;115-47, Publisher: CAB. International, CIAT: Chatuchak, Bangkok
Thailand.

Mtunguja MK, Beckles DM, Laswai HS, Ndunguru JC, Sinha NJ. Opportunities
to commercialize cassava production for poverty alleviation and improved food
security in Tanzania. Afr J Food Agric Nutr Dev 2019;19(1):13928-46. http://
dx.doi.org/10.4314/ajfand.v19i1, Number: 1 URL https://www.ajol.info/index.
php/ajfand/article/view/185568.

Hillocks RJ. Cassava virus diseases and their control with special reference to
southern Tanzania. Integr Pest Manag Rev 1997;2(3):125-38. http://dx.doi.org/
10.1023/A:1018449017411.

Mwakosya Joseph A, Temu Gladness E, Ndunguru Joseph C. Identification
and characterization of cassava mosaic begomoviruses in non-crop plants from
Unguja and Pemba Islands. Tanzania J Sci 2021;47(5):1870-81.

Legg, Kumar P Lava, Makeshkumar T, Tripathi Leena, Ferguson Morag, Kanju Ed-
ward, et al. Cassava virus diseases: biology, epidemiology, and management. Adv
Virus Res 2015;91:85-142, ISBN: 0065-3527 Publisher: Elsevier.

Tiendrebeogo Fidele, Lefeuvre Pierre, Hoareau Murielle, Harimalala Mireille,
De Bruyn Alexandre, Villemot Brachet Julie, et al. Evolution of African
cassava mosaic virus by recombination between bipartite and monopartite
begomoviruses. Virol J 2012;9:67. http://dx.doi.org/10.1186/1743-422X-9-67.

Anitha Jose, Makeshkumar T, Edison S. Potential hosts of sri lankan cas-
sava mosaic virus evaluated through whitefly inoculation. J Root Crops
2020;45(2):55-61, Number: 2 URL https://isrc.in/ojs/index.php/jrc/article/
view/564.

Macfadyen S, Paull C, Boykin LM, De Barro P, Maruthi MN, Otim M, et
al. Cassava whitefly, bemisia tabaci (gennadius) (Hemiptera: Aleyrodidae)
in east African farming landscapes: a review of the factors determining
abundance. Bull Entomol Res 2018;108(5):565-82. http://dx.doi.org/10.1017/
S0007485318000032.

Legg JP, Owor B, Sseruwagi P, Ndunguru J. Cassava mosaic virus disease in
east and central Africa: Epidemiology and management of A regional pandemic.
In: Advances in virus research. Vol. 67. Elsevier; 2006, p. 355-418. http://dx.
doi.org/10.1016/S0065-3527(06)67010-3, URL https://linkinghub.elsevier.com/
retrieve/pii/S0065352706670103.

Alaux Jean-Pierre, Fauquet C. African cassava mosaic disease: from knowledge
to control. Technical Centre for Agricultural and Rural Cooperation (CTA); 1990.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Mabasa Kenneth Gaza. Epidemiology of cassava mosaic disease and molecular
characterization of cassava mosaic viruses and their associated whitefly (Bemisia
tabaci) vector in South Africa (Ph.D. thesis), University of the Witwatersrand
Johannesburg; 2007.

Alabi Olufemi J, Ogbe Francis O, Bandyopadhyay Ranajit, Lava Kumar P,
Dixon Alfred GO, Hughes Jaqueline d’A, et al. Alternate hosts of African cassava
mosaic virus and East African cassava mosaic Cameroon virus in Nigeria. Arch
Virol 2008;153(9):1743-7. http://dx.doi.org/10.1007/s00705-008-0169-8.
Badamasi H, Alegbejo MD, Kashina BD, Banwo OO. Alternative hosts of cassava
viruses in Kaduna and Sokoto states, Nigeria. Sci World J 2020;15(2):51-5, ISBN:
1597-6343.

Monde G, Walangululu J, Winter S, Bragard C. Dual infection by cassava
begomoviruses in two leguminous species (fabaceae) in yangambi, northeast-
ern democratic Republic of Congo. Arch Virol 2010;155(11):1865-9. http://
dx.doi.org/10.1007/s00705-010-0772-3, URL http://link.springer.com/10.1007/
500705-010-0772-3.

Milenovic Milan, Wosula Everlyne Nafula, Rapisarda Carmelo, Legg James Peter.
Impact of host plant species and whitefly species on feeding behavior of bemisia
tabaci. Front Plant Sci 2019;10:1. http://dx.doi.org/10.3389/fpls.2019.00001,
URL https://www.frontiersin.org/article/10.3389/fpls.2019.00001 /full.
Sseruwagi P, Maruthi MN, Colvin J, Rey MEC, Brown JK, Legg JP. Colonization
of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. En-
tomol Exp Appl 2006;119(2):145-53, ISBN: 0013-8703 Publisher: Wiley Online
Library.

Holt J, Jeger MJ, Thresh JM, Otim-Nape GW. An epidemilogical model incor-
porating vector population dynamics applied to African cassava mosaic virus
disease. J Appl Ecol 1997;34(3):793-806. http://dx.doi.org/10.2307/2404924,
Publisher: [British Ecological Society, Wiley], URL https://www.jstor.org/stable/
2404924.

Magoyo Florence Damascus, Irunde Jacob Ismail, Kuznetsov Dmitry. Modeling
the dynamics and transmission of cassava mosaic disease in Tanzania. Com-
mun Math Biol Neurosci 2019;2019:4. http://dx.doi.org/10.28919/cmbn/3819,
Number: 0, URL http://www.scik.org/index.php/cmbn/article/view/3819.
Fahad Al Basin, Kyrychko YN, Blyuss KB, Ray S. Effects of vector maturation
time on the dynamics of cassava mosaic disease. Bull Math Biol 2021;83(8):87.
http://dx.doi.org/10.1007/s11538-021-00921-4.

Jittamai Phongchai, Chanlawong Natdanai, Atisattapong Wanyok, Anlam-
lert Wanwarat, Buensanteai Natthiya. Reproduction number and sensitivity
analysis of cassava mosaic disease spread for policy design. Math Biosci Eng
2021;18(5):5069-93, ISBN: 1551-0018.

Chuma Furaha. Modeling the dynamics, control and economic loss of newcastle
disease in village chicken: a case of Pwani region in Tanzania (Ph.D. thesis),
2019.

Daudi Salamida, Luboobi Livingstone, Kgosimore Moatlhodi, Kuznetsov Dmitry.
Modelling the control of the impact of fall armyworm (spodoptera frugiperda)
infestations on Maize production. In: Yu Jianshe, editor. Int J Differ Equ
Appl 2021;2021:1-16. http://dx.doi.org/10.1155/2021/8838089, 1687-9651,
1687-9643, URL https://www.hindawi.com/journals/ijde/2021,/8838089/.



B. Erick and M. Mayengo

[26]

[27]

[28]

[29]

[30]

Nyerere Nkuba, Luboobi Livingstone, Mpeshe Saul, Shirima Gabriel. Modeling
the impact of seasonal weather variations on the infectiology of brucellosis.
2020, http://dx.doi.org/10.1155/2020/8972063, URL https://dspace.nm-aist.
ac.tz/handle/20.500.12479/1336. Accepted: 2021-09-23T12:41:54Z Publisher:
Hindawi.

Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive
ratio. J R Soc Interface 2005;2(4):281-93. http://dx.doi.org/10.1098/rsif.2005.
0042, ISSN: 1742-5689, 1742-5662. URL https://royalsocietypublishing.org/doi/
10.1098/1sif.2005.0042.

Van den Driessche P, Watmough James. Further notes on the basic reproduction
number. In: Mathematical epidemiology. Springer; 2008, p. 159-78.

Mayengo Maranya M, Shirima Gabriel M, Chakraverty Snehashish, Kgosi-
more Moatlhodi,
modeling of the dynamics of health risks associated with alcoholism in tanzania:
a literature review. Commun Math Biol Neurosci 2020;2020.

Mayengo Maranya M, Kgosimore Moatlhodi, Chakraverty Snehashish. Fuzzy
dynamical system in alcohol-related health risk behaviors and beliefs. In: Soft
computing in interdisciplinary sciences. Springer; 2022, p. 109-27.

Seshaiyer Padmanabhan, Caiseda Carmen. Mathematical

[31]

[32]

[33]

[34]

Informatics in Medicine Unlocked 33 (2022) 101086

Kung’aro Monica. Mathematical modelling of intra and inter dynamics and
control of yellow fever in primate and humna populations (Ph.D. the-
sis), The Nelson Mandela African Institution of Science and Technology;
2016, URL https://dspace.nm-aist.ac.tz/handle/20.500.12479/57. (Accepted:
2019-05-14T14:29:127).

Mayengo Maranya M, Kgosimore Moatlhodi, Chakraverty Snehashish. Fuzzy mod-
eling for the dynamics of alcohol-related health risks with changing behaviors
via cultural beliefs. J Appl Math 2020;2020:1-9. http://dx.doi.org/10.1155/
2020/8470681, ISSN: 1110-757X, 1687-0042. URL https://www.hindawi.com/
journals/jam/2020/8470681/.

Jeger MJ, Holt J, Bosch FVan Den, Madden LV. Epidemiology of insect-
transmitted plant viruses: modelling disease dynamics and control interventions.
Physiol Entomol 2004;29(3):291-304. http://dx.doi.org/10.1111/j.0307-6962.
2004.00394.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0307-
6962.2004.00394.x, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.
0307-6962.2004.00394.x.

Bokil VA, Allen LJS, Jeger MJ, Lenhart S. Optimal control of a vectored plant dis-
ease model for a crop with continuous replanting. J Biol Dyn 2019;13(sup1):325-
53. http://dx.doi.org/10.1080/17513758.2019.1622808, Publisher: Taylor &
Francis _eprint.



Z}yoelsie-wu®golewi
fe DUCSHIE/ 7 LT
‘0T /840°10p//:sdNY "9y6E£T-8C6ET (T)4T ‘Wawdojarag pup uogLInN ‘21n3jnd
-1I8\/ ‘P00 JO [puJnOr ubdLy [T JoquUnpN|] eluezue] ul A1UN23S poo} paAotdull
pue uoneiAaj|e AJuaAod JoJ uoldnpold BABSSED 9ZIjeIDJaWwlod 03 saiunjiodd(
(6T0Z) "N BYUIS® "D [ NUN3UNpN “S 'H ‘1emseT “|n "d ‘Sapoag "M A ‘BInSunin
ssaid U] 1aueld JNO pue saseasi(] SNoldaju| U0
0/ES0CT6T/59e/310°AIXIe/ /A1y
WO} ‘TZOC PT 3SN3NY paAlilay *[01g-b ‘Yiow] 0LEG0CTET-AXID [0LESOCT6T
AIXJB] 9SBD 9SeaSIP SNJIA DIESOU BABSSED 9y | 'S9SEaSIPp auJ0(g-J0309A doJd 03
A3ojolwapid] |eanewayieln Jo uonedliddy (46T02) ‘A ‘uownq R “|A ‘eAuemdeyD
'68-/9 ‘T ‘Uoybziinn pub uoonpo.id ‘A50J0Iq :DADSSDD) “[HN ‘UOX(D
:3ulyslignd 19vD ayslignd] ASojoisAyd pue Auejoq eaessed (¢00¢) D 'V 'V ‘SOAY

S92Ua19}9Y

'2U0|e pajuawa|duwl Usym saljiAloe 3uingod pue uoy
-edljdde apiondasul 01 paleduwod suolejndod pPaldajul JO JaquinuU 3yl suldnpad Ul
pue 3502 Ul Jopaq swiojiad uonedijdde apiodasul pue 3uUiNg0J JO UoLeuIquiod ay)
‘JON03JO|A "UDEe] alde sainseaw ou JI uoendod ayj ssodde pealds Aj|lenjuans [|IM
95SeasIp 2yl pue paljdde ale Sa1331L43S |0JIU0D JUBDYIUSIS Uaym ysiiad ued aseasip
93 Jey3 sainsse 3 nsal ay| ‘T < 031 usaym peauds ued pue 1 > 031 usym JUSWUOIIA
-U2 3y ul3sisiad ued (IAD 1yl 9AI9SgO suole[nwlis |eJ1ISUWINU pue SISAjeue |9PO|A|

uoISNJoU0)D

pOYIaW paulquio)) G 24ngi-

(sAeq) swiL P) =3 (sAeq) swiL (@)
ooe ooz 001 o] @ ooe ooz (o]e]! o]
: : o T = : . o0 =
o @
= D
! _ 18008 =3
g‘L=t‘o=n — — - S =
I Nn L=I no #_3 L0 m lllllllll \ [« m
i g0 2‘1=1 ‘o='n — - - |\ =
~ - / =3 ] ‘ ! o
:::::: Jleo & 2L=1‘o=n x|
C = = - - ] m oL w7v
3

(sAeq) swiiy (a) o (sAeq) swiL (e)
ooe ooz (o]o] ! o ooe ooz (o]o] ! o}

2L=1‘0=n = = = /
left=1'0 ='n

\
0 o
(@] (@]
w Jad eaessed pajoau|

M Jad eAessed pasodx3

M
o
¢

poyiaw pauiquiod 10} salioyoalel]

|0J3UOD YIM [9pOoWl JOJ Weldeip MO|J "1 2IN3I

Ur(etn 4+ U) &= ] Br(SIn 4+ m) = *F | e+ @)= T
W ...JV!/‘..,.\A.\.. ...1 S
% ¢ 5 "
L] i LY #
N .= § -
1 L o
b — r -
Y iy 1w}
j.a I.””u .1-_.
L s &
. _._._. I_I .1.. :
lllh .._. - .__._ F : L}
= = vy I o 1 } o 3
i E . _...__ _— i
S : : wan e g Jead(5-1)
- ,. J
L . -
“ ] . #
% g ¢
. Il.l.-” , =
"\ s . \ ~
i 1 . =
r - L] .,.._|n..
& & -
\ ¢ % b
Ed - 5
L] o L
! ..M\Lr/m_._ 5
gl — Mg To(MEn 4+ M) — g | Cilt T_. o,
L & . k ". i

sainseawl 1043U0d Yl 19PO

UOISSOS 181S0(d

344 Jo AJljige3s [eqo|D ¢ 24n3i

[sAeplawi] ) 3 [sAeplawi] (a)
000€ 0002 000} 0 % 000¢ 00SL  000I 009 0
_ _ 0 & — 0 5
3 &
6°0=" 2 | o= 02
A~ U 2 2 o
80="1—— & Go="|—— 0
lco @
90="1—— 08 | go="l—— og
Y S 0 S
€0="1 - 1'0="1 1905
U 74 0 Q
1'0="| & |500="1 3
[sAepJown (0) 3, [sAeplow] (e)
0G1 00} 09 0 009 00¥ 002 0
— - : 0 ml.. _ ‘ 0 m_
M (1 0
00€="| g | £0=3 [
M o
1002="1—— 100b S | go="3—— o
M =3
002=|—— g | €0=3 o g
L M 00 < 0) <
09k="1— 5 | to=3—— 1902
M g L0 @
06=| 3 |500="3 n
_ 008 80 3,

34q Jo Ainigels jeqorn

Ja1aweled |apowl JO SadIpul AJIALISUSS "7 24N3I

90—

T
=
|

e

ﬂ..“.__. ...u”.-_. - ’ ) .1.—.-r i " -l._. --
R 5 >  J
o £
Y - g o
...-u__.

(3]

XaPUL AJAIIISUAS SIAAWEIE]

<0

0

sisAjeue A1AnIsuas

0< (04 ‘0<(0)"s ‘0
<™ ‘0< (0™ ‘0< (0T ‘0< (0’ ‘0 < (0)°s ‘suonipuod [eLIUl YHM

)

QNQ|SNQ - 0

Sp I

Q@Q|S~Q@ﬁ|£r@ Q|i|ﬁ Q&|@

Q»Z« memw

rer — g (o + (1 +°H) q) =

e =GP+ (T+7°H)9) =N =T ) =5
(1) S S ( A )q) v rm% V
O+ ) —"H3 =-—

A ) T

Q\.w\ .www

Um ,wl_l |SNU @I_IDmQ U||ﬂ U&HD

(3+ ) S ~ o

Sp —"[PS0 =19 +7°9 MIzL ﬁng%

N SP

uonjenba japow gD

eluezue| ‘ewopo ‘vE xog ‘Od ‘ebaod sieyoes| emdemdn

Zyoesie-wu,//:sdiy 1SIv-IAN

weJdselp Mol (A0 T 24n314

£
fhe= NJ T
,, N
u _W\\l _”. e
___m._ﬁh — Y __.m_,.a T_ 1§ ”_. ....
ﬁ _ .
sEge wlEn sl
wesbelp Moy dnd

'|0J3U0D 3seasIp 10 poyiawl 9ALRD9H9-1S0D 3SOW 3yl puy O] (Al)

‘uope|nuwis |eauawnu

e 3uldNPUOD AQ 2oUeDUIUSIS JISy] pue siajawleled |043U0D syl 23ewsa o (1)

'sjulod winuglinba

JO AjljIgels pue AJIALISUSS Jajawelded ‘UoliN|os |apowl au3 Jo AllalIsod

U1 1| ‘[opoW (IND pPaie|nulios syl JoJ sisAjeue |eodaloayl wiodad of (1)
‘uopeindod sjueld 3soy BABSSED-UOU Sapndul yaiym a0

JO SOIWBUAP UOISSIUISUBI]} JO4 [9poWl |edewayieul ousiululalsp e aienuios of (1)

‘pa1EINW
-10J 2J4oM S2A1N23[qo du1D2ds 1uanbasgns ayl ‘9AD3lqo |eJauad palels auyl |ujny o|

'Sjue|d 3soy eaessed-uou sajelodiodul 1eUl IAD JO |0J43U0D pue SolueUAp
UOISSIUISURI] JOJ [9pOoW |eoewaylew e sasAjeue pue sdojaAap Apnis siyl ‘Ajjetausn

S8AR23(qo

‘uopendod jueld
1SOY BABSSED-UOU B UM (JIAD JO |0J3U0D pue SOIWeUAp uoIssiusuel) ayl JoJ SISA
-|eue s1l pue |opowl [esciewaylew ayl sdojaAasp Apnis sIyl ‘sny| "Spoyiswl |0JIU0D
lenualod pue solueuAp uolssiwsuell (iND pueisiapun 03 sjueld 1soy eAessed-uou
3ulesodiodul sjppow |edeWaYlew JoJ S||ed Siy| ‘SasAjeue pue uone|NuIo] |sapoul
JIay3 Ul sjueld 3soy eAessed-uoU JO 9ouUasald ayl JoJ JUnodde 10U pIp S|apowl asay?
JO 3soW ‘UsASMOH (4T0Q¢ uownq  eAuemdeyD) sjepowl |edpeuwsyiew Jo Als
-lJeA B 3UISN palpnls uaad aAey (iND JO |0J3U0Dd pue SolueuAp uolssiusuely ay |

wiayqoid ayj jo Juswiajels

(6T0¢ uowng x eAuemdeyD) Ajjenuue 3s0| g 031 Sp|alA eABSSED JO SSUUO] UOI||IW
€ JO 93eJaAR Uk 9SNed pue uoronpodd syl Japuly (0SgD) aseasi YeaJ1S umolg
eARSSED) pUB ((IND) 2SeasI(] J1BSO|A BABSSED) Se Uons ‘sasesasip pue sisad jueld 4o
90U33sIsiad pue 20ualsIXa ay | (4TOZ ‘e 19 elndunijn) a2AlLYY 01 |Ie} sdoud |eal
-2 aJaym puelAip Ajpsow Ul Ajje1oadsa ‘doJdd 2oUa3sIsgns [e1oNJD B Sl BABSSED ‘eluez
-ue| Ul (Z00g ‘SaAlY) S100J4 Ayddels o|geunsuod seonpold eyl Ajlwe} sesoelgloyd
-N3 ay3 ul Jue|d Apoom |eaidoJy |eluualad e Si (ZjubdD) bluajnasa J0YIubjy) BARSSED)

UOI}ONPO.IU|

eluezueR| ‘eysniy ‘L xog '0d ‘(LSIV-INN) ABOjouy28| pue 82uUaIdS JO UOIINIISU| UBDILJY BlopueA UoS)aN ‘Bulleaulbug pue 82uUaidS Uoilediunwio)) pue jeuoieindwod Jo 100YdS;

_AO1sauUzNy Al ‘;obuaAe|n eAuele|n ‘->0143 1reyeg

sjueld }SOH eAessed-UoN YHm
9seasI(] JIesoj eAesse JO 10413U0) pue salweulq uoissiwsued] ayl bunapon




