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a b s t r a c t 

Lakes are very important for domestic use, commercial purposes, and ecosystem sustenance; nevertheless, studies 

on how different stressors influence water resources are limited, posing challenges in the planning and managing 

of water resources. Lake Babati is one of the important lakes in the East African rift valley as a source of fish, 

drinking water, and hippopotamus habitat. The lake level has consistently declined, threatening the life of organ- 

isms depending on the lake. Nevertheless, no study postulated the reasons for its decline. Therefore, this study 

used statistical methods, regression analysis and HEC-HMS hydrological model to investigate the association and 

sensitivity of the hydrological components driving the lake level variability. Results showed that the Lake Ba- 

bati level was significantly declining (p < 0.01) at a rate of 0.025 m yearly. The lake level variability was most 

sensitive to inflow, while outflow and evaporation had almost equivalent magnitude in driving the lake level 

variability and direct rainfall had the least influence. Although the lake level variability corresponded to changes 

in the basin supply components, the declining lake level trend was neither directly related to lake evaporation 

nor inflow as both parameters showed no significant trends. Furthermore, groundwater abstraction within the 

lakeshore is smaller than lake evaporation and is unlikely the main driver of the decline in lake level. Therefore, 

the declining lake level seemed related to the spillway outflow, which had been improved to avoid lake flooding 

resulting in large outflow during the peak seasons and probably the reason for the significant decline in the lake 

levels even in the rainy seasons. This study benchmarked the most sensitive hydrological drivers influencing lake 

level whose accurate monitoring and management could rescue the situation. 
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. Introduction 

Globally, numerous factors influence water resources, including

limate change and anthropogenic factors ( Herrnegger et al., 2021 ).

hese factors threaten to distort the vital roles water resources play

n the sustenance of eco-hydrological systems and their co-evolution

 Gilfedder et al., 2012 ; Gao et al., 2014 ). Therefore, studies on the

esponses of the water resources systems to the climatic and anthro-

ogenic stresses are very significant for the planning and management

f the water resources. The variability of water resources among the

ast African rift valley lakes under different stressors is widely stud-

ed, e.g. ( Kebede et al., 2006 , Olaka et al., 2010 , Hassan and Jin, 2014 ,

eus et al., 2013 , Swenson and Wahr, 2009 , Darling et al., 1996 ). How-

ver, the studies have shown different trends for lakes in the same re-
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ion. For example, Herrnegger et al. (2021) showed that Lake Baringo,

akuru, Naivasha, Solai, Elementia (rift valley lakes in Kenya) have re-

ently experienced level rises. 

In contrast, Lake Manyara, a rift valley lake in northern Tanzania,

howed variations on temporal scales. Lake Manyara declined in level

fter 2002 but experienced a level increase after 2006 – 07 due to the

nfluence of Indian Ocean Dipole ( Deus et al., 2013 ). While Lake Man-

ara trends are linked to rainfall variations, its neighbouring Lake Ba-

ati, an upstream lake within Lake Manyara catchment, consistently

ecorded a decline in water level. This unique behaviour of lakes within

he East African rift valley has motivated several studies ( Deus et al.,

013 , Darling et al., 1996 , Kumambala and Ervine, 2010 , Weitz and

emlie, 2013 , Mbanguka et al., 2016 ). However, the paucity of observed

ata and associated data quality and accessibility issues have limited the
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nderstanding of some water systems ( Duan et al., 2018 ). This problem

s more common, especially among the East African rift valley lakes

 Guma et al., 2019 ), despite their pivotal roles in providing water for

omestic use, commercial purposes, and ecosystem sustenance. 

Most studies focusing on lake water systems ( Hassan and Jin, 2014 ,

arling et al., 1996 , Weitz and Demlie, 2013 , Missi and Atekwana, 2020 ,

uan et al., 2018 ) have used hydrochemistry, stable isotopes, and

atellite-based observation methods to assess sources and variations of

roundwater and surface water. However, pinpointing the actual drivers

f lake level variability has been challenging since these methods cannot

xplicitly quantify the climatic and anthropogenic influences in catch-

ents where the conjunctive use of groundwater and surface water is

dopted. Yet, unsustainable water abstractions around such lakes could

lter groundwater interactions, leading to further declines in lake levels

nd their associated secondary impacts ( Zohary and Ostrovsky, 2011 ). 

Lake Babati is small and shallow, with a reported maximum depth of

.0 m. The semi-closed rift valley lake in Northern Tanzania is a source

f fish and a habitat for hippopotamus. It has deep wells drilled along

ts shores to supply water to the burgeoning population of Babati town.

ue to its small size, the lake responds rapidly to climatic variations

nd has flooded several times following heavy rainfall episodes, espe-

ially in 1964, 1979, and 1990 ( Stromquist, 1992 ). The construction of

n artificial outlet (spillway) at the northeastern part of the lake min-

mised the extreme flooding incidences observed before 1990. Although

eavy rainfalls caused the flooding episodes, they may have been ex-

cerbated by deforestation and land degradation ( Sandstrom, 1995 ).

banguka et al. (2016) propound that cloudiness is a sensitive param-

ter to Lake Babati level variability due to its significant influence on

vaporation. While the study by Mbanguka et al. (2016) applied inte-

rated water balance modelling, it was based on a rough estimate of

he lake size (drawn from only five transects of the lake bathymetry).

owever, lake size and morphology greatly influence lake sensitivity

o climatic forcing ( Olaka et al., 2010 ). The water resources managers
 n  

ig. 1. Study area (a) Location of Tanzania on the African map, (b) location of La

atchment. 

2 
re concerned about the consistent decline in the Lake Babati level, but

one of the previous studies has addressed their concern. They suspected

hat the increasing number of boreholes around the lake shores could

e driving the observed declines. 

The poor understanding of the actual drivers of the lake water level

ariability and management concerns highlighted above, the impor-

ance of the lake to the communities and ecosystem, and availability

f relatively quality secondary data motivated the choice of the study

rea. Hence, the present study applied statistical methods and regres-

ion analysis to determine the association and sensitivity of basin water

upply and outflow components on the lake Babati levels to inform man-

gement of drivers to prioritise for intervention. Furthermore, it applied

ydrologic modelling to assess the temporal variability of the other lake

ater balance components. The results of this study could offer new in-

ights into the drivers of lake level variability and aid the management

f water resources. Furthermore, this study could benchmark the most

ensitive hydrological drivers for accurate monitoring and prioritising

anagement interventions. 

. Materials and methods 

.1. Study area 

The present study was conducted within Lake Babati catchment lying

etween Latitude 4°10’00’ S and 4°30’00 ” S and Longitude 35°30’00 ” E

nd 36°00’00 ” E. The 390 km 

2 catchment is located within the Manyara

egion of Tanzania, with the spread and extents as shown in Fig. 1 . Gen-

le slopes characterise the terrain in the lake valley, while steep slopes

efine highlands at the southern catchment boundaries. The catchment

as a mixed geological formation with superficial deposits of mainly

ark brown soils derived from weathered rocks and red and brown soils

ear the lake ( Driessen et al., 2001 ). The catchment is mainly com-
ke Babati catchment in the Tanzania map (c) Location of Lake Babati in the 
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Table 1 

Meteorological stations that provided rainfall records with station elevation in metres above sea level (masl). 

No Longitude Latitude Station ID From Name Elevation (masl) Timestep 

1 35.55°E 3.86 °S 9335001 Jun 1990 to Jan 2017 Mbulu District Office 1737 Monthly rainfall 

2 35.38 °E 4.05 °S 9435003 Jan 1960 to Dec 2017 Dongobesh Sec. School 2042 Daily record 

3 35.75 °E 4.22 °S 9435030 Jan 1980 to May 2020 Babati 999 Daily record 
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osed of luvisols which are porous, well-aerated and well-drained soils

 Driessen et al., 2001 ). 

Lake Babati is a freshwater lake within the East African rift valley,

nd the Internal Drainage Basins Authority of Tanzania manages it. The

ake has flooded on several occasions in the past, and its size varied

any times. Mbanguka et al. (2016) estimated the current lake size to

e about 7.00 km 

2 which is an underestimate compared to 15.90 km 

2 by

inistry of Water, 2014 . The lake is semi-closed because of a spillway

uilt in its northeastern part. When the floods reach the spillway crest at

he stage of 4.74 m, the lake drains excess water into River Kiongozi, a

hysical link between Lake Babati and Lake Manyara, whose catchment

ncludes the Lake Babati catchment. 

The catchment experiences a semi-arid climate with a bimodal rain-

all distribution. The major rainfall season occurs from February to May,

hile a minor rainfall season runs from October to January of the fol-

owing year. It receives an annual average rainfall of 878 mm with a

tandard deviation of 273 mm based on the 1980 – 2020 rainfall records

from Babati Meteorological station with ID 9435030) maintained by

he Tanzania Meteorological Authority. A dry but colder period occurs

rom June to September, with a short dry spell in February separating

he main and minor rainy seasons. 

.2. Climatic and water level data sources and analysis 

Rainfall records from meteorological stations ( Table 1 ) within and in

he neighbourhood of the Babati catchment were gathered from Tanza-

ia Meteorological stations and the Modern-Era Retrospective analysis

or Research and Applications, Version 2 (MERRA-2) data from NASA’s

lobal Modeling and Assimilation Office, 2021 . The MERRA – 2 data

as chosen because it provided a continuous record of data since 1980

nd had a closer association with the instrumental data from the study

rea. The daily rainfall from MERRA – 2 and Babati had a Spearman

ank correlation coefficient of 0.45, which increased to 0.85 when the

ainfall data were aggregated to a monthly timestep. Therefore, in the

bsence of in-situ observations of temperature and other climatic pa-

ameters, trend analysis was based on MERRA- 2 data ( Global Modeling

nd Assimilation Office, 2021 ). The Internal Drainage Basin Authority

f Tanzania provided the water level records of Lake Babati observed

rom November 1976 to 2020. 

We eliminated apparent errors such as outliers and erroneous entries

nd tested consistency, homogeneity and associations among different

tation records using Spearman’s Rank test for data quality analysis. We

referred the Spearman’s Rank method (a non-parametric method) over

earson’s Rank Correlation (a parametric method) to analyse the as-

ociation between climatic data from different stations. The wide ap-

lication of Spearman’s rank method for handling data that are not

ormally distributed, such as climatic data ( Byakatonda et al., 2018 ;

nyutha, 2017 ; Anand et al., 2018 ) motivated the choice. We ap-

lied the Mann-Kendall method to test monotonic trends among the

limatic data and the lake water level ( Mann, 1945 ), ( Kendall, 1975 ).

he non-parametric methods of Mann – Kendall and Spearman Rank

ere preferred for their ability to handle outliers because they con-

ider ranks of measurements instead of the actual values ( Mann, 1945 ,

endall, 1975 , Byakatonda et al., 2018 ). The methods are well elabo-

ated in Mann (1945) , Kendall (1975) , Byakatonda et al. (2018) and thus

ave been applied in this study without repeating for brevity. The Pettit

est as applied by Gebremicael et al. (2013) , Samy et al. (2014) , and
3 
bungba et al. (2020) was performed on the water level records using

he XLSTAT software. The XLSTAT takes a random and probabilistic ap-

roach (Monte Carlo simulations) to quickly detect the point of change

n the data series. 

.3. Analysis of anthropogenic factors 

The numerous anthropogenic activities identified to influence the

ydrological regimes in the catchment included groundwater and sur-

ace water exploitation that may increase groundwater discharge, runoff

arvesting, and alterations of the natural land cover. No water transfers

ccur from or into this catchment by any known means except when

he lake itself outpours into the Kiongozi River during high floods. An

ccurate water abstraction rate was unavailable, but the Babati Water

upply Authority (BAWASA) provided 50,000 m 

3 per week as the best

stimate of water production/abstraction. The projections were based

n the study area’s population growth data to gain insights into the

cale of water abstraction. 

.4. Hydrologic modelling 

Changes in lake levels may be due to evaporation, precipitation, leak-

ge in outlets, or changes in upstream river basin conditions. Similarly,

nthropogenic factors can modify climatic parameters and responses of

he natural hydrological systems ( Onyutha, 2017 ). Water abstraction,

owever, directly reduces the amount of water in the reservoir. Different

pproaches are applied to understand the relationships among different

ydrological parameters. Water balance modelling of the Lake Babati

atchment was performed using the Hydrologic Engineering Centre –

ydrologic Modelling System (HEC-HMS) computer program version

.8 by the U.S. Army Corps of Engineers ( HEC, 2021 HEC, 2000 ). The

EC-HMS has several packages (models) which conceptualise rainfall-

unoff response in both events and continuous storms in a fully lumped

r distributed way. The possibility to model and calibrate an HEC – HMS

odel using the reservoir levels and its wide application in flood studies

 HEC, 2021 ) motivated its choice in this study. 

.4.1. Modelling equations 

The deficit and constant rate method ( HEC, 2021 HEC, 2000 ) was

hosen to model the runoff volume, i.e. to model the loss of water to

nterception, evaporation, and infiltration before the runoff, while the

nyder’s Unit Hydrograph (UH) method ( Chow et al., 1988 ) was pre-

erred to simulate the direct runoff on the ground surface. Although the

oil Moisture Accounting method ( HEC, 2000 ) is also suitable for con-

inuous modelling, the study chose the deficit and constant rate loss

ethod to maintain parsimony, i.e. perform the continuous rainfall-

unoff modelling with fewer inputs and be calibrated with the available

ata. HEC ( HEC, 2000 ) provides the detailed modelling equations and

omputation of the initial and constant loss methods. 

The baseflow (groundwater) was routed using the Linear Reservoir

odel, and no channel flow was routed because all the rivers are sea-

onal with unknown channel characteristics. Instead, we assumed the

ub-basins drain directly into the lake since each sub-basin ended in the

ake, as depicted in Fig. 2 . 

The Snyder UH has only two parameters, i.e. the 𝑡 𝑝 , which is the

asin lag between the rainfall peak and the hydrograph peak and 𝐶 𝑝 , a

eaking coefficient that varies from 0.4 to 0.8 ( HEC, 2000 ). The 𝑡 𝑝 was
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Fig. 2. Delineation of Lake Babati catchment into sub-basins and its setup within the HEC – HMS model. 
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etermined from the basin parameters using Eq. (1) ( Chow et al., 1988 ).

 𝑝 = 𝐶 𝐶 𝑡 

(
𝐿 𝐿 𝑐 

)0 . 3 
(1)

Where 𝐶 𝑡 is the basin coefficient, 𝐿 is the length of the mainstream

rom the outlet to the catchment divide; 𝐿 𝑐 is the length along the main-

tream from the outlet to a point nearest to the centroid, and 𝐶 is the

onversion factor which is 0.75 for the SI units. The 𝐶 𝑡 is not a physically

ased parameter. It was determined through calibration but the study

nsured it ranged between 1.8 and 2.2, as Bedient et al. (2013) reported

The USACE ( USACE 1994 ) provides an alternative method for esti-

ating the basin lag 𝑡 𝑝 as shown in Eq. (2) . 

 𝑝 = 𝐶 𝐶 𝑡 

( 

𝐿 𝐿 𝑐 √
𝑆 

) 𝑁 

(2)

Where 𝑆 is the overall slope of the longest watercourse from the

oint of concentration to the boundary of the drainage basin and 𝑁 is

n exponent commonly considered as 0.33. Both methods ( Eqs. (1) and

 2 ) ) were applied to determine the probable ranges for the basin lag.

ther studies also estimated the basin lag as 50 – 75% of the time of

oncentration. 

Mathematically, the hydrological model in a continuous simulation

omputes the lake water levels at an instantaneous time (t) by solving

he general water balance equation derived from the continuity equa-

ion, which for a lake system is expressed as in Eq. (3) ( Duan et al., 2018 ;

how et al., 1988 ). 

𝑑ℎ 

𝑑𝑡 
= 𝑃 ( 𝑡 ) − 𝐸 ( 𝑡 ) − 𝑊 𝑎𝑏 + 

( 

𝑅 𝑖𝑛 ( 𝑡 ) − 𝑅 𝑜𝑢𝑡 ( 𝑡 ) + 𝐺 𝑊 𝑖𝑛 ( 𝑡 ) − 𝐺 𝑊 𝑜𝑢𝑡 ( 𝑡 ) 
𝐴 ( ℎ ) 

) 

+ 𝜀 𝑡 

(3) 

Where ℎ represents the lake level and 𝑑ℎ , the change in the lake level,

(h) is the lake surface area corresponding to a lake level h, and P(t) is

he precipitation received over the lake area. E is the lake evaporation

ate, R in and R out are the lake’s surface water inflow and outflow, respec-

ively. W ab stands for the water abstractions from the catchment and

W in and GW out groundwater inflow and outflow of the lake, respec-

ively. 𝜀 is an error term representing errors in data and unaccounted
𝑡 

4 
or water losses. All the parameters above are instantaneous and depend

n the time step considered. 

.4.2. The model set up 

Based on a 30 m resolution Digital Elevation Model (DEM) from

huttle Radar Topographic Mission ( USGS, 2018 ), six small sub-basins

 Fig. 2 ) were delineated using the Geographic Information System pack-

ge of HEC – HMS to represent the different hydrological responses. The

atchment characteristics derived from the delineated sub-basins (see

able 2 ) were used to estimate realistic ranges of hydrological basin

arameters. 

A bathymetric survey of the lake was undertaken using an

chosounder at a transect spacing of 100m and depths measured at in-

ervals of 5 s within the transect. Overall, lake depths were measured

t 59,060 different points within the lake. The sounding depth and lake

oundaries set at 0 m depths were interpolated to generate the bathy-

etric chart. The lake volume – depth ( Eq. (4) ) and Lake surface area –

epth relationship ( Eq. (5) ) derived from the chart were used to model

ake outflow and lake evaporation. 

 = 100000 ℎ 2 + 5000000 ℎ + 4000000 (4)

 = 4000000 + 3000000 ℎ − 139383 ℎ 2 (5)

Where h is the lake depth (stage) in metres, V is lake volume in m 

3 ,

nd A is the lake surface area in m 

2 . The spillway span of 16m and

ischarge coefficient of 0.4 was specified to model lake outflow in peak

evels. 

.4.3. Model calibration and validation 

In this study, automatic calibration did not improve the pool level

hape since it was restricted to measuring only the goodness-of-fit with

he maximum peak pool elevation. Therefore, we applied automatic cal-

bration for initial calibration. After that, the manual calibration was

dopted to fine tune and preserve the pool level hydrograph shape, op-

imise the root means squared errors (RMSE) and the Nash Sutcliffe Ef-

ciency (NSE) objective function calculated as in Eq. (6) . Therefore,
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Table 3 

Goodness of fit measurements of the model at the calibration and validation 

phases. 

The goodness of fit statistics Calibration phase Validation phase 

Sum of Absolute errors (m) -29.22 -256.05 

Sum of Squared Residuals (m 

2 ) 212.04 50.40 

Simulated Peak Level 5.45 4.936 

Observed Peak Level 5.56 4.93 

The Percent error in peak level (%) -2.01 0.12 

Mean Observed Level (m) 4.757 4.701 

Nash Sutcliffe Efficiency 0.95 0.71 
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5 
odel calibrations involved a trial and error approach to match the

rediction of model outputs with the observations or the field-measured

ata ( HEC, 2000 ) by varying the parameter sets. 

𝑆𝐸 = 1 − 

∑𝑛 

𝑖 =1 
(
𝑞 𝑠 ( 𝑖 ) − 𝑞 𝑜 ( 𝑖 ) 

)2 
∑𝑛 

𝑖 =1 
(
𝑞 𝑜 ( 𝑖 ) − 𝑞 𝑜 

)2 (6)

Where 𝑞 𝑜 ( 𝑖 ) is the observed output at time step i , 𝑞 𝑠 ( 𝑖 ) is the simulated

utput (simulated lake level) at time step i , 𝑞 𝑜 is the average observa-

ion (lake levels) for the time series considered and 𝑛 is the number of

omputed hydrograph ordinates. 

The validation dataset was the rainfall and evapotranspiration data

rom July 19, 2020, to March 31, 2021. The lake level was measured

t the 30 min interval using an automatic pressure transducer (diver)

nstalled within the lake. 

In addition to NSE and the RMSE, we used several goodness-of-fit

easures, including a scatterplot of predicted lake pool level against the

bservations, the sum of absolute errors, the sum of squared residuals

 HEC, 2000 ), and the percentage error in peak lake level ( HEC, 2000 ).

he goodness-of-fit measures (presented in Table 3 ) were computed

rom outside the model using Microsoft Excel. The calibrated param-

ters of the model are presented in Appendix A , B and C 

.5. Sensitivity analysis of drivers of lake levels 

The Grey Relational Analysis (GRA) step proposed by

ong et al. (2006) to measure the degree of influence of one se-

uence over a reference sequence was applied to analyse the sensitivity

f natural and anthropogenic factors that drive the water level variabil-

ty of Lake Babati. GRA determines the geometrical proximity between

ifferent discrete sequences and at least one comparison sequence in

 system ( Li et al., 2014 ). The proximity, expressed in grey relational

rade, measures the similarities between discrete data arranged in

equential order. Thus, a higher grey relational grade implies a higher

imilarity between the sequential parameters ( Wong et al., 2006 ;

i et al., 2014 ). GRA has been widely used to analyse uncertainties in

ystems with imprecise information, including financial and hydrology

nalyses ( Wong et al., 2006 ; Li et al., 2014 ; Kung and Wen, 2007 ), and

ptimisation of the manufacturing process and quality ( Tzeng et al.,

009 ). 

.6. Stepwise regression analysis 

Multi-variate regression analysis using quantifiable independent

ariables such as precipitation, lake evaporation, and runoff was em-

loyed to determine the factors which influence the lake levels the most.

he study followed stepwise regression analysis of multiple variables

escribed in Draper and Smith (1998) and Rawlings et al. (1998) to de-

ermine the partial regression coefficients of independent variables re-

ponsible for lake water level variations. Stepwise regression models re-

ating lake levels to the different variables were developed by sequential

eplacement option, combining forward selection and backward elimi-

ation. F- Tests were done on each partial regression coefficient to de-

ermine the most significant variable to retain or the least significant
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Fig. 3. Homogeneity test of the water level records of Lake Babati. The mu1 is the mean daily lake level before July 8, 1991, while mu2 is the mean daily lake level 

from April 1992 to 2020. 
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ariable for elimination to simplify the model. In addition, the Akaike

nformation Criterion (AIC) ( Akaike, 1973 ) was used to measure the

uality of the resulting model relative to other models after adding or

liminating parameters. Since the optimal parameter sets give the lowest

IC, a smaller AIC was a stopping criterion in stepwise model regression

nd several “goodness-of-fit ” tests, including the sum of squares, RMSE,

nd mean average error were done. Records of the daily precipitation,

ake inflow, lake evaporation, and lake level from August 2019 to March

021 were used to ensure all the data had the same length. 

. Results and discussions 

.1. Lake level variability 

The available records showed that Lake Babati water levels have

uctuated over the period, varying between 3-9 m, as shown in Fig. 3 .

ome years such as 1997 and 2006, experienced exceptionally high wa-

er levels because of the unusually high rainfall occasioned by the Indian

cean Dipole ( Deus et al., 2013 ). The general pattern, however, showed

 consistent decline in the lake level. A Pettit test for the water level ho-

ogeneity also confirmed that a significant change (p < 0.01) occurred

n the records with July 14, 1991, as the date of shift ( Fig. 3 ). Indeed the

ean daily lake level shown in Fig. 3 was 5.461 m between 1976 and

991, but it dropped to 4.829 m between 1991 and 2020. The shift was

receded by a heavy 1990 flooding of lake Babati that damaged many

roperties. After the flooding, an artificial outlet of Lake Babati was im-

roved ( Sandstrom, 1995 ). The improvement of the outlet by expansion

nd lowering the crest level is thought to have increased the outflow of

ake Babati, which resulted in the lake level decline observed in the sub-

equent years. Indeed, the current lake crest stage of 4.740 m is much

ower than 6.15m reported by Sandstrom (1995) as the lake level above

hich it would flood before 1990. Therefore, the subsequent analysis in

his study used the lake level records from 1991 to 2020 as they repre-

ented the current lake level scenario. 

The Mann-Kendall analysis of the lake level records revealed that the

ecline of Lake Babati level was significant ( p < 0.05) (see Fig. 4 ). In

ddition, Sen’s slope (shown in Appendix D ), a non-parametric method

hat accounts for the effects of the outliers and gross errors on the trend,

lso indicated an overall lake level decline of 0.025 m yearly. 
6 
The Mann-Kendall trend results in Appendix D showed significant

ake level decline in all months and seasons . Contrary to expectations,

he lake level declined significantly both in the dry and wet seasons.

he minor wet season (from October to January) was characterised by

igher temperatures. However, as given by Sen’s slope, the lake level

ecline of 0.021 m in the warmer minor wet season was comparable

o the major wet season lake level decline of 0.022 m. This implied

hat the lake level decline was not strongly dependent on temperatures.

his contradicts the findings of Mbanguka et al. (2016) , who reported a

igher sensitivity of the lake level to cloudiness (a factor that results in

levated temperatures and lake evaporation when low and vice versa).

ake Babati exhibited a different behaviour from its downstream neigh-

our; Lake Manyara was more tied to the rainfall. Lake Manyara level

eclined in 2002 but maintained a higher level after a sharp increase in

006-07 due to the high rainfall occasioned by the Indian Ocean Dipole

 Deus et al., 2013 ). The rise in Lake Babati level after 2006 – 07 high

ainfall was momentary, as shown in Fig. 3 . 

.2. Climatic variability and lake levels 

.2.1. Rainfall data quality assessment 

We found very weak correlations/associations between rainfall

ecords from nearby climatic stations and Babati at daily time steps.

ainfall records at Mbulu station were the most strongly correlated to

abati with the spearman rank correlation coefficient (r s ) = 0.4716 at

 daily time step. The results concurred with Mbanguka et al. (2016) ,

ho similarly observed a weak correlation of rainfall measured at the

abati meteorological station with its neighbouring stations. This sug-

ests a complex spatial rainfall distribution occasioned by the local in-

uence of orographically induced precipitation ( Mbanguka et al., 2016 )

nd the Indian Ocean Dipole ( Deus et al., 2013 ; Awange et al., 2016 ). 

The associations and correlations improved significantly at monthly

ime steps in all stations. The Spearman rank correlation coefficient (r s )

f Mbulu and Babati improved to 0.8807, implying that Mbulu rain-

all records explained 77.57% (r s 
2 ) of the observed rainfall variations at

abati. However, aggregating data at a time step longer than a month

esulted in a significant decrease in the association; thus, the gaps in

he monthly rainfall record of Babati were filled with monthly rainfall

rom Mbulu station. The improvement in associations with longer time
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Fig. 4. The trend of average annual lake levels suggests a decrease in lake levels from 1976 to 2020. The dots are average annual lake levels. 
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teps suggests that regional factors drive monthly or seasonal rainfall

hile location-specific factors such as topography may modify the daily

ainfall distribution. Mbanguka et al. (2016) estimated the topographic

ffect on the precipitation to be 3.6mm/year/100 m of topographic rise.

he data analysed supported the interpretation that regional factors

rive seasonal rainfall. All stations analysed experienced and recorded

he extreme rainfall of 1997 and 2006 attributed to the positive Indian

cean Dipole ( Deus et al., 2013 ), ( Awange et al., 2016 ). This was also

orroborated by the characteristically very high lake levels (shown in

ig. 3 ) in 1997 and 2006. 

.2.2. Influence of rainfall on lake level variability 

The lake level increased in the rainy season and receded in the dry

eason, as shown in Fig. 5 , suggesting that rainfall is responsible for

ake level variations. However, a more in-depth assessment of the rain-

all variability using Mann-Kendall trend analysis revealed no signifi-

ant trends in the rainfall. The Mann-Kendall statistics and Sen’s slope

resented in Appendix D indicate an insignificant decline ( p > 0.05) in

he rainfall received in April, May, and November. Thus, the major wet

eason rainfall declined, although insignificantly. 

Although Spearman’s Rank correlation showed a positive association

f rainfall with lake level, it was insignificant at 95% confidence inter-

als. However, averaging the precipitation over varying periods resulted

n its positive and significant correlation with the lake level at nine and

8 months. This, therefore, implied that hydrological drought might

ake 9 to 18 months after the onset of meteorological drought. Similarly,

yakatonda et al. ( Byakatonda et al., 2018 ) reported a 6 month lag be-

ween the onset of meteorological drought and hydrological drought in

kavango River systems in Botswana. 

.2.3. Temperature and other climatic data 

The temperatures of Babati obtained from MERRA 2 showed a sim-

lar pattern with that of Mbulu. However, the minimum and maximum

emperatures at Babati were about 2°C higher than their counterparts in

bulu observed between 1923 and 1947. Furthermore, both stations’

aximum and minimum temperatures were highest from August to

arch of the following year, while the April to July period had the least

emperatures coinciding with the dry season. Therefore, the close asso-

iation between temperatures observed earlier at Mbulu and the current
7 
abati temperature justifies using MERRA 2 temperatures to represent

he current situation at Babati. 

Although no significant increase was observed in the maximum tem-

erature annually, it significantly increased ( p < 0.05) in July, August,

eptember, and October, which fall in the dry season. In contrast, the

inimum temperature increased significantly ( p < 0.01) in all months

xcept May. Consequently, all the seasons (both wet and dry) showed an

ncrease in the minimum temperature, which may potentially increase

he evaporative power of the atmosphere and the drought severity of

he area leading to the decline in lake level. 

For most of the year, the wind speed significantly reduced (P < 0.05)

n January, March, April, May, July, October, November, and Decem-

er, implying that it reduced annually. The relative humidity remained

onstant over the years except in March when a significant increment

as observed. The potential evapotranspiration showed no significant

hange in trend, except in March when a significant decline in potential

vapotranspiration was registered. The detailed Mann-Kendall parame-

ers for the climatic and hydrological parameters of the catchment area

re captured in Appendix D . 

.2.4. Lake evaporation 

The lake evaporation was computed using the Penman-Monteith for-

ula based on the MERRA 2 climatic data ( Global Modeling and As-

imilation Office, 2021 ) from 1982 - to 2021. The calculated minimum

onthly lake evaporation was 158.4 mm observed in June 1990 (a

ry winter season), while the maximum monthly lake evaporation was

86.3 mm, observed in October 1987 (a hot and dry season). The mean

nd median evaporations stood at 216.6 and 218.0 mm, respectively,

mplying that lake evaporation had a central tendency with minimum

utliers. 

The Mann-Kendall tests statistics ( Appendix D ) showed that lake

vaporation declined significantly (p < 0.05) during the wet seasons.

pecifically, the significant decrease occurred in March, November, and

ecember but insignificantly decreased in January and February. No

ingle month expressed a significant increase in lake evaporation. Gen-

rally, no significant changes occurred in the lake evaporation over the

ears since 1982. 
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Fig. 5. A zoomed-in plot showing a comparison of water level against rainfall variability. 

3

 

u  

w  

c  

p  

p  

w  

o  

o  

g  

s

 

r  

l  

e  

B  

e  

5  

s  

7  

t  

s  

w  

c  

v  

t  

o  

B  

h  

s

3

3

 

a  

i  

m  

F

 

c  

S  

F  

I  

e  

r  

l  

c  

f  

b  

c  

s  

c  

b  

o  

t  

b

 

s  

s  

c  

p

3

 

a  

o  

b  

w  

t  

f  

r  

t  

r  

a  
.2.5. Population growth and water abstractions 

Lake Babati catchment covers eleven wards (administrative units) of

rban and rural settings in the Babati District, where groundwater is a

ater source for domestic and non-domestic uses. Unfortunately, water

onsumption data was unavailable. However, the rapid population ex-

losion within the catchment, from 54,864 people in 2002 to 137,357

eople in 2012 (150% increase), suggested a corresponding increase in

ater demand and abstraction. Such a population explosion is likely to

utstrip water supply (abstraction) in the catchment whose expansion

f social services, if any, might be tagged to the moderate population

rowth rate of only 3.2% recorded within the Manyara region in the

ame period (National Bureau of Statistics, 2013) 

Using a per capita water consumption of 50 litres per day per person

ecommended for a low income group with no inhouse sanitary instal-

ation, but a metered water installation ( Ministry of Water, 2020 ) as av-

rage water consumption, the estimated water consumption within the

abati catchment by 2012 was an upward of 6,688 m 

3 per day. How-

ver, by 2019, BAWASA had already exceeded that and was supplying

0,000 m 

3 per week (about 7,142 m 

3 per day) to households within their

ervice area, which covers only the urban and peri urban areas. About

8% of the water supplied is from groundwater sources, while spring wa-

er on Girala Mountain (a surface water source) contributes 22% of the

upply. Already, BAWASA is engaged in numerous projects to expand its

ater supply coverage to meet the increased demand. However, rural

ommunities are still using shallow wells for domestic purposes. Some

egetables are grown under irrigation with agriculture and livestock in

he district. However, minimal information is available on the extent

f irrigated land or the amount of water used explicitly for irrigation.

ased on the described scenario, it is evident that the water abstractions

ave tremendously increased (more than doubled) to accommodate the

piralling urban population and economic activities. 

.3. Lake water balance simulation and regression 

.3.1. Lake water balance simulation 

Using the available lake levels, the lake bathymetric data, the rainfall

nd the lake evaporation, an HEC-HMS model was built, calibrated, and

ts performance validated. The graphical evaluation of the calibrated
8 
odel and the statistical measure of its performance are as shown in

ig. 6 and Table 3 , respectively. 

The graphical plot and the statistical goodness-of-fit in Table 3 indi-

ated that the model is very good for prediction purposes with a Nash

utcliffe Efficiency (NSE) of 0.95 ( Moriasi et al., 2015 ). As shown in

ig. 6 , the model is more accurate in predicting the low lake levels.

ts performance during the peak level seasons, however, harbours some

rrors. Generally, the model underestimates the lake level during the

ainy season and offsets the peak level in time compared to the observed

ake level. Although several error sources, including model inefficiency,

ould offset the peak lake level, the failure of the cumulative daily rain-

all depths to capture the exact time when the peak rainfall occurs is

elieved to have caused this one. Since each sub-basin has a time of

oncentration of less than 12 h, the exact peak time of the rainfall is es-

ential for predicting the lake levels. The arbitrary frequency duration

urve of the synthetic unit hydrograph could also result in the mismatch

etween the modelled and observed lake level peaks. The improvement

f the model calibration for flood studies requires rainfall captured at

imesteps shorter than the shortest time of concentration of the sub-

asin. 

The model matches the low-flow conditions well, making it most

uitable for low-flow studies and relevant for water supply and drought

tudies. However, since the model does not capture the peak flows ac-

urately, its application for flood studies may be limited. The calibrated

arameters of the model are summarised in Appendixs A , B and C . 

.3.2. Grey relational order 

The factors driving the lake water level or storage variability were

ssessed and ranked using GRA (see Table 4 ). The most important driver

f the lake level variability was found to be the lake inflow (runoff and

aseflow), followed by direct rainfall. Lake Evaporation came in third

hile lake outflow was the least important parameter as captured by

heir least grey relational grades shown in Table 4 . When GRA was per-

ormed with the lake storage as the reference series, the lake inflow and

ainfall maintained their first and second order of importance. However,

he lake evaporation and lake outflow tied in the third position. The grey

elational grade (shown in Table 4 ) of lake evaporation and lake outflow

re insignificantly different ( p = 0.97), thus implying both have equal
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Fig. 6. The general agreement between the observed and simulated lake levels during the calibration and validation phases. 

Table 4 

Comparison of the grey relational grades of different parameters based on the lake level and lake storage as reference series. 

Reference series Inflow (m 

3 /s) Direct Rainfall (mm) Lake Evaporation (mm) Computed Outflow (m 

3 /s) 

Lake Level (m) 0.8591 0.8652 0.6320 0.6120 

Lake Storage (m 

3 ) 0.8590 0.8658 0.6152 0.6155 
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agnitude/influence in the control of Lake Babati level variability when

ased on the lake storage. 

The evaporation was expected to have a higher weighting (grey re-

ation grade) than the direct rainfall because the rainfall over the lake is

maller than evaporation. However, the high correlation of direct rain-

all to the lake inflow may have biased the analysis. The lake outflow had

ore control over the lake level variability during the rainy year (2019

2020 hydrological year) when more water was removed from the lake

uring peak seasons than evaporation. Increased lake outflow, either

ue to improvement or expansion in lake outlets, have been observed

lsewhere to result in lake level drop. For example, Lake Victoria, with a

urface area of about 67,000 km 

2 ( Tate et al., 2004 ), once experienced a

 m drop in lake level between 1999 – 2006 when a second hydropower

acility increased the lake outflow ( Swenson and Wahr, 2009 ). The in-

reased outflow and climatic factors such as drought, accelerates the

ake level decline. As observed, Lake Babati experienced more evapora-

ion than lake outflow in the hydrological year 2020 – 2021 when rain-

all was generally low. This agreed with Kumambala and Ervine (2013) ,

ho suggested that lake evaporation is often the most significant out-

ow component since the amount of water available does not limit the

vaporation rates. Further, it partly agreed with Mbanguka et al. (2016) ,

ho reported that lake evaporation and runoff controls the hydrologi-

al balance of Lake Babati. Mbanguka et al. (2016) , however, missed

ecognising the influence of the large outflows during high rainfall sea-

ons. Currently, the abstraction of groundwater for urban water supply

s far less than the lake’s evaporation rates. Therefore, even if groundwa-

er abstraction were directly drawing lake water, its control of the lake

evel would be less than that of evaporation which was ranked third in

his study. Therefore, water abstraction still plays but a very marginal

ole in controlling the lake level variability. 
9 
.3.3. Stepwise regression analysis 

A stepwise regression analysis of the precipitation over the lake area

 𝑃 in mm), inflow to the lake ( 𝑅 𝑖𝑛 in m 

3 /s), lake outflow ( 𝑅 𝑜𝑢𝑡 in m 

3 /s)

nd lake evaporation ( 𝐸 𝐿 in mm/day) in relation to the lake water levels

as assessed at daily timesteps. Therefore, the daily lake level in meters

 𝐿 𝑑𝑎𝑖𝑙𝑦 ) can be predicted using the daily precipitation, lake evaporation,

ake inflow and outflow using the regression formula in Eq. (7) . All the

dded parameters improved the model, and the coefficients of the pa-

ameters were not zero ( p < 0.01). The regression had an F-statistics of

73.8 on 4 and 608 degrees of freedom and the multiple R 

2 = 0.6443. 

 𝑑𝑎𝑖𝑙𝑦 = 5 . 6403 − 0 . 0017 𝑃 + 0 . 0081 𝑅 𝑖𝑛 + 0 . 1761 𝑅 𝑜𝑢𝑡 − 0 . 1537 𝐸 𝐿 (7)

The stepwise elimination improved the model by removing the

ess sensitive or adding the most sensitive parameters. The AIC

 Akaike, 1973 ) was used to evaluate the improvement. The lake level

as not very sensitive to the direct rainfall over the lake, and thus it

as eliminated, giving the final regression model in Eq. (8) . The fi-

al model had fewer input parameters but improved with the multiple

 

2 = 0.6437, an F-statistics of 363.8 on 3 and 604 degrees of freedom

nd p < 0.01. 

 𝑑𝑎𝑖𝑙𝑦 = 5 . 6478 + 0 . 0041 𝑅 𝑖𝑛 + 0 . 1786 𝑅 𝑜𝑢𝑡 − 0 . 1547 𝐸 𝐿 (8)

The prediction of the lake storage (given in Eq. (9) ) using the same

arameters was more accurate than the lake level and had the following

oodness-of-fit statistics: a multiple R 

2 = 0.7415, an F-statistics of 432.4

n 4 and 603 degrees of freedom and p < 0.01. 

 𝑆 𝑑𝑎𝑖𝑙𝑦 = 67127331 − 34253 𝑃 + 66873 𝑅 𝑖𝑛 + 3105860 𝑅 𝑜𝑢𝑡 − 2583060 𝐸 𝐿 

(9) 
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A stepwise regression analysis resulted in a more improved model

ith fewer input parameters since direct rainfall was eliminated for be-

ng less important. The resultant model ( Eq. (10) ) had the following

oodness-of-fit statistics; a multiple R 

2 = 0.7407, an F-statistics of 575

n 3 and 604 degrees of freedom, and p < 0.01. 

 𝑆 𝑑𝑎𝑖𝑙𝑦 = 67276591 − 13723 𝑅 𝑖𝑛 + 3155399 𝑅 𝑜𝑢𝑡 − 2601460 𝐸 𝐿 (10)

The regression indicates that the lake inflow, lake outflow and evap-

ration are the most significant parameters for predicting the daily lake

evels. Furthermore, the stepwise regression removed the direct rain-

all in backward elimination and did not substitute the direct rainfall

n the forward elimination, implying an optimal model prediction could

e achieved without direct rainfall. Overall, the direct rainfall showed

he least influence in driving the lake level variability because it is very

inimal due to the small lake surface area. With the catchment-lake

urface area ratio of 26:1, 1mm of catchment runoff translates into a

6 mm depth inflow over the lake surface, thus masking the effect of

irect rainfall. Furthermore, at an average evaporation rate of 6 mm

er day, the lake evaporation is substantial and outstrips direct rain-

all as it reaches about 2000 mm per year compared to the annual

ainfall. 

Evaporation is the main depleting factor for a closed lake

 Kumambala and Ervine, 2013 ). However, it had a minimal variation

hich could not explain the level decline of Lake Babati, especially dur-

ng rainy seasons. In years of heavy rainfall, the outflow during peak

evel seasons withdrew more water from the lake than evaporation. The

ake level decline in December – February (dry season) seemed to be

ttributable to evaporation which was highest in this period with ele-

ated temperatures. The dry winter season (June – September) appeared

o dampen the overall effect of evapotranspiration. Subsequently, it im-

lied that lake outflow played almost an equal influence as evaporation

n controlling the lake storage/level as a large volume of water is spilt

uring peak levels. 

Therefore, the most important variables in predicting the lake level

r storage are the inflow, outflow and evaporation. The GRA corrobo-

ated these findings as it ranked the lake inflow as the most sensitive

arameter, then the direct rainfall followed by the outflow and the lake

vaporation at equal magnitudes of influence. Although GRA ranked di-

ect rainfall as the second most sensitive parameter, the stepwise anal-

sis discounted the influence of direct rainfall in driving the lake level

ecause of its small magnitude compared to lake inflow. The strong cor-

elation of direct rainfall with lake inflow might have influenced the

RA to rank it as the second most sensitive parameter. 

. Conclusions 

The study analysed trends of hydrological components of Lake Ba-

ati and modelled its variability with the different water balance com-

onents. The results found that the Lake Babati level is significantly

eclining ( p < 0.01) at a rate of 0.025 m yearly after accounting for the

ffects of the outliers and gross errors on the trend using Sen’s slope.

urthermore, the seasonal analysis indicated that all months and sea-

ons experience significant ( p < 0.05) lake level decline. 

The lake level has often varied, reflecting the cycles of the wet

nd dry seasons. Although the lake level peaks have corresponded to

he rainfall, Spearman’s Rank correlation indicated no significant as-

ociation between the lake level and rainfall. However, the lake level

ecline occurred when evaporation remained constant while rainfall

id not show significant changes seasonally or annually. Therefore, the
10 
irect attribution of the lake level decline to the rainfall variability was

ot significant. 

An HEC-HMS hydrological model of the Lake Babati catchment was

uilt, calibrated and validated. The model showed high accuracy in pre-

icting the low-lake levels, making it an excellent tool for studying water

upply conditions. The accuracy of low-flow prediction is instrumental

or sustainable design, water abstraction and environmental conserva-

ion. This model was applied to generate the lake inflow from the avail-

ble rainfall data. 

The GRA of the lake basin components showed that inflow is the

rimary parameter controlling the lake level, followed by direct rainfall

nd outflow. On a grey relational scale, lake evaporation and outflow

re tied in magnitude as the least important parameters for lake level

ariability. However, an optimised stepwise regression model indicated

hat direct rainfall had negligible influence on the lake level. The huge

esponse of the lake level to the rainfall was attributed to inflow (runoff

nd baseflow) due to the large catchment relative to the lake surface

rea. Therefore, in relative terms, the direct rainfall had little effect on

he lake level than the lake inflow and evaporation. Although the water

bstraction is increasing to support the economic boom and population

xplosion around Babati town, it is still low and falls behind evapora-

ion. However, if the current water abstraction trend continues, it could

oon become a sensitive parameter for lake level variability. 

The declining lake level seemed to be related to the outflow con-

rolled by a spillway constructed in the northeast of the lake to avoid

ooding the lake. The improvements/expansion in the spillway have re-

ulted in large outflow during peak seasons and could be why the lake

evels were significantly declining in the rainy seasons. However, the

ake level decline in dry seasons was probably related to evaporation

oss and the reduced lake inflow. 

This study demonstrated that the lake level is controlled by the in-

ow and outflow of the lake. Therefore, management should prioritise

nterventions that guarantee lake inflow (surface runoff and baseflow).

hese interventions may include catchment protection and minimising

nfield water harvesting. Additionally, optimal regulation of the lake

utflow using variable height control gates could make the lake useful

or both flood control and reservoir storage. Finally, continuous moni-

oring of lake levels and rainfall at shorter timesteps is recommended to

nrich future studies within this catchment. 
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Appendix A 

The initial and calibrated parameters for initial abstraction, runoff volume and catchment runoff routing. 

Simple Canopy Simple Surface Snyder Transform 

Initial 

Storage 

(%) 

Initial 

Storage 

(%) 

Initial 

Storage 

(%) 

Maximum 

Storage 

(mm) 

Maximum 

Storage 

(mm) 

Maximum 

Storage 

(mm) 

Crop Co- 

efficient 

(-) 

Initial 

Storage 

(%) 

Initial 

Storage 

(%) 

Initial 

Storage 

(%) 

Maximum 

Storage 

(mm) 

Maximum 

Storage 

(mm) 

Maximum 

Storage 

(mm) 

Lag Time 

(HR) 

Lag Time 

(HR) 

Lag Time 

(HR) 

Peaking 

Coeffi- 

cient 

Peaking 

Coeffi- 

cient 

Peaking 

Coeffi- 

cient 

Minimum Maximum Calibrated Minimum Maximum Calibrated Minimum Maximum Calibrated Minimum Maximum Calibrated Minimum Maximum Calibrated Minimum Maximum Calibrated 

Bab4 0 100 0.0267 0 10 1 1 0 100 100 0 100 1 0.1 500 7.3743 0.4 0.8 0.5 

Bab5 0 100 0.0294 0 10 1 1 0 100 100 0 100 1 0.1 500 7.558 0.4 0.8 0.5 

Bab6 0 100 0.0315 0 10 1 1 0 100 100 0 100 1 0.1 500 6.6849 0.4 0.8 0.5 

Bab3 0 100 0.0329 0 10 1 1 0 100 100 0 100 1 0.1 500 5.7119 0.4 0.8 0.5 

Bab2 0 100 0.0336 0 10 1 1 0 100 100 0 100 1 0.1 500 4.8154 0.4 0.8 0.5 

Bab1 0 100 0.0338 0 10 1 1 0 100 100 0 100 1 0.1 500 6.5522 0.4 0.8 0.5 

1
1
 



G. Okwir, S.P. Kumar, H. Gao et al. Environmental Challenges 7 (2022) 100533 

A

del of Lake Babati catchment. 

GW 1 

Steps 

GW 2 Initial Discharge 

per unit area (M3/s/Km2) 

GW 2 

Fraction 

(-) 

GW 2 Coefficient (HR) GW2 

Steps 

ted Minimum Maximum Calibrated Minimum Maximum Calibrated 

 1 0 0.15 0.0015 0.15 1 5000 1232 2 

 1 0 0.15 0.0015 0.12 1 5000 1448 2 

 1 0 0.15 0.0015 0.1 1 5000 1316 2 

 1 0 0.15 0.0015 0.1 1 5000 1167 2 

 1 0 0.15 0.0015 0.15 1 5000 1120 2 

 1 0 0.15 0.0015 0.15 1 5000 1183 2 

A

ds of accounting infiltration rates. 

imum 

age 

) 

Maximum 

Storage 

(mm) 

Constant 

Rate 

(mm/HR) 

Constant 

Rate 

(mm/HR) 

Constant 

Rate 

(mm/HR) 

Impervious 

(%) 

imum Calibrated Minimum Maximum Calibrated 

0 5 0.001 30 3 0 

0 5 0.001 30 3 0 

0 5 0.001 30 3 0 

0 5 0.001 30 2.5 0 

0 5 0.001 30 2.5 0 

0 5 0.001 30 2.5 0 

A

eived in Babati. 1 

um temperature Maximum Temperature Lake Babati Evaporation 

all’s p-value Sen’s 

slope 

Kendall’s 

tau 

p-value Sen’s 

slope 

Kendall’s 

tau 

p-value Sen’s 

slope 

 0.019 0.020 -0.118 0.289 -0.030 -0.130 0.230 -0.250 

 0.003 0.020 -0.054 0.633 -0.015 0.0025 0.990 0.010 

 0.018 0.017 -0.210 0.057 -0.060 -0.283 0.010 -0.470 

 0.013 0.015 0.018 0.870 0.003 -0.030 0.730 -0.070 

 0.160 0.009 0.095 0.395 0.015 0.003 0.980 0.005 

 0.002 0.035 0.137 0.217 0.021 0.070 0.530 0.071 

 0.002 0.031 0.264 0.017 0.031 0.065 0.560 0.041 

 0.0001 0.036 0.264 0.026 0.024 0.079 0.470 0.049 

 0.0001 0.032 0.279 0.011 0.021 0.074 0.500 0.038 

 0.0000 0.029 0.218 0.048 0.024 -0.028 0.800 -0.010 

 0.0000 0.032 -0.074 0.506 -0.009 -0.200 0.060 -0.220 

 0.0000 0.021 -0.087 0.435 -0.013 -0.209 0.059 -0330 

 0.0000 0.025 0.064 0.574 0.005 -0.148 0.180 -0.970 

 0.0000 0.025 -0.058 0.607 -0.005 -0.261 0.018 -0.900 

 0.0006 0.017 -0.0544 0.632 -0.007 -0.120 0.278 -0.430 

 0.0000 0.022 -0.062 0.583 -0.005 -0.249 0.024 -1.410 

 0.0000 0.036 0.253 0.023 0.025 0.084 0.450 0.180 

t

ppendix B 

Initial and calibrated linear reservoir model parameters for the HEC – HMS mo

Number 

of 

Layers 

GW 1 Initial – Discharge 

per unit area (M3/s/Km 

2 ) 

GW1 

Fraction 

(-) 

GW 1 Coefficient (HR) 

Minimum Maximum Calibrated Minimum Maximum Calibra

Bab4 2 0 0.4 0.0001 0.2 0.1 1000 59.407

Bab5 2 0 0.4 0.0001 0.2 0.1 1000 57.855

Bab6 2 0 0.4 0.0001 0.2 0.1 1000 52.671

Bab3 2 0 0.4 0.0001 0.2 0.1 1000 33.658

Bab2 2 0 0.4 0.0001 0.2 0.1 1000 27.235

Bab1 2 0 0.4 0.0001 0.2 0.1 1000 36.156

ppendix C 

Parameter ranges and calibrated values for the deficit and constant rate metho

Deficit and Constant 

Initial 

Deficit 

(mm) 

Initial 

Deficit 

(mm) 

Initial 

Deficit 

(mm) 

Maximum 

Storage 

(mm) 

Max

Stor

(mm

Minimum Maximum Calibrated Minimum Max

Bab4 0 5 0.14196 0.001 100

Bab5 0 5 0.11462 0.001 100

Bab6 0 5 0.087282 0.001 100

Bab3 0 5 0.059943 0.001 100

Bab2 0 5 0.032604 0.001 100

Bab1 0 5 0.005265 0.001 100

ppendix D 

Summary of Mann-Kendall trend test of the Lake Babati levels and rainfall rec

Lake Babati Level Rainfall in Babati Minim

Series\ 

Test 

Kendall’s 

tau 

p-value Sen’s 

slope 

Kendall’s 

tau 

p-value Sen’s 

slope 

Kend

tau 

Jan -0.310 0.015 -0.026 0.100 0.440 1.570 0.250

Feb -0.290 0.023 -0.023 0.110 0.390 0.980 0.320

Mar -0.300 0.026 -0.020 0.070 0.610 0.580 0.260

Apr -0.310 0.006 -0.021 -0.120 0.400 -1.460 0.270

May -0.359 0.000 -0.030 -0.150 0.270 -0.550 0.150

Jun -0.308 0.016 -0.020 -0.040 0.800 0.000 0.338

Jul -0.359 0.004 -0.023 -0.190 0.230 0.000 0.331

Aug -0.333 0.001 -0.022 -0.110 0.410 0.000 0.420

Sep -0.335 0.001 -0.021 0.080 0.640 0.000 0.490

Oct -0.382 0.007 -0.021 0.000 1.000 0.000 0.443

Nov -0.384 0.004 -0.021 -0.010 0.940 -0.080 0.502

Dec -0.360 0.007 -0.026 0.080 0.590 1.660 0.456

Annual -0.468 0.000 -0.025 -0.050 0.760 -2.230 0.580

Minor wet 

season 

(ONDJ) 

-0.394 0.001 -0.021 0.070 0.640 2.070 0.591

Major wet 

season 

(FMAM) 

-0.324 0.005 -0.022 -0.090 0.510 -1.860 0.388

Wet season 

(ONDJF- 

MAM) 

-0.387 0.000 -0.020 -0.09 0.53 -4.340 0.595

Dry season 

(JJAS) 

-0.363 0.02 -0.020 -0.10 0.51 0.000 0.505
1 ONDJ is the October, November, December and January period. FMAM is the February, March, April and May period, ONDJFMAM is the wet season from October 

o May and JJAS is the June, July, August and September. 

12 
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