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Abstract: This paper assesses the impacts of farmers’ intensive use of agrochemicals (fertilizers
and pesticides) on groundwater quality in the Kahe catchment. Samples were collected during
the wet and dry seasons of the year 2018 and analyzed for the presence of agrochemicals in the
water. Groundwater chemistry was dominated by magnesium-sodium-bicarbonate (Mg-Na-HCO3

−).
The cations levels were in the trend of Mg2+ >Na+ > Ca2+ > K+, whereas anions were HCO3

− > Cl− >

SO4
2− for both seasons. The NO3

− had an average value of about 18.40 ± 4.04 and 7.6 ± 1.7 mg/L in
the wet and dry season, respectively. Elevated levels of nitrate, sulfate, phosphate, and ammonium
were found in water samples collected near the large-scale sugarcane plantation in the catchment.
For both seasons, Pb, Cd, Fe, Mn, Zn and Cu concentrations averaged approximately 0.08 ± 0.03,
0.11 ± 0.03, 0.16 ± 0.02, 0.11 ± 0.01, 0.46 ± 0.05, and 0.55 ± 0.02 mg/L, respectively. On the other hand,
the concentrations were higher in shallow wells than in the deep boreholes. Pesticides’ residues were
below the detection limit in all sampled groundwater. The findings from this study provide important
information for intervention in groundwater quality management in Kahe Catchment, Tanzania.

Keywords: intensive irrigation; groundwater quality; heavy metals; fertilizers; pesticides; Kahe
catchment

1. Introduction

Groundwater is a vital water supply source to a community for different purposes in many
sub-Saharan Africa countries [1]. It acts as an improved water supply in urban and rural areas so as to
cope with surface water scarcity [2]. However, anthropogenic activities including agricultural practices,
industrial effluents and inappropriate waste disposal on the land surface are considered to be major
sources of groundwater pollution [3–5]. Recently, in agricultural fields, intensive use of agrochemicals
(fertilizers and pesticides) have gradually increased in crop production worldwide [6]. To grow
crops, large- and small-scale farmers use agrochemicals to increase their crop yields. As a result, they
have increased their rates of fertilizers and pesticides applications, which could be impacting the
groundwater quality. However, groundwater quality depends on different factors such as geological
formation, soil type/soil permeability, the depth to the water table, the amount of rain and the hydraulic
conductivity of the aquifer, and solubility of the rock materials within the aquifer system [7].

Degraded groundwater quality may present a public health risk given that the water is also being
used by the households for their domestic needs. Globally, the use of fertilizers and pesticides is far
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higher than in Sub-Saharan Africa. For instance, the average application rate of fertilizers is reported to
be about 19.3, 100 and 20 kg N/ha in Tanzania, Kenya and South Africa, respectively [8], while the global
average is 220 kg N/ha [9]. The main risk of the increased application of agrochemicals by farmers
arises from the apparent lack of knowledge on how, when, and what quantity to be used for a particular
crop. It is likely that fertilizers and pesticides are being leached into groundwater systems through
the intensification of irrigation and rainfall intensity [6,10]. Globally, this contributes about 70% of
groundwater pollution [11], as several studies have shown in different parts of the world [10,12,13]. For
instance, Rui et al. [14] argue that intensive fertilizer use has become one of the major sources of heavy
metal contamination in groundwater around the agricultural areas. Numerous studies have reported
on elevated levels of heavy metals in groundwater in agricultural fields in different parts such as in
South West Bank, Palestine [15], in Lagos, Nigeria [16], in Hail region, Saudi Arabia [17], in Keko and
Kigogo, Tanzania [18]. These include Pb, Zn, As, and Ni derived from inorganic fertilizers [19,20], or
cadmium which is found in phosphate fertilizer [21–23]. Excessive use of the N-fertilizers is, therefore,
a major source of groundwater nitrate pollution [13,24]. High levels of nitrate can lead to adverse
impacts on human health such as methemoglobinemia for young children [24]. Past studies in Kahe
catchment have concluded that the groundwater quality is still good [25,26], but recently reported
agricultural land expansion in the catchment [26–29], increasing groundwater-based irrigation, may
have impacted the water source. It is not yet well understood how the emerging use of fertilizers in the
area contributes to nitrate pollution in groundwater. There is also limited information on the impacts
of fertilizer use around agricultural fields in groundwater in the Kahe catchment.

Pesticides application has gradually increased in the agricultural fields in Tanzania; about 81% of
pesticides are used in the livestock and agricultural area [6]. When the pesticides are used in areas with
intensive irrigation or rainfall intensity, it is possible that they percolate through the soil and directly
into groundwater [30]. According to Vrba [31], pesticides in groundwater are found in more than 20%
to 25% of the agricultural areas in the Netherlands. In Tanzania, following mishandling at Vikuge farm
(Kibaha), high levels of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT)
were recorded in sampled groundwater [32]. When pesticides surpass the recommended drinking
water standards, they are linked to human health risks [33]. In the lower part of the Kahe catchment in
northern Tanzania, one of the farms with intensive use of pesticides is Tanganyika Planting Company
(TPC) for sugarcane plantation [34]. In Tanzania, several studies have reported pesticide pollution
in surface water, soils and sediments [35–38]. For example, in the TPC farm area, about 90% of
organochlorine pesticides were dominant in the soil [38]; while aldrin, dieldrin, heptachlor epoxide,
HCH, endosulfan, and DDT were detected in surface water [39]. However, there is limited information
regarding the presence of pesticide residues in groundwater.

In this study, it is examined whether the intensive agricultural practices through the use of
fertilizers and pesticides to increase crop production is impacting groundwater quality in Kahe
catchment. This area is well known for large scale irrigators such as TPC for sugarcane plantation, as
well as small scales such as paddy rice, coffee, bananas, maize, onions, tomatoes, horticulture, and
vegetables, which are all reliant on groundwater for crop irrigation. Groundwater samples collected
from the area were analyzed for major dissolved cations, major dissolved anions, heavy metals, and
pesticides. The findings provide useful information for sustainable management of the water resources
in the Kahe catchment, as well as for future monitoring programs of the groundwater resources in the
Pangani basin as a whole.
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2. Materials and Methods

2.1. Study Area Description

Kahe catchment is one of the sub-catchments of the Pangani Basin located on the southern slopes
of Mt. Kilimanjaro, in northern Tanzania (Figure 1). It has a total area of approximately 1038 km2 [26].
The uppermost part of the catchment starts on the slopes of Mt. Kilimanjaro and ends at Nyumba ya
Mungu dam. Meanwhile, the eastern and western part of the catchment is bounded by the Rombo and
Hai districts, respectively. The area is characterized by semi-arid to Savannah climate and regulated by
the intertropical convergence zone [26]. It receives a bi-modal rainfall with two peaks in March–June
(long rain) and November−December (short rain). The annual rainfall on the southern slope of Mt.
Kilimanjaro varies with altitude where the maximum total rainfall of about 3000 mm/year occurs
at an altitude above 2100 m amsl [40]. The lower elevation plains which are located below 1100 m
amsl receive approximately 500−800 mm/year [40], while in the mid-level altitude of Mt. Kilimanjaro
rainfall ranges from 1000 to 2000 mm/year [40]. The higher amount of annual rainfall occurs in the
upper zone covered by natural dense forests. The annual air temperature in the catchment ranges from
15−36 ◦C, with June−August being the coldest months (15−23 ◦C) and January−February being the
hottest months (32−35 ◦C) [26]. Furthermore, temperature decreases with increasing altitude where
the mean annual temperature is 23.4 ◦C at an altitude of 813 m amsl, and 5.0 ◦C at 4000 m amsl [41].
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The area is drained by several rivers including Karanga, Kikafu, Rau, Weru Weru, and Kikuletwa
originating from the upper slopes of Mt. Kilimanjaro and Mt. Meru located in Arusha region (Figure 1).
The rivers provide an estimated inflow to Nyumba ya Mungu dam of about 35–43 m3/s [29], and a dam
has a storage capacity of 870 million m3 which supplies hydropower a total of 95 Megawatt (MW) in
Tanzania [42]. The area above 1800 m amsl is reserved as natural forest zone and Kilimanjaro National
Park (Figure 1), while human settlements and intensive agricultural practices based irrigation are in
the lower elevation plains (900–1800 m amsl) [42]. The population growth, as well as the government
and farmers investment in irrigated agriculture such as the lower Moshi irrigation scheme by Japan
International Cooperation Agency (JICA), have contributed to the agricultural land expansion in the
lower elevation plains of the Kahe catchment.

2.2. Geological and Hydrogeological Setting

The geological formation of the catchment starting from the center to the southern part of
Moshi town is studded by quarternary superficial deposits of alluvium and Neogene superficial
deposits of volcanic red soil derived from weathering of volcanic rock materials (Figure 2a). Mount
Kilimanjaro is the major source of the volcanic activities in the Kahe catchment. These volcanic
rocks are chiefly olivine, alkali basalts, phonolites, trachytes, nephelinites, and pyroclastics [43].
The alluvium deposits predominantly comprised sand, gravel, and clay, along with cancerous deposits
with volcanic lava (basalts, trachytes) and pyroclastic volcanic rocks [26]. The cross-section showed that
the layers are mostly unconsolidated (Figure 2b), its thickness is approximate >200 m at the center and
becomes thicker towards north-east (NE) and shallow in the south near Nyumba ya Mungu dam [26].
The eastern part of the catchment, particularly north-east (NE) of Moshi-Arusha road, is covered
by undifferentiated Neogene volcanic rocks (tertiary) that are related to the Shira eruptions. Shira
volcanic eruptions produce volcanic rocks such as olivine, alkali basalts, trachybasalt, trachyandesite,
basanite, and nephelinite, whereby they contain a wide variety of gravels materilas [26]. The western
part is covered by Neogene phonolitic and trachytic rocks related to the Kibo and Mawenzi eruptions.
The volcanic lavas (i.e., rhomb porphyry and trachyandesite group) were transported downward by
rivers (Kikuletwa and Mue rivers) and deposited in the lower elevation plains. The Neogene volcanic
rocks of rhomb porphyritic group including Penck rhomb porphyr and Weru Weru agglomerates
extend towards the peak of Mt. Kilimanjaro (Figure 2a).

Kahe catchment is characterized as a fissured (residual soils on volcanic, undifferentiated rocks)
and fractured volcanic hydrogeological aquifer [26]. Figure 2b shows that its formation was associated
with limited faults which makes the basement rocks impermeable for a groundwater flow system [29].
Also, volcanic ashes and sedimentary formations, particularly fine-grained alluvium deposits, are
characterized by low transmissivity which becomes practically impervious [44]. Groundwater recharge
mainly takes place in high elevation on the slopes of Mt. Kilimanjaro along fractured formations as
well as through infiltration. It has high conductivities, generally low groundwater tables, moderate
topography, and porous aquifer media [26]. Groundwater potentiality in the fractured formation is
also supported by a number of springs around the fault zone (Figure 2a). For instance, the area has
the largest spring (Miwaleni spring) with a constant flow of 3–4 m3/s [29], and the smallest springs
including Mandaka and Njoro springs (Figure 2). The groundwater bearing formation lies between 2
and 60 m depths and deep wells had >100 m depth [26]. However, reliable information is required to
demarcate the geometry of the aquifer; the wells used had limited hydrogeological data (well logs,
depth, and specific yield) in the study.
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2.3. Methods

2.3.1. Fieldwork and Groundwater Sampling

A handled global positioning system (GPS) device (Garmin Etrex 30xJ) was used to map the
location of sampled shallow wells and the deep boreholes in the study area. A total of 25 wells were
sampled: n = 4, deep boreholes with depth >100 m, and n = 21, shallow wells with depth <30 m
(Figure 2a). Most of the shallow wells for irrigation are concentrated in the lower plains (900–1800 m
amsl), where intensive agriculture is practiced by large and small scale farmers. The samples were
collected during April–May 2018 (wet season) and September–October 2018 (dry season) in the study
area. The groundwater samples were not collected in site locations above 1800 m amsl, the area
characterized as natural forest zone and Kilimanjaro National Park (Figure 1).

The preliminary in-situ measurements of temperature, pH value, electrical conductivity, dissolved
oxygen, and total dissolved solids were performed using multi-parameter HANNA instrument, Model
HI 9828. The multi-parameter was calibrated before the measurement of the in-situ physical parameters
using standard procedures recommended by the manufacturers [45].

Groundwater samples in open shallow wells were collected at least 50 cm below the water table
using a bottle sampler, whereby, in closed deep boreholes the mixed water was collected after pumping
for more than 20 minutes [46]. Groundwater samples were collected in clean 1 L HDPE plastic bottles
for major ions analysis. For major ions and heavy metals including sodium (Na+), potassium (K+),
magnesium (Mg2+), calcium (Ca2+), iron (Fe2+), zinc (Zn2+), lead (Pb2+), copper (Cu2+) cadmium
(Cd2+) and manganese (Mn2+) water samples were collected in clean 1 L HDPE plastic bottles and
acidified using concentrated nitric acid, HNO3 to a pH less than 2.0 [47]. Pesticides residue analysis
water samples were collected using 1 L glass bottles and covered by black plastics to avoid rapid
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degradation due to a physical condition such as temperature and light intensity [48]. All samples
were stored in a cool box containing frozen icepack and later transferred to the refrigerator at 4 ◦C at
the laboratory.

2.3.2. Laboratory Analyses

(i) Major Cations and Trace Heavy Metals

All major cations Na+, K+, Mg2+, Ca2+ and heavy metals Cu2+, Fe2+, Cd2+, Pb2+, Zn2+, and Mn2+

were analyzed using atomic absorption spectrometer (AAS) PerkinElmer Analyst 100, in accordance
with Standard Method for Examination of Water and Wastewater [47], to determine the concentration
of each element in the sampled groundwater.

(ii) Major Anions

The concentrations of sulfate, nitrate, phosphate, and ammonium were determined according to
the respective specified methods [49]: sulfate (SulfaVer 4 method) with SulfaVer 4 reagents, nitrate
(cadmium reduction method) using Nitra Ver 5 Reagent, phosphate (ascorbic acid method) with Phos
Ver 3 powder pillow, NH4

+ (salicylate method) using ammonia salicylate and ammonia cyanurate
reagent powder pillow. The HACH DR 2800 spectrophotometer was set and run at a specified shaking
and reaction time as well as wavelength.

Bicarbonate (HCO3
−) and carbonate (CO3

2−) were determined by titration method using standard
sulfuric acid and Bromocresol green indicator solution [44]. Chloride (Cl−) content was determined by
argentometric titration method using standard silver nitrate (AgNO3) titrant and potassium chromate
indicator solution. Fluoride content was determined by the ion-selective electrode (ISE) method.
These methods were realized in accordance with the Standard Method for Examination of Water and
Wastewater [47].

(iii) Extraction of the Pesticides Samples

Unfiltered water samples were extracted by liquid–liquid extraction method (LLE) as described
by [50]. About 500 mL of water samples were quantitatively transferred to a 0.5 L separating funnel
and the bottle rinsed with ~30 mL of dichloromethane and combined with the water sample in the
separating funnel. The combined contents were then successively extracted with dichloromethane
three times (1 × 30 mL, 1 × 30mL, and 1 × 40 mL) with a total of 100 mL. The organic layer was filtered
through a plug of cotton wool topped with anhydrous sodium sulfate Na2SO4 (~30 g) for drying and
removing the impurities [50]. The combined extracts were concentrated in vacuo at 40 ◦C, and the
final extract was made up in 2 mL ready for analysis using Gas Chromatography Mass Spectrometer
(GC-MS).

2.3.3. Quality Assurance

Quality assurance was achieved by (i) calibration and verification of all instruments/equipment
used, (ii) standardization and or checking efficiency and efficacy of all chemicals and reagents used,
(iii) proper sampling and sub-sampling procedures (e.g., shaking) to ensure homogeneity of test
samples [46], (iv) use of quality control samples prepared from certified reference materials, (v)
determination of triplicate samples during on-site analysis and in-house analysis [47]. Data check
accuracy for major constituents were computed by cations–anions charge balance [51].

2.3.4. Statistical Analysis

The statistical analyses were performed using Origin Pro 9.0 Lab software. The technique helps to
understand the significant correlation of different parameters in a sampled groundwater by developing
the correlation coefficients matrix. One-way analysis of variance (ANOVA-single factor) statistical
test was used to compare all measured variables between a dry and wet season in Origin Pro 9.0 Lab
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software. For comparison, Alpha (α) = 0.05 is used to test for significance between the measured
parameters in the wet season and dry season. Difference of the means is significant (p < 0.05) or not
significant (P > 0.05). Multivariate statistical analysis technique, such as cluster analysis (CA) and
principal components analysis (PCA), was performed using Paleontological Statistics (PAST) Software
Package, Version 3.08 [52]. The technique was employed to understand the relationship between
variables from different sampling sites and their relevance with respect to groundwater quality. Cluster
analysis helps in grouping objects into classes (clusters) on the basis of similarities within a class
and dissimilarities between different classes [53]. Moreover, to understand groundwater-chemistry
composition for both shallow dug wells and deep boreholes in the wet and dry seasons, the analyzed
sampled groundwater were plotted on the trilinear diagram as developed by Piper [54]. Basically,
the trilinear piper diagram was designed for categorizing groundwater on the basis of chemical
composition, and to compare chemical trends among different aquifer systems [51].

3. Results and Discussion

The complete sampled groundwater results for the wet season and dry season are presented
in Tables A1 and A2, respectively. The analyzed groundwater parameters were compared to the
recommended allowable drinking water Tanzanian Bureau of Standard [55] and international guidelines
by WHO [24]. The summary of statistics including minimum, maximum, mean and standard deviation
(SD) of the sampled groundwater are presented in Table 1.

Table 1. Summary statistics of measured variables in the sampled groundwater compared with drinking
water guidelines.

Wet Season Dry Season

Variable Min Max Mean SD Min Max Mean SD TBS
(2016)

WHO
(2011)

PH 6.57 8.41 7.46 0.11 6.12 7.83 7.22 0.08 6.5–8.5 6.5–8.5
EC 158.6 1992 797.38 99.25 103.40 1294 598.43 64.90 1500 -

TDS 54 1186 459.76 56.91 187 1097 494.32 46.78 700 1000
Temp 21.9 27.8 24.7 0.27 22.3 27.7 24.9 0.30 - -
NO3

− 1.40 89.90 18.08 4.04 1.80 40.50 7.63 1.65 45 50
SO4

2− 0.0 55.00 17.40 3.81 0.00 43.00 11.12 2.79 400 250
Cl− 1.82 111.47 21.58 6.12 5.27 22.86 12.08 0.95 250 250
F− 0.20 1.61 0.68 0.09 0.06 1.54 0.54 0.10 4 1.5

HCO3
− 60 760 250.8 36.13 0 664 312.24 27.94 - -

PO4
3− 0.09 1.86 0.66 0.08 0.09 1.17 0.45 0.07 2.2 -

NH4
+ 0.01 0.32 0.14 0.02 0.01 0.41 0.13 0.02 2 -

Na+ 2.10 167.1 57.26 9.96 2.00 137.00 44.49 7.44 200 200
K+ 0.20 22.7 8.00 1.35 1.70 22.80 6.65 0.99 - -

Mg2+ 2.20 256 86.21 24.59 4.40 165.40 39.16 8.32 500 -
Ca2+ 1.50 41.90 15.29 2.39 2.80 45.80 13.37 2.28 100 -
Fe2+ 0.03 0.59 0.17 0.03 0.03 0.39 0.14 0.02 1 0.3
Mn2+ 0.01 0.19 0.04 0.01 0.01 0.18 0.05 0.01 0.5 0.4
Cu2+ 0.00 0.53 0.11 0.02 0.00 0.15 0.06 0.01 3 5
Pb2+ 0.00 0.13 0.04 0.01 0.00 0.80 0.10 0.05 0.1 0.05
Zn2+ 0.12 2.57 0.66 0.07 0.04 0.66 0.31 0.03 15 5
Cd2+ 0.00 0.97 0.005 0.001 0.00 0.22 0.007 0.002 0.05 0.01

All units are in mg/l except pH (unitless), electrical conductivity (µS/cm), temperature (◦C), SD—standard deviation.

3.1. Multivariate Cluster Analysis

Cluster analysis reveals the best results for interpretating four different groups of similarity
between the twenty-five sampling sites referring to the different groundwater-quality parameters
(Figure 3). The first group cluster A comprises a total of five samples which indicated similarity great
than 93%; they are all located in the upper part of the catchment. For cluster A, four sampling sites
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(S01, S02, S03, and S05) out of five samples were collected from deep borehole water (>100 m) above
2000 m amsl. The second group (cluster B) comprised nine samples (S06–S14), and eight samples had
>96% similarity index. Cluster C has a total of eight sampling sites all being a shallow well (<30 m),
and two (25%) of its sub-clusters have greater than 98% similarity index. The final group (cluster D)
has three sampling sites with great than 90% similarity both shallow groundwater as located in the
western zone in a studied area. Generally, twenty-five sampling sites have revealed a similarity above
90% for all sampled groundwater in the dry and wet season.
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3.2. Physical–Chemical Characteristics

Results of in-situ measurements are summarized in Table 1; the groundwater temperatures in
the shallow wells and deep boreholes varied seasonally, but not significantly (r (25) = 0.28, F = 0.858,
p = 0.644). Also, no positive correlation was found between the analyzed variables (Tables A3 and A4).
It ranged between 22–27 ◦C, with an average value of 24.8 ± 0.29 ◦C in both seasons. However, sampled
groundwater temperatures were almost similar with mean annual air temperatures 23.4 ◦C reported
by [41]. Sampled groundwater was acidic to alkaline, as pH value varied between 6.12 and 8.41 for
both seasons. About 24% of the water samples had pH < 7 in both seasons. However, all water samples
were within the recommended value of 6.5–8.5 for drinking water guidelines [24,55].

The suitability of groundwater for drinking and irrigation purpose was indicated by the
concentration of total dissolved solids (TDS) [31]. The average total dissolved solids were 459.76 ± 56.91
and 494.32 ± 46.78 mg/L in the wet and dry season, respectively. A value above 500 mg/L is undesirable
for drinking water [56]. In the study area, the higher TDS concentration occurs in the western periphery,
making the groundwater unsuitable for irrigation. For instance, in the western periphery near a
shallow well (S07), the maize and tomatoes were not growing well relative to another area with a low
value of TDS, especially the eastern part of the Kahe catchment.

The average electrical conductivity was 797.38 ± 99.25 µS/cm in the wet season and
598.43 ± 64.9 µS/cm in the dry season. The values were higher than the permissible value recommended
by the World Health Organisation (WHO) [24]. It is found that electrical conductivity in sampled
groundwater was proportional to the amount of total dissolved solids (Figure 4). There was significant
positive correlation between EC and TDS with Pearson coefficients r (25) = 0.92, p < 0.02 for wet season
(Table A3) and r (25) = 0.54, p < 0.01 in a dry season (Table A4). However, in most of the deep boreholes
the TDS and EC values were within the recommended limits by in the WHO guidelines [24].
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3.3. Major Ions in Groundwater

The major ions composition in studied groundwater is presented in piper diagram, in the wet
season (Figure 5a) and in the dry seasons (Figure 5b). The analyzed water samples showed no
significant difference in the cation and anion contents with respect to a depth between the wet and
dry season (p > 0.05) (Table 2). There is statistically equal cation and anion concentration across
all sampling depth in the Kahe catchment. Results show that groundwater chemistry is typically
dominated by magnesium-sodium-bicarbonate (Mg-Na-HCO3

−) water type. Magnesium and sodium
was abundant compared to other cations (Mg2+ > Na+ > Ca2+ > K+) in all groundwater samples.
Elevated magnesium concentrations were 256 and 165.4 mg/L in the wet and dry season, respectively,
while sodium had an average value of 57.26 ± 9.96 mg/L in the wet season and 44.49 ± 7.74 mg/L in
the dry season (Table 1). The recorded high levels in the wet season are likely attributed to a cation
exchange reaction between Na+ and Mg2+ through water–rock interaction movement during the
rainfall intensity events in the study area. Bicarbonate concentrations dominated more than other
major anions (HCO3

− > Cl− > SO4
2−) for both seasons. These have an average of 250.08 ± 36.13 mg/L

in the wet season and 312.24 ± 27.94 mg/L in the dry season (Table 1). The major ions distribution
(Figure 5a,b) and significant positive correlation (Table A3) between bicarbonate ions (HC03

−) and
cations were: (Na+ r (25) = 0.53, p = 0.02), (Mg2+ r (25) = 0.33, p < 0.01), (Ca2+ r (25) = 0.67, p < 0.021)
and (K+ r (25) = 0.41, p < 0.019). The similar trend of significant positive correlation was observed in
Table A4. High bicarbonate levels in groundwater resulted from the reaction of carbon dioxide in the
unsaturated soil zone and rainwater [57]. However, no literature documented the standard value of
bicarbonate for drinking purposes, but a value above 200 mg/L is unsuitable for drinking water [58,59].
Overall, 36% of the sampled groundwater is permissible for drinking purpose. Generally, groundwater
chemistry in the catchment is characterized by magnesium-sodium-bicarbonate water type. Similar
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findings have been reported the dominance of the sodium and magnesium in groundwater [44,60,61],
as well as groundwater type in the Kilimanjaro aquifer [24], and Arusha aquifer [44] in Tanzania.
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Table 2. One-way ANOVA single-factor results comparing major ions in the wet and dry season.

Parameter df F p-Value

Na+ 1 a, 48 b 1.053 0.310
K+ 1 a, 48 b 0.648 0.425

Mg2+ 1 a, 48 b 2.506 0.120
Ca2+ 1 a, 48 b 0.335 0.565

HCO3
− 1 a, 48 b 1.225 0.274

Cl− 1 a, 48 b 2.353 0.132
SO4

2− 1 a, 48 b 1.768 0.190
a Degree of freedom (df) between groups, b Degree of freedom (df) within groups.

The chloride (Cl−) levels in the wet season varied from 1.82 to 111.47 mg/L with an average
value of 21.40 ± 6.12 mg/L and in the dry season, it ranged from 5.27 to 22.86 mg/L and averaged
12.08 ± 0.95 mg/L. With the exception of two sites (S13 and S20), groundwater samples from all the
23 other sites had chloride concentrations below 100 mg/L. The source of the Cl− in groundwater
is mostly from rainfall and sedimentary rocks with chloride minerals and irrigation processes [31].
However, chloride concentrations in the Kahe catchment in groundwater possibly come from the
irrigation return.

Fluoride (F−) in 23 of the sampled groundwater sources was within the limit of 1.5 mg/L
recommended for drinking water by WHO [24], while two samples S07 and S20 exceeded the value; all
samples were within the Tanzanian standards [55]. The fluoride concentration varied from 0.20 mg/L to
1.61 mg/L and from 0.06 to 1.54 mg/L during the wet and dry season, respectively (Table 1). Its variation
from one site to another is possibly associated with the geological formation (Figure 2a), which may
have different dissociation rate, rainfall intensity, and cation exchange process in the aquifer system [44].
There was a significant positive relationship between F− and K+, r (25) = 0.57, p < 0.01) (Table A3),
and negative correlation with alkaline earth elements (Ca2+ and Mg2+) (Table A4). This correlation
probably occurs through ionic exchange reaction and precipitation, when calcium and magnesium ion
removed from the groundwater system additional K+ and F− ions are released from minerals such as
nepheline in the aquifer materials. This study argues with several scholars who reported the relation
between fluoride and alkali earth metals [62,63], as well as fluoride with bicarbonate (weak acid) [44].
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The spatial distribution of fluoride concentrations indicates high fluoride concentration in shallow
wells, i.e., at a depth 7–16 mn (cluster B and C), and lower values in deep boreholes (at a depth >100 m)
for cluster A, but not significantly different with r (25) = 0.627, F = 1.215, p = 0.548 in both seasons in the
area. In the study area, high fluoride concentrations in groundwater were likely due to the presence of
basalt formation and other fluoride-rich volcanic materials such as lahars and volcanic ash (Figure 2a,b).
However, groundwater quality for drinking purpose in the Kahe catchment is generally good, though
in some areas it is considered not suitable for drinking purposes with elevated concentrations.

3.4. Seasonal Distribution of Nitrate, Sulphate, Phosphate, and Ammonium

In lower elevation plains around Mt. Kilimanjaro, high levels of nitrate (NO3
−) in groundwater

have been reported [25]. The sampled groundwater with relatively high N03
− levels above 40 mg/L

were from location S04 and S13; about 8% of the water samples (2 out of 25) exceeded the recommended
WHO drinking water limit of 50 mg/L [24]. However, most of the water samples were recorded
below 100 mg/L. From ANOVA one way analysis, results show that nitrate varied with depth, but
not significantly at level p = 0.05, r (25) = 0.26, F = 1.35, p = 0.21 and r (25) = 0.32, F = 2.3, p = 0.15 in
the wet and dry season, respectively. In shallow wells (at a depth below 17 m) the high content of
NO3

− was higher than in the deep boreholes for both wet and dry season (Figure 6). Similar studies
reported the decrease of NO3

− with respect to the depth due to intensive nitrogen fertilizer application
in the agricultural field [64,65], while Scheytt [66] found that the nitrate concentrations decreased at
depth 5–15 m below the ground surface. Nitrate concentrations in groundwater also varied seasonally,
ranging from 1.4 to 89.9 mg/L and 1.8 to 40.5 mg/L in the wet and dry season, respectively. They were
significantly different between the wet and dry season (r (25) = 0.36, F = 3.99, p = 0.051). The high
recorded nitrate levels in the wet season likely of leaching of nitrogen fertilizers into groundwater
through irrigation and rainfall intensity in a study area. This contradicts the study by Scheytt [66]
reporting elevated nitrate around the agricultural fields during the rainfall events.
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According to Patil and Patil [67] chemical fertilizers were among the major sources of phosphate
level in groundwater. The results from this study showed that maximum values of PO4

3− and NH4
+

were 1.86 and 0.32 mg/L in the wet season, and about 1.17 and 0.41 mg/L, respectively, but all are
within the permissible limit [55]. However, elevated levels of phosphate and ammonium noticed from
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cluster C (S20, S22) and cluster D (S24) out of twenty-five sample locations. There is a correlation
between phosphate and ammonium, r (25) = 0.57, p = 0.005 in the wet season (Table A3), and a partial
linear relationship (Figure 7). The possible source of phosphate and ammonium in groundwater was
attributed to intensive fertilizers use for crop production.
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Sulphate (SO4
2−) concentrations varied seasonally. In the wet and dry season sulphate

concentrations were 17.40 ± 3.81 mg/L and 11.12 ± 2.79 mg/L, respectively, with a maximum value of
about 55 mg/L and 43 mg/L (Table 1). Scheytt [66] showed that sulphate enriched in the soil through
fertilizing infiltrates directly into groundwater. For instance, sulphur available in inorganic fertilizers
generally exists as sulphate (e.g., ammonium sulphate) [68]. The high rate of SYNERGIZER fertilizer
application possibly contributed to sulphate in groundwater in the area. Thus, measured elevated
value may be associated with the recycling of irrigation water from agricultural practices instead of
geological materials. Kahe catchment is comprised of volcanic rock and alkaline volcanic lavas such as
pyroclastics (Figure 2a,b), where neither relate with metallic sulphide minerals reported as a major
source of sulphate in groundwater [31]. In excess of 600 mg/L, it is linked to human health risk [24],
such as in the gastrointestinal tract [24].

The raised values of nitrate, phosphate, sulphate, and ammonium in sampled groundwater were
found near Tanganyika Planting Company (TPC) sugarcane plantation farm where intensive fertilizers
have been in use since the early 1940s [34]. Also, there is a large number of small-scale irrigators for
farming paddy rice, coffee, bananas, onions, tomatoes, horticulture, and vegetables, many of whom
have increased their application of fertilizers for crop production. The source of elevated nitrate,
sulphate phosphate and ammonium in the sampled groundwater nearby TPC sugarcane plantation
farm in the western periphery in the Kahe catchment is therefore likely from the agricultural effluents.

3.5. Concentration Level of Heavy Metals in Groundwater

Groundwater was analyzed for the heavy metals Fe, Cu, Zn, Mn, Pb, and Cd in the wet and
dry seasons. Significant differences between the wet and dry seasons are summarized in Table 3.
The analyzed heavy metals are those that correspond to constituents from different fertilizers used by
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farmers in the Kahe catchment as derived from a field survey (Table 4). Most of the fertilizers applied
were N-fertilizers as used for a sugarcane plantation, paddy rice, onions, watermelon, and tomatoes.

Table 3. One-way ANOVA, single-factor results comparing the wet and dry season.

Parameter df F p-Value

Fe 1 a, 48 b 0.79 0.379
Mn 1 a, 48 b 0.31 0.579
Cu 1 a, 48 b 4.67 0.012
Pb 1 a, 48 b 3.19 0.031
Zn 1 a, 48 b 8.50 0.005
Cd 1 a, 48 b 1.84 0.183

a Degree of freedom between groups, b Degree of freedom within groups.

Table 4. Types of fertilizers used in a studied area from field survey from the farmers.

S/No Fertilizers Ingredients Constituents

01 Crop Wonder max N.P.K (24:24:19) Fe, Cu, Zn, Mo, Cd, and Mn
02 SYNERGIZER N.P.K (8:32:4) Mg, Fe, Pb, Mn, S, and Zn
03 BOOSTER — Mn, Fe, Pb, Zn, Cu and Cd
04 UREA CO(NH2)2. N.P.K (46:0:0) Fe, Pb, Zn, Cu
05 DAP (NH4)2HPO4 18% N, 46% P2O5 and 20% P —-
06 CAN Ca, NH4 and N —-

In groundwater, heavy metals can occur naturally due to the dissolution of volcanic rock
materials [69], but often in very low concentrations. Heavy metals contamination can also occur,
however, from anthropogenic activities such as inappropriate disposal of wastes and industrial effluents,
and application of agricultural fertilizers [70]. Either way, if the desirable drinking water concentration
is surpassed, the metals can pose a serious human health problem. For example, a high concentration
of dissolved iron can cause liver disease (haemosiderosis) [31]. However, Fe is essential for the growth
of animals and plants, and a shortage of Fe can lead to anemia [20]. Fe often occurs naturally in
groundwater; high concentrations can be associated with the presence of igneous rock minerals. High
concentrations can also result from the dissociation of the ferrous components of the borehole and hand
pump [15]. Within the Kahe catchment, in both wet and dry season, the Cluster D (S22, S23, S24, and
S25) in the west and sites of the Cluster B (S13) and Cluster C (S19) in the east had elevated levels of Fe,
greater than 0.3 mg/L. Twenty out of twenty-five measured water samples (~80%) were within the
allowable limits for drinking water as recommended by WHO [24]. Fe concentration varied seasonally,
during the wet season with values higher than in the dry season (Figure 8). The high level of Fe in wet
season is possibly influenced by rainfall infiltration and dissociation of iron mineral in rocks and soil
which are leached into groundwater. A similar study found an excess of Fe in groundwater about 35%
(wet season) and 7.7% (dry season) in Nigeria [71]. Also, Singhal and Gupta [72] found that in different
parts of India with high rainfall, the Fe content was higher compared with low rainfall in groundwater.

Lead (Pb) is among the hazardous elements and in a human body causes problems such as
anemia, hearing problems, kidney disfunction and blood pressure for both children and adults [24].
Lead concentrations in groundwater may occur from agricultural effluents with the excessive use of
phosphate fertilizers [12,73]. About 24% of water samples (6 out of 25) were above the WHO permissible
limits of 0.01 mg/L for Pb in drinking water [24]. Elevated Pb was noticed more in the dry season
than in the wet season (Figure 8). In the dry season, Kahe catchment had intensive irrigation with
the use of fertilizers for crop production. Phosphate fertilizers, e.g., DAP, are predominantly applied
nearby TPC sugarcane plantation farm. The likely source of Pb in groundwater in the dry season was
through irrigation return in the study area. In a similar study, in Keko (Tanzania), Mkude [18] found a
maximum value of 0.35 mg/L (dry season) and 0.075 mg/L (wet season). Most of these shallow wells
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and deep boreholes were located within the agricultural field especially west–east zone as characterized
by a concentration of large and small-scale irrigators. The maximum Pb value is obtained from the
shallow well at site S23 near the TPC sugarcane plantation farm.Water 2018, 10, x FOR PEER REVIEW  15 of 33 
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Zinc and copper are among the essential elements needed for plant and animal metabolism [74].
However, if available in excess then they become toxic to the human body. Zinc and copper in
groundwater can originate from mining activities, metal plating and industrial effluents [3,75]. In the
study area, maximum Cu concentrations were 0.53 and 0.15 mg/L in a wet and dry season, respectively,
while Zn was 1.57 mg/L in a wet season and 0.66 mg/L in a dry season (Table 1). Elevated values in the
wet season may be from the dissociation of minerals and penetrate to groundwater during the rainfall
events, but the source of Zn and Cu continue unrecognized in the area. However, Cu and Zn were
within the recommended standard for drinking water guidelines [24,55]. Also, low concentration was
likely due to the absence of the large industrial activities around the sampled groundwater sites. The Cu
and Zn present were attributed to natural sources rather than anthropogenic activities. Generally, this
study agrees with the results reported in different parts of the world [5,18,76,77] that show the lowest
value of Cu and Zn in groundwater around agricultural fields.

Manganese has an average value of 0.04 ± 0.01 mg/L and 0.05 ± 0.02 mg/L in the wet and dry
season, respectively. About 16% of Mn surpassed the recommended WHO guideline value (0.1 mg/L)
(Table 1). There was a significant positive correlation between Mn with Zn r (25) = 0.56, p = 0.005 and
with Cu r (25) = 0.58, p = 0.002 (Table A3). However, the water samples of cluster C (S15, S19, and S22)
show the maximum value of Mn in both seasons. The low concentration of manganese is possibly due
to the absence of the large of industries in the area.

Cadmium (Cd) can be available in groundwater if an area was located around steel, plastic, and
battery industries and through interaction with dissolved rocks and minerals [78]. The excess contents
in drinking water cause kidney damage [24]. In studied groundwater, ANOVA at the 0.05 level does
not show significant difference (F = 1.84, p = 0.183) in both the seasons (Table 3). However, elevated
levels of Cd were recorded during the wet season at site S23. Generally, the shallow wells (<30 m)
show higher concentrations of Cd than in deep boreholes (>100 m) for the sampled groundwater.
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The geological materials formation are alluvium deposits (Figure 2a,b), that are not possibly causing
the occurrence of the Cd. Thus, the likely source of cadmium may be attributed to intensive use of
fertilizers in the area through rainfall infiltration process. A study by Nouri et al. [5] reported the
relation between the Cd and applied fertilizer (super phosphate) in Andimeshk aquifers, Iran. In the
Kahe catchment, among the areas that use the phosphate fertilizer is especially the nearby sugar cane
plantation farm in the western part.

3.6. Pesticide Residues

The analyzed pesticides residues are those that correspond to constituents from different types of
pesticides used by farmers in the Kahe catchment as derived from a field survey (Table A5). Pesticide
concentrations in the groundwater were below the detection limit (<1 part per trillion of Agilent 7800
ICP-MS). The undetected values of pesticides are presumably due to the small amount applied in the
study area. Morris et al. [79] reported that high pesticide contents will arise from double or triple
cropping and substantial applications of the same compound of pesticides. From the field survey,
farmers reported that different types of pesticides were applied during crop growing period which
reduces the threat of the contamination in groundwater. However, Leistra and Boesten [80] reported
that the volatilization process may also contribute to the decline of the pesticides from the plant leaves
especially if it is applied during daylight hours. Also, most of the pesticides can be attached to the
soil particles as they are only slightly soluble in water and therefore are less likely to be found in the
groundwater [24]. The rapid degradation of pesticide molecules is among the factors which contribute
to reduced contamination of groundwater in the area. Sundaram [81] reported that for sub-surface
soils, most of the pesticides get degraded within 14 days. For example, chlorpyrifos is degraded within
approximately 10 days in a 0–15 cm and 40–60 cm clayey sandy soil. However, Rani et al. [82] found
that pesticides exist in the top 10 cm of soil. For example, chlorpyriphos and cypermethrin were found
distributed to a depth of 35 and 15 cm of soil, respectively. Their results indicate a low movement of
pesticides under saturated moisture condition and hence may not contaminate groundwater.

4. Conclusion

Groundwater quality for drinking purposes in the Kahe catchment is generally good; however,
in some areas it is considered undesirable for drinking purposes with elevated concentrations.
Groundwater chemistry was dominated with magnesium-sodium-bicarbonate water type. However,
the major cation and anion concentration across all sampling depths was not significantly different in
the study area. The agricultural practices likely had impacted on groundwater quality through the
intensive use of fertilizers. For instance, elevated values of nitrate, phosphate, sulphate, and ammonium
in sampled groundwater were found nearby Tanganyika Planting Company (TPC) sugarcane farm
where the area had application of intensive fertilizers in the west zone of the Kahe catchment. Generally,
shallow wells had higher values than deep boreholes. Pesticide molecules were below the detection
limit in all the sampled groundwater, possibly due to the minimal amount applied or to degradation of
molecules in the topsoil before reaching the groundwater.
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Appendix A

Table A1. Water quality parameter of groundwater for the wet season.

ID Depth PH DO EC TDS Temp N03− SO42− Cl− F− HC03− P043− NH4
+ Na+ K+ Mg2+ Ca2+ Fe2+ Mn Cu2+ Pb2+ Zn2+ Cd

S01 120 6.57 4.74 378 245 24.3 3.5 1 9.13 0.22 90 0.43 0.01 2.11 0.21 17.8 2.40 0.08 0.02 0.03 0.02 0.31 0.002
S02 125 7.16 1.71 297 236 24.7 3.9 0 3.13 0.20 35 0.56 0.01 5 1.22 2.2 3.6 0.05 0.01 0.19 0.01 0.45 0.011
S03 118 6.72 4.13 382 249 24.7 9.2 0 6.78 0.24 55 0.47 0.03 6.7 1.7 6.4 4.1 0.17 0.02 0.05 0.01 0.92 0.004
S04 12.6 8.41 3.71 1290 781 24.1 43.1 51 76.42 0.87 84 0.51 0.11 115 8.1 57 29.4 0.11 0.03 0.01 0.02 0.58 <0.01
S05 115 7.21 1.17 664 357 23.2 4 1 3.91 0.33 85 0.35 0.16 5.3 1.9 12.6 3 0.10 0.02 0.06 0.04 0.17 0.002
S06 7.3 7.98 2.15 1687 735 25.1 4.1 48 30.78 0.71 1550 0.7 0.04 80.6 9.6 315 18.9 0.21 0.01 0.01 0.02 0.41 0.003
S07 6.8 7.82 3.46 1992 1186 25.4 6.2 32 13.30 1.57 544 0.93 0.09 75.5 22.7 74.2 19.1 0.15 0.05 0.04 0.03 0.39 <0.01
S08 6.2 7.28 4.11 903 471 23.1 13.8 5 6.26 0.32 100 0.43 0.31 11.2 3.6 15.2 5.3 0.13 0.02 0.18 0.02 0.83 0.003
S09 14.5 7.19 3.56 1344 845 23.7 31.1 0 11.74 0.41 206 0.6 0.07 28.4 1.5 119 8.3 0.12 0.03 0.01 0.04 0.74 <0.01
S10 8.2 7.91 2.86 509 327 24.3 4.5 4 6.78 1.03 192 0.68 0.32 21.6 5 2.6 6.7 0.17 0.05 0.21 0.02 0.63 0.001
S11 11.8 8.11 1.77 861 423 24.7 4.6 27 8.87 0.78 256 0.63 0.22 32.6 15.1 46.6 8.3 0.10 0.04 0.01 0.01 0.75 <0.01
S12 9.3 6.71 3.92 422 291 24.2 1.4 2 1.83 0.78 86 0.68 0.05 5.6 8.1 52.8 2.1 0.08 0.01 0.08 0.05 0.80 <0.01
S13 16.9 8.05 2.6 1196 719 26 89.9 12 111.5 0.59 334 0.89 0.14 130 13.9 53.6 32.6 0.37 0.02 0.10 0.08 0.33 0.012
S14 10.9 7.83 2.28 850 509 24.8 19.34 14 7.23 0.45 383 0.29 0.09 83.6 8.9 34.4 20.9 0.05 0.01 0.06 0.05 0.19 0.001
S15 13.8 8.02 7.35 158.6 113 23.5 7.6 2 6.1 0.38 625 0.09 0.13 121 12.9 49.7 30.2 0.07 0.02 0.09 0.07 0.29 0.002
S16 8.7 7.39 1.63 235 54 25.3 4.53 7 3.64 0.23 851 0.65 0.18 167 17.8 68.9 41.9 0.09 0.03 0.13 0.10 0.43 0.003
S17 10.3 6.69 1.88 949 216 24.6 51.7 0 30.51 0.57 1600 0.53 0.07 52.3 1.5 55.4 13.8 0.07 0.02 0.01 0.02 0.25 <0.01
S18 8.6 7.72 3.2 860 559 26 11.75 18 9.44 0.59 1261 0.68 0.06 24.1 0.7 256 6.4 0.03 0.01 0.04 0.01 0.12 <0.01
S19 9.7 7.41 5.2 291 68 27.8 27.7 55 21.39 1.30 270 0.82 0.13 93.7 12.9 14.2 22.8 0.32 0.13 0.02 0.01 1.91 0.001
S20 13.1 7.12 3.02 356 247 26.8 7.4 51 108.2 1.61 484 1.03 0.21 122 20.3 103 28.9 0.12 0.07 0.07 0.04 0.26 <0.01
S21 22.6 6.87 5.32 632 621 26.5 6.3 10 4.96 1.43 341 0.8 0.03 42.8 5.6 49 11.2 0.13 0.02 0.10 0.01 1.59 0.001
S22 15.6 7.8 1.36 527 371 21.9 20.11 31 16.09 1.04 896 1.86 0.28 114 14.9 131 29.8 0.23 0.19 0.27 0.03 2.57 0.003
S23 17.7 7.96 4.17 831 412 25.6 15.4 24 12.33 0.77 210 0.19 0.24 16.7 2.8 40.2 5.9 0.34 0.12 0.53 0.13 0.66 0.019
S24 8.1 6.97 3.91 1692 936 25.2 33.1 0 7.04 0.30 32 1.45 0.31 4.2 0.5 10.1 1.5 0.31 0.08 0.13 0.03 0.16 0.005
S25 18.9 7.48 1.54 628 523 22.8 27.84 40 22.29 0.36 464 0.37 0.17 70.9 8.5 70.8 25.1 0.59 0.03 0.25 0.01 0.80 0.007

All units are in mg/l except pH (unitless), EC (µS/cm), temperature (◦C) and Depth (m).
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Table A2. Water quality parameter of groundwater for the dry season.

ID Depth PH DO EC TDS Temp N03− SO42− Cl− F− HC03− P043− NH4
+ Na+ K+ Mg2+ Ca2+ Fe2+ Mn Cu2+ Pb2+ Zn2+ Cd

S01 120 6.82 1.16 381 503 23.5 6.2 0 11.88 0.15 400 0.68 0.05 2 2.1 24.8 2.9 0.07 0.03 0.01 0.03 0.11 0.001
S02 125 7.27 1.68 367 485 26.4 4.2 2 10.55 0.16 282 0.16 0.04 4.6 1.7 5.6 2.8 0.08 0.01 0.11 0.02 0.12 0.002
S03 118 7.23 1.80 375 495 23.1 5.3 0 19.21 0.10 500 0.35 0.02 6.6 4 6.2 4 0.03 0.02 0.03 0.01 0.32 0.003
S04 12.6 7.48 2.60 103.4 636 24.9 40.5 39 7.92 0.13 708 0.20 0.01 34 6.4 165 8.2 0.12 0.02 0.02 0.02 0.51 <0.01
S05 115 7.52 1.91 342 453 22.3 4 0 5.27 0.21 230 0.10 0.07 13.3 2.9 39.8 4.1 0.08 0.01 0.04 0.05 0.60 0.011
S06 7.3 7.64 4.53 130.6 672 26.7 3.5 3 18.47 0.70 365 0.18 0.03 38.1 6.2 41.8 9.8 0.07 0.03 0.09 0.03 0.42 0.005
S07 6.8 7.46 1.13 1225 1097 25.2 2 42 6.59 1.51 548 0.47 0.02 54.4 4 110 13.7 0.08 0.02 0.01 0.08 0.35 <0.01
S08 6.2 7.68 1.16 231.6 305 25.9 2.1 43 6.78 0.63 803 0.48 0.22 56 4.1 113 14.1 0.18 0.02 0.02 0.80 0.36 0.016
S09 14.5 6.79 1.03 1205 971 22.3 1.8 38 5.9 0.56 506 0.43 0.01 49.5 3.6 99.7 12.4 0.07 0.18 0.11 0.72 0.32 0.001
S10 8.2 6.69 1.96 468 318 26.2 3.3 0 11.87 0.91 86 0.28 0.14 16.1 3.7 4.4 6.8 0.13 0.02 0.04 0.01 0.27 0.011
S11 11.8 7.43 4.38 688 408 24.6 3.1 1 8.57 0.34 186 0.10 0.21 18.6 11 25.2 6.7 0.07 0.02 0.11 0.02 0.13 0.002
S12 9.3 7.68 4.53 711.6 239 25.4 3.2 9 9.23 0.56 252 0.60 0.06 4.3 8.1 31.6 3.5 0.08 0.03 0.01 0.01 0.30 <0.01
S13 16.9 6.41 3.78 1294 784 23.6 10.9 7 9.89 1.12 510 0.61 0.01 137 14.1 28.6 37.5 0.32 0.04 0.32 0.13 0.54 0.004
S14 10.9 7.61 1.49 705.2 630 25 5.9 8 7.74 0.14 305 0.09 0.11 62.7 6.7 33.9 4.5 0.06 0.05 0.06 0.15 0.04 0.005
S15 13.8 7.12 1.21 659.7 273 26.2 12.1 17 10.99 0.29 102 0.90 0.23 12.2 5.6 11.7 11.6 0.09 0.14 0.01 0.04 0.16 0.014
S16 8.7 7.83 2.62 725.5 257 24.8 13.3 9 12.08 0.18 504 0.19 0.01 67.4 17.2 44.9 45.8 0.13 0.03 0.02 0.16 0.66 0.001
S17 10.3 6.92 2.60 270 356 26.7 4.2 1 9.89 0.26 542 0.42 0.15 93.5 3.9 58.2 23.5 0.03 0.02 0.14 0.01 0.24 <0.01
S18 8.6 7.52 2.83 293.4 386 25 4.5 2 10.75 0.28 597 0.46 0.06 102 4.2 60.6 25.5 0.10 0.01 0.15 0.01 0.26 <0.01
S19 9.7 7.13 4.21 661.5 473 25.3 20.2 2 15.83 0.12 0 1.05 0.26 126 22.8 5.2 33.9 0.39 0.17 0.06 0.01 0.19 0.001
S20 13.1 6.57 3.40 577.8 263 24.9 3.6 4 17.07 1.54 134 0.93 0.21 42.5 3.4 9.6 12 0.09 0.02 0.03 0.02 0.42 <0.01
S21 22.6 7.3 3.78 642 548 27.7 5.3 8 13.19 1.14 223 0.12 0.13 39.2 5.6 16.2 13.5 0.08 0.01 0.01 0.01 0.32 0.021
S22 15.6 7.38 3.82 649 357 23 15.3 6 17.33 1.15 120 1.02 0.31 49.6 7.9 6.38 3.6 0.31 0.11 0.04 0.01 0.12 0.001
S23 17.7 7.12 3.69 626.2 427 27 25.1 9 22.86 0.11 116 0.12 0.13 28.2 3.1 15.8 13.1 0.29 0.09 0.02 0.11 0.21 0.022
S24 8.1 7.19 3.72 1032 835 23.2 16.2 16 12.99 1.12 95 1.17 0.41 38.6 7.2 5.9 8.3 0.33 0.11 0.01 0.03 0.32 0.003
S25 18.9 6.78 3.51 596.2 187 25.7 14.9 12 19.25 0.06 110 0.11 0.23 16.4 6.8 15 12.5 0.17 0.04 0.03 0.06 0.43 0.012

All units are in mg/l except pH (unitless), EC (µS/cm), temperature (◦C) and Depth (m).
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Table A3. Pearson correlation matrix of groundwater for the wet season.

pH DO EC TDS Temp N03− SO42− Cl− F− HC03− C032− P043− NH4
+ Na+ K+ Mg2+ Ca2+ Fe2+ Mn Cu2+ Pb2+ Zn2+ Cd

pH 1
DO 0.12 1
EC 0.29 0.52 1

TDS 0.28 0.37 0.92 1
Temp −0.05 −0.34 0.04 0.00 1
N03

− 0.19 −0.23 0.34 0.28 0.09 1
SO4

2− 0.49 −0.07 0.18 0.16 0.30 0.07 1
Cl− 0.27 −0.30 0.17 0.16 0.31 0.61 0.49 1
F− 0.20 −0.25 0.13 0.20 0.46 −0.07 0.60 0.34 1

HC03
− 0.11 −0.29 0.22 0.09 0.52 0.26 0.61 0.33 0.63 1

C03
2− 0.26 0.24 −0.07 −0.04 −0.28 0.02 0.21 0.10 0.12 0.13 1

P04
3−

−0.54 −0.01 0.23 0.27 0.08 0.16 0.22 0.20 0.42 0.22 0.46 1
NH4+ 0.31 0.07 0.03 0.00 −0.22 0.06 0.09 0.05 0.10 0.04 0.24 0.33 1
Na+ 0.47 0.23 −0.05 −0.08 0.16 0.32 0.50 0.54 0.29 0.53 0.23 0.20 0.09 1
K+ 0.43 0.09 0.03 0.04 0.21 −0.01 0.56 0.39 0.57 0.41 0.14 0.31 0.18 0.77 1

Mg2+ −0.07 −0.33 0.27 0.03 0.03 0.24 0.09 0.14 0.05 0.33 0.25 0.06 −0.25 0.13 −0.08 1
Ca2+ 0.47 0.31 −0.08 −0.08 0.08 0.33 0.50 0.52 0.24 0.67 0.24 0.17 0.10 0.99 0.74 0.10 1
Fe2+ 0.17 0.23 0.16 0.20 0.01 0.42 0.38 0.23 0.05 0.41 0.08 0.18 0.35 0.13 0.10 −0.15 0.21 1
Mn 0.19 0.20 −0.56 −0.07 0.03 0.07 0.41 0.05 0.43 0.47 0.61 0.61 0.55 0.22 0.29 −0.11 0.21 0.40 1

Cu2+ 0.24 0.36 −0.03 0.01 −0.10 0.10 0.12 0.08 0.01 0.14 0.47 0.05 0.37 0.10 0.01 −0.10 0.15 0.57 0.56 1
Pb2+ 0.40 0.17 −0.01 −0.09 0.11 0.21 −0.68 0.06 0.16 0.01 0.14 −0.18 0.25 0.39 0.20 −0.50 0.39 0.21 0.20 0.68 1
Zn2+ 0.05 0.28 −0.23 −0.15 −0.36 −0.06 0.22 0.16 0.19 0.09 0.41 0.33 0.25 0.02 0.14 −0.19 0.06 0.31 0.58 0.27 −0.12 1
Cd 0.04 0.43 −0.07 0.04 −0.28 0.09 0.24 0.02 0.18 0.10 0.08 −0.20 0.14 0.02 −0.03 −0.06 0.13 0.75 0.04 0.49 0.05 0.18 1

Negative correlation (r < −0.5); Deep pink, and positive correlation (r > 0.5); cyan colour.
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Table A4. Pearson correlation matrix of groundwater for the dry season.

PH DO EC TDS Temp N03− SO42− Cl− F− HC03− C032− P043− NH4
+ Na+ K+ Mg2+ Ca2+ Fe2+ Mn Cu2+ Pb2+ Zn2+ Cd

PH 1
DO −0.05 1
EC −0.30 −0.36 1

TDS −0.06 −0.18 0.54 1
Temp 0.11 −0.09 −0.33 −0.31 1
N03

− 0.10 0.06 −0.18 0.01 −0.08 1
SO4

2− 0.17 −0.60 0.26 0.45 −0.05 0.22 1
Cl− −0.23 0.16 −0.16 −0.31 0.24 0.00 −0.43 1
F− −0.23 −0.36 0.47 0.35 −0.04 −0.22 0.21 −0.03 1

HC03
−

−0.25 0.13 0.13 0.26 −0.23 −0.22 −0.08 0.15 0.50 1
C03

2− −0.39 −0.20 0.55 0.13 0.03 0.00 −0.13 0.20 0.39 0.11 1
P04

3− −0.28 −0.19 0.30 0.04 −0.31 0.15 0.03 0.12 0.41 0.02 0.25 1
NH4

+
−0.13 −0.13 0.08 −0.28 0.03 −0.02 −0.08 0.28 0.22 −0.31 0.24 0.57 1

Na+
−0.13 −0.43 0.28 0.22 −0.01 0.20 0.03 −0.10 0.15 −0.12 0.49 0.26 0.01 1

K+ 0.10 −0.14 0.30 −0.06 −0.07 0.41 −0.13 0.09 0.58 0.40 −0.44 0.25 0.16 0.57 1
Mg2+ 0.31 −0.48 −0.09 0.38 −0.06 0.35 0.80 −0.57 −0.02 0.65 −0.36 −0.23 −0.41 0.16 −0.15 1
Ca2+ −0.08 −0.47 0.26 −0.02 0.10 0.20 −0.01 0.02 −0.02 0.58 0.43 0.10 −0.12 0.79 0.68 0.08 1
Fe2+ −0.20 −0.15 0.33 0.06 −0.16 0.32 −0.01 0.39 0.15 −0.20 0.62 0.52 0.52 0.44 0.55 −0.26 0.35 1
Mn −0.21 −0.23 0.44 0.21 −0.26 0.19 0.19 0.13 −0.05 −0.44 0.24 0.54 0.40 0.20 0.33 −0.14 0.12 0.51 1

Cu2+ −0.18 −0.33 −0.01 0.00 −0.01 −0.05 −0.04 −0.15 −0.14 −0.27 −0.13 0.08 −0.02 0.55 0.01 0.19 0.33 0.09 0.20 1
Pb2+ 0.11 −0.62 0.39 0.48 −0.10 −0.25 0.81 −0.43 0.27 −0.01 −0.08 −0.04 −0.17 0.15 −0.14 0.61 0.09 −0.07 0.15 0.06 1
Zn2+ 0.05 −0.31 0.04 0.06 −0.18 0.19 0.22 −0.09 0.15 0.29 0.15 −0.20 −0.33 0.15 0.18 0.34 0.43 0.02 −0.27 −0.20 0.12 1
Cd −0.06 −0.17 −0.09 −0.28 0.56 −0.15 0.11 0.27 −0.02 −0.16 0.18 −0.20 0.21 −0.04 −0.22 −0.09 0.05 0.13 −0.01 0.02 0.07 −0.10 1

Negative correlation (r < − 0.5); Deep pink and positive correlation (r > 0.5); cyan colour.
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Table A5. Types of Pesticides used in the Kahe catchment in Lower plain Moshi.

INSECTICIDES

S/No Trade Name Common Name Target

01 Dasba 40EC Chloropyrifos For against tomatoes
02 Duduba 450EC Cypermethrin10% + Chlorpyrifos 35% Control of insect pests in roses
03 Dkdime Dimethoate Insect pests in tomatoes and roses
04 Ninja Plus 5EC Lambda−cyhalothrin Insect pests in roses and tomatoes
06 Tarantula 1.8 EC Abamectin Control of maize stalk Borers
07 Marshal 250 EC Carbosulfan Roses against aphids and mites
08 Profecron 720 EC Profenofos Control of diamondback moth in cabbages
09 Sapa Cypermethrin 2.5%ULV Cypermethrin Coffee, tobacco, rice, Sugarcane against chewing and sucking pests.
10 Thiodan 35 EC Endosulfan Various crops against Chewing and sucking Pests.

11 Avaunt 150SC (Du−Pont) Indoxacarb On cotton, brassicae, tomatoes, beans and vegetables against
catepillars.

12 Dudu−Acelamectin 5% EC Abamectin 2% + Acetamiprid 3% and inert 95% Various crops against
Insect pests.

13 Dudumectin Emamectin 4.8% + Acetameprid 6.4%
14 AQUAWET 15 SL Ethoxylate 15%
15 Agro Cron 720EC Profenofos 725
16 Prosper 720EC Profenofos 60% + Cypermethrin 12%
17 Wiltigo Plus 50 EC Emamectin Benzoate 5%

HERBICIDES

01 Atranex 50 SC Atrazine Weeds in sugarcane plantations
02 Boxyfan 240 EC Oxyfluorfen Weeds in sugarcane plantations

03 Parastar 200SL Paraquat dichloride In maize, coffee, tea, sisal, cotton„ bananas, sugarcane against
common leaves and annual weeds

04 Dk Gly 480SL Glyphosate Pre-plant application for control of weeds in coffee, tea, cashew
and cereals

05 Wildbees 720 SL 2,4 D Amine Control of weeds in sugarcane plantations
06 Glypro 4l SL Phosphonomethly Glycine 48%
07 Oxyfen 24% EC −−−

08 Super Round −−−

FUNGICIDES

01 Ebony 72 WP Mancozeb 64% + Metalaxyl 8% WP Against late blight disease in potatoes, tomatoes and grapes.
02 Sapa Copper Oxychloride Copper oxychloride Control of late blight on tomatoes
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