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Abstract

Potato (Solanum tuberosum L.) is one of the most important food crops worldwide but

its cultivation is affected by numerous challenges including pests, diseases and high

fertiliser requirements which have associated environmental problems. The exploitation

of plant rhizospheres and their associated rhizobacterial interactions has gathered

momentum worldwide in search of environmentally-friendly approaches to crop culti-

vation. A lot of literature exists on rhizobacterial associations and their biofertilisation

or bioprotection roles in many plants. However, very scanty information is available on

rhizobacterial functions and communities of the potato, an indication that they are still

understudied. In this regard, more research is needed to understand and exploit them for

the successful application of rhizobacteria-based technology in potato cropping. This

review updates our knowledge of the beneficial rhizobacteria of the potato and

documents their roles in its bioprotection, phytostimulation and biofertilisation while

highlighting their potential in enhancing its production and productivity. The future

prospects regarding the research on these important potato microflora are further

discussed as a guide and a baseline for future research on them. This review shows

that rhizobacteria-based technology is a viable option for potato biofertilisation and

bioprotection and could be the missing link in its sustainable cropping. The adoption

and full exploitation of this technology can be fast-tracked if we increase our under-

standing of the subject matter.
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Introduction

Potato (Solanum tuberosum L.) is one of the most important non-cereal food crops and

is consumed by more than a billion people worldwide (FAO 2014). It is ranked as the

fourth most cultivated and consumed crop globally after maize, wheat and rice because

of its high nutritive value and yield productivity to soil occupation ratio in comparison

with other crops (FAO 2008, 2017). Reports also document it as a crop with the highest

production rates for food energy and value per unit area of land and with the ability to

grow in the widest range of altitudes, latitudes and climatic conditions (Wu et al. 2013).

Furthermore, it is evidenced to give rise to more nutritious food, more quickly, on less

land and in severer conditions than any other crop, and up to 85% of it is edible as

compared with just about 50% in cereals in addition to containing the highest (2.1% of

fresh weight) protein content among the tuber crops (FAO 2008). The latest statistics

show that potato is produced in 82% of all countries in the world, with its production in

2014 estimated at 382 million tonnes (FAO 2017). As such, the potato is undoubtedly

the world’s most economically and nutritionally important crop, and as the world’s

population continues to rise and arable land continues to shrink, this crop will certainly

become an integral part of the global food security systems (FAO 2008).

Despite its economic and nutritional importance, potato cultivation is affected by

many factors worldwide (Wu et al. 2013). It is susceptible to numerous pests and

diseases resulting in huge economic losses and increased production costs (Hill and

Lazarovits 2005). The potato is also one of the heaviest fertiliser demanding crops (Wu

et al. 2013), requiring as high as 250 kg ha−1 of nitrogen (N) and 150 kg ha−1 of

phosphorus (P) (George and Ed 2011). Consequently, potato cultivation is heavily

dependent on the application of synthetic fertilisers and pesticides for yield

maximisation and pathogen control, respectively. As a direct result, production costs

are often very high and this is coupled with environmental degradation from chemical-

based production (Mohammadi and Sohrabi 2012).

Current efforts towards sustainable agriculture over the world are focused on

environmentally friendly approaches (Hungria et al. 2013) such as the use of beneficial

rhizosphere bacteria (Naqqash et al. 2016). These are indigenous bacteria localised in

plant rhizospheres, with the capability of improving plant growth through several

processes (Raza et al. 2016), either by direct mechanisms such as biofertilisation

(Archana et al. 2013; Parmar and Sindhu 2013), stimulation of root growth,

rhizoremediation and plant stress control (Govindasamy et al. 2010; Grover et al.

2011), or indirect mechanisms such as bioprotection through antibiosis, induced

systemic resistance (ISR) and competition for nutrients and niches with plant pathogens

(Nivya 2015; Singh and Jha 2015).

According to Hungria et al. (2013), rhizobacteria-based technology should be

studied and exploited as an alternative to chemical-based agriculture. Reports indicate

that beneficial rhizobacteria of potatoes are still largely unexplored and data relating to

their colonisation and plant growth promotion (PGP) potential are also very limited

(Andreote et al. 2009; Mohammed et al. 2013). Over the last two decades, some

research has been done on effects of microbial inoculation on potato yield improvement

(Duffy and Cassells 2000; Davies et al. 2005), bioprotection (Whipps 2004) and other

aspects of PGP, but this is still far from enough considering the wealth of knowledge

available on rhizobacterial communities and functions associated with other plants. In
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this review, the beneficial rhizobacteria of the potato and the roles they play in its

growth, as well as their potential in its production and productivity, are discussed. The

review further tries to critically evaluate some future prospects and research regarding

potato beneficial rhizobacteria while highlighting some of the knowledge gaps that still

exist in this regard. Such information can guide future research work on potato

beneficial rhizobacteria which will eventually contribute to its sustainable cropping.

Beneficial Rhizobacteria of the Potato

Over 60 bacterial genera including Arthrobacter, Comamonas, Curtobacterium, En-

terobacter, Paenibacillus, Pantoea, Serratia, Sphingobacterium, Stenotrophomonas,

Variovorax, Xanthomonas, Agrobacterium, Bacillus and Pseudomonas have frequently

been identified by culture-dependent methods in potato rhizospheres (Diallo et al.

2011). Studies of potato rhizospheres and endospheres using culture-independent

methods like the 16S rRNA gene-based techniques and sequencing analysis have also

confirmed the presence of Agrobacterium, Arthrobacter, Bacillus, Curtobacterium,

Micrococcus, Pseudomonas, Sphingobacterium and Streptomyces genera (Garbeva

et al. 2001; Smalla et al. 2001; Reiter et al. 2003; Berg et al. 2005).

Previous culture-dependent and culture-independent studies have provided a com-

plementary representation of rhizobacterial communities of potato and confirmed some

level of specificity for different microenvironments (Berg et al. 2005). In a study done

by Istifadah et al. (2018), isolation of bacterial endophytes from healthy potato roots

and tubers resulted in a total of 88 isolates and 78% of these were from potato roots

while only 18% were from potato tubers. Generally, bacterial densities in the potato

rhizosphere have been shown to occur in the range of 107–108 colony forming units

(CFU) g−1 of fresh weight (Berg et al. 2005), and endorhizal populations are approx-

imately 100–1000 times less dense than the rhizospheric ones (Berg et al. 2005; Rasche

et al. 2006). Pseudomonas spp. which are well-known for plant bioprotection are

highly represented in potato endorhiza where their population can reach 36–48% of

isolates (Garbeva et al. 2001). Pseudomonas fluorescens and P. putida are documented

to extensively colonise potato rhizosphere soils in the range of 106–108 CFU g−1 root

(Cirou et al. 2007). In previous studies, potato endophytic Proteobacteria,

Actinobacteria, Flexibacter, Cytophaga and Bacteriodetes genera were identified by

Reiter et al. (2003) and Sessitsch et al. (2004). Similarly, pyrosequencing analysis of

potato root endophytes also revealed the presence of different Proteobacteria,

Cyanobacteria, Firmicutes, Acidobacteria, Actinobacteria, Bacteriodetes, Chloflexi,

Planctomycetes, Fusobacteria, Verrucomicrobia, Gemmatimonadetes and other uniden-

tified bacteria families (Manter et al. 2010). Nevertheless, species of Pseudomonas,

Bacillus, Enterobacter and Agrobacterium genera appear to be the most common

culturable bacterial endophytes found in potato (Manter et al. 2010).

Despite the reports available on several potato rhizobacterial communities, very few

reports exist on the beneficial functions of these rhizobacteria considering the wealth of

information on beneficial rhizobacterial functions of other plants like cereals and

legumes (Naqqash et al. 2016). Some studies have indicated that Bacillus sp. and

Pseudomonas sp. are associated with the improvement of P-uptake in potato (Hanif

et al. 2015), production of indole-3-acetic acid (IAA), biocontrol activities (Hunziker
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et al. 2015) and ISR (Ardanov et al. 2011). In the study by Naqqash et al. (2016),

Pseudomonas sp., Azospirillum sp., Enterobacter sp. and Rhizobium sp. isolated from

potato rhizospheres were all shown to have PGP effects on growth of the plant in terms

of height, fresh and dry weight of roots and shoots and total N levels. Pseudomonas

fluorescens and P. putida have also been extensively shown to colonise potato rhizo-

spheres (Cirou et al. 2007) and could thus be important regulators of potato growth.

Bacillus spp. are reported to contribute significantly to plant health in a number of

ways including through atmospheric dinitrogen gas (N2) fixation, P-solubilisation,

antagonistic properties, ISR, production of siderophores and IAA (Ali et al. 2014).

However, very little is known about the ecology, genomics and role of Bacillus spp.

capable of P-solubilisation and phytate mineralisation in soils in the potato rhizosphere.

Generally, a lot of investigations are still needed for the potato rhizosphere and

endosphere since only a few reports exist on beneficial rhizobacteria associated with

them. It is now recognised that potato rhizospheres host important bacterial diversity

globally and since just over 60 genera have been found in these microenvironments, it

is thought that numerous other rhizobacteria associated with this important plant are yet

to be discovered (Diallo et al. 2011). It is also established that potato soil rhizobacterial

communities, just like those of most other crops, shift according to site and cultivar, and

in this regard, determination of rhizobiome common to all sites and cultivars could

uncover potato competent microbes important for crop productivity and health in a

variety of locations (Barnett et al. 2015).

Roles of Beneficial Rhizobacteria in Potato Growth

Just like in other crops, potato rhizobacteria exhibit several PGP mechanisms which are

important in potato growth regulation. Figure 1 illustrates the different roles played by

beneficial rhizobacteria in the potato rhizosphere. These roles are discussed in the

‘Bioprotection of the Potato’, ‘Phytostimulation of the Potato’ and ‘Biofertilisation of

the Potato’ subsections.

Bioprotection of the Potato

The potato plant is prone to attack by several soil-borne pathogens which often result in

poor yields and huge economic losses in the range of 15 to 25% globally (Oerke 2006).

For some of these pathogens like Fusarium spp., causing dry rot, and Phytophthora

infestans, causing late blight, effective chemical control can be difficult (Gachango

et al. 2012). Beneficial rhizobacteria showing biological control activities which are

commonly referred to as biocontrol agents, bioprotection agents or biopesticides

(Diallo et al. 2011) offer suitable alternatives to chemical control of these pathogens

which is often undesirable in a number of ways.

Biocontrol and bioprotection activities of beneficial rhizobacteria have been reported

extensively in many plants but relatively few reports exist on potato bioprotection.

According to Clermont et al. (2011), there is little information regarding the interactions

between important potato pathogens and rhizobacteria which can be exploited for

potential control of these pathogens. Species of Pseudomonas and Bacillus are the

most studied biocontrol rhizobacteria in potato (Ardanov et al. 2011). Bacillus spp. are
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especially important and have gathered a lot of attention not only because of their

bioprotective abilities (Diallo et al. 2011), but also due to their ability to produce

endospores which promotes their resistance to environmental stresses (Adesemoye

et al. 2017). Reports show that different strains and species of Bacillus exhibit different

biocontrol mechanisms; hence, understanding these mechanisms is a prerequisite to the

facilitation of their selection, formulation and effective practical applications (Devi

et al. 2016). Together, Pseudomonas and Bacillus spp. have widely been investigated as

potato bioprotection agents under in vitro and screen-house conditions, but still not

much data is available regarding their successful application under field conditions

(Diallo et al. 2011). Some potato-associated endophytes are also reported to antagonise

its fungal and bacterial pathogens by means of enzymes, antibiotics and siderophores

(Sessitsch et al. 2004). For instance, Lysobacter sp. from the potato rhizosphere at the

flowering stage can exhibit excellent antagonism to a number of the crop’s pathogens

(Van Overbeek and Van Elsas 2008). Other instances where beneficial rhizobacteria of

potato have been shown to exhibit bioprotection to the crop are provided in Table 1.

Bioprotection by ISR occurs when the interaction between a rhizobacterium and a

plant host induces the plant to resist a pathogen to which it was previously susceptible

(Gouda et al. 2018). In potato, ISR has commonly been linked to Rhizobium sp. (Reitz

et al. 2001). The literature suggests that Bacillus subtilis is also a promising biocontrol

agent against potato pathogenic Pectobacterium spp. in planta via ISR (Aliye et al.

2008). For instance, the rhizobacterium B. subtilis GB03 is documented to reduce

major soil-borne diseases of potato such as stem and stolon canker, blank scurf and

common scab by 20–38%, 30–58% and 10–34%, respectively, through ISR (Larkin

and Tavantvis 2013). It is hypothesised that ISR elicitors function to trigger changes in

plant cell wall composition and production of pathogenesis-related proteins (Bakker

et al. 2007), and can influence the activation of a number of plant defense mechanisms
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Fig. 1 Beneficial functions of rhizobacteria in the potato rhizosphere
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Table 1 Beneficial rhizobacteria exhibiting biocontrol activities against potato pathogens

Pathogen Disease Rhizobacteria Type of assay Biocontrol mechanism Reference

Fusarium oxysporum Dry rot Bacillus sp. In vitro screening and tuber
assays

Antibiosis, ISR and lytic
enzymes

Kotan et al. 2009

Fluorescent Pseudomonads Tuber assays Antagonism/antibiosis Schlisler et al. 2000

Enterobacter cloacae Tuber assays Antagonism/antibiosis Schlisler et al. 2000

Burkholderia cepacian Pot assays Antagonism Kotan et al. 2011

Phytophthora infestans Late blight Pseudomonas sp, Bacillus spp. Pot assays VOCs1 Hunziker et al. 2015

P. koreensis Greenhouse trials Antagonism Hultberg et al. 2010

P. putida Soil trials Antibiosis/competition Andreote et al. 2009

Arthrobacter sp., Pseudomonas sp.,
Stenotrophomonads

In vitro screening Antagonism Bharadwaj et al. 2008

Ralstonia solanacearum Bacterial wilt Lysobacter sp. In vitro screening Antibiosis Van Overbeek and
Van Elsas 2008

Bacillus sp., Pseudomoans sp.,
Serratia sp.

Field tests Antagonism Tahir et al. 2016

Rhizoctonia solani Stem cankers B. subtilis In vitro screening Antagonistic compounds Brewer and Larkin
2005

Lysobacter sp. Antibiosis Van Overbeek and
Van Elsas 2008

Bacillus spp. Antibiosis/siderophores Kumar et al. 2013

P. putida Hydrolytic enzymes Berg et al. 2005

Arthrobacter sp., Pseudomonas sp.,
Stenotrophomonads

Antagonism Bharadwaj et al. 2008

Verticillium dahliae Verticillium
wilt

P. putida, Cytophaga,
Stenotrophomonas

In vitro screening Hydrolytic enzymes Berg et al. 2005

Arthrobacter sp., Pseudomonas sp.,
Stenotrophomonads

In vitro screening Antagonism Bharadwaj et al. 2008

P
otato
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Table 1 (continued)

Pathogen Disease Rhizobacteria Type of assay Biocontrol mechanism Reference

Streptomyces scabies Common scab Non-pathogenic Streptomyces spp. Field tests Competition Hiltumen et al. 2009;
Wanner et al. 2014

P. fluorescens In planta VOCs Arseneault et al. 2013

Non-pathogenic Streptomyces In vitro screening Antibiosis/competition Hiltumen et al. 2009

B. amyloliquefaciens Pot and field assays Lipopolypepeptides Lin et al. 2018

P. mosselii Field tests Not clear Singhai et al. 2011

Pectobacterium
carotovorum

Soft rot Arthrobacter sp., Pseudomonas sp.,
Stenotrophomonads

In vitro screening Antagonism Bharadwaj et al. 2008

1Volatile organic compounds
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otato
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(Borowicz 2001). Although ISR is not normally pathogen-specific (Kamal et al. 2014),

this type of antagonism holds immense benefits due to its broad spectrum of action and

its successful exploitation could transform crop production (Gouda et al. 2018).

However, it should be noted that this has only been done at the laboratory trial level

and its applicability in the field is still lacking.

Application of mixtures of different beneficial rhizobacterial strains to seeds and

seedlings can result in increased ISR in some instances (Ramamoorthy et al. 2001). In

potato, Rhizobium sp. and Pseudomonas sp. when inoculated together are capable of

increased ISR (Reitz et al. 2001; Ardanov et al. 2011). Aliye et al. (2008) also

demonstrated that Ralstonia solanacearum, causing bacterial wilt in potato, is con-

trolled through ISR by Fluorescent Pseudomonads in field trials and by B. subtilis and

Paenibacillus macerans in vitro. The development of ISR in potato plants against

Rhizoctonia solani causing stem cankers after inoculation of tubers with different

rhizobacteria is reported in several studies. Earlier reports show that ISR-eliciting

rhizobacterial antagonists against P. infestans and F. oxysporum are more abundant in

potato endorhiza than in the rhizosphere (Sturz et al. 1999). The preferential

localisation of biocontrol rhizobacteria of different pathogens remains to be explored,

but it is hypothesised that a higher level of intimacy between the endophytes and the

potato plant could be responsible for better ISR elicitation (Diallo et al. 2011). Other

studies have shown bioprotection capabilities of endophytic rhizobacteria in potato via

ISR (Sessitsch et al. 2004; Hong-Xian et al. 2005; Palvo et al. 2011).

However, more investigations are required since the ISR-eliciting metabolic path-

ways are still poorly understood (Ramos Salano et al. 2008), and data on their

successful field applications for potato bioprotection are scarce (Diallo et al. 2011).

Production of siderophores is widely reported as another mechanism that is com-

monly associated with rhizobacterial bioprotection of crops (Saha et al. 2016).

Siderophores are low molecular weight (500–1000 Da) iron (Fe)-binding substances

synthesised by microorganisms under low-iron conditions (Tank et al. 2012; Mhlongo

et al. 2018). Very few potato rhizobacteria have been associated with the production of

siderophores in iron-limiting conditions. Two Erwinia species were reported to produce

siderophores during the screening of endophytic rhizobacteria with PGP abilities in

potato cultivars in Spain (Garcia et al. 2005). A similar report has also indicated that

certain potato endophytic rhizobacteria like Pseudomonas spp., Arthrobacter spp.,

Methylobacterium sp., Paenibacillus spp., Clavibacter spp. and Microbacterium spp.

can reduce the in vitro growth of S. scabies and Xanthomonas campestris through the

production of siderophores (Sessitsch et al. 2004). Several Bacillus spp., Pseudomonas

spp. and one Serratia sp. are also documented as siderophore producers in a recent

study (Tahir et al. 2016). Findings from older studies reveal that the ability to inhibit

pathogen growth by siderophore-producing endophytic potato rhizobacteria tends to

decrease in rhizobacteria colonizing deeper tissues, suggesting that siderophore pro-

duction could be tissue-specific (Sturz et al. 1999), but this still needs more

investigations.

The iron-chelation phenomenon is understood to create a state of iron deficiency in

soil resulting in inhibition of plant pathogens and thus reducing their competitiveness

(Tank et al. 2012; Solanki et al. 2014). Furthermore, the process is also very important

in stimulating plant growth directly by increasing iron availability in the soil

(Indiragandhi et al. 2008; Tank et al. 2012). Since Fe is one of the frequently limiting

Potato Research



micronutrients in soils, (Rajkumar et al. 2010), by binding Fe, siderophore-producing

rhizobacteria function to increase its availability to plants (Radzki et al. 2013; Mathew

et al. 2014). According to Loaces et al. (2011), the ability of endophytic rhizobacteria to

produce siderophores has barely been studied in many crops including the potato, yet it

confers competitive advantages to plants through pathogen exclusion and improvement

of Fe nutrition. Siderophore production is thus a classic example of how established

beneficial rhizobacteria can increase their competence in the rhizosphere and due to its

indisputable importance, further exploration of siderophore production and

siderophore-producing rhizobacteria associated with potato should be investigated for

better understanding.

Production of volatile organic compounds (VOCs) is another mechanism of PGP by

beneficial rhizobacteria (Nivya 2015; Raza et al. 2016; Mhlongo et al. 2018). The PGP

effects mediated through rhizobacterial VOCs production are recognised as a potential

and environmentally sound way of controlling plant pathogens (Heydari et al. 2008).

However, the spectrum of action of these VOCs is documented to depend not only on

environmental conditions such as temperature and pH but also on the producing species

(Saraf et al. 2014). In a previous study screening different potato-associated Pseudo-

monas strains for anti-oomycete potential, several strains showed various degrees of

VOC-mediated efficacy against P. infestans mycelial growth (De Vrieze et al. 2015).

Reports by Hunziker et al. (2015) document the ability of indigenous communities of

Pseudomonas strains of potato plants to produce VOCs with high potentials for

inhibiting P. infestans by significantly reducing mycelial growth, sporangium

formation and spore formation and release. Fairly recent studies by Arseneault et al.

(2013) illustrate the potential of the Fluorescent Pseudomonad, P. fluorescens

LBUM233, to control common scab disease in potato, caused by S. scabies, under

controlled soil conditions through the production of phenazine-1-carboxylic acid

(PCA). However, these studies were not conclusive and their validation under field

conditions is still required to further develop the isolate for biological control of potato

scab (Arseneault et al. 2015). Previous studies on another PCA-producing

P. fluorescens revealed that biocontrol efficiency was highly dependent on certain

environmental factors such as nutrient availability, pH and soil silt composition

(Ownley et al. 2003). Rhizobacterial PCA affects a large number of cellular activities

in S. scabies but its effects on other potato pathogens, for example, the pathogenic

Streptomyces, are still unknown and remain to be elucidated. More investigations into

rhizobacterial VOCs and the sensitivity of important pathogens to them are therefore

required to better understand their bioprotection systems in potato. The metabolite

complexity of VOCs is also attributed to differences in rhizobacterial species and

genotypes (Tyc et al. 2015; Kai et al. 2016), hence the need to investigate VOC-

producing ability in different rhizobacterial strains and species of the potato.

Some rhizobacteria exhibit bioprotective qualities and subsequently PGP through

the production of lytic enzymes (Meena et al. 2016). Examples of such enzymes

include chitinases, dehydrogenases, glucanases, lipases, phosphatases, proteases and

hydrolases, all of which are known for hyper-parasitic activity through cell wall

hydrolysis (Goswami et al. 2016). In the study done by Sessitsch et al. (2004), several

endophytic rhizobacteria of potatoes including Sphingomonas sp. and Paenibacillus sp.

were shown to produce a wide spectrum of hydrolytic enzymes such as glucanases,

chitinases, proteases and pectinases. The study by Berg et al. (2005) also identified
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several potato rhizobacteria with the capability of expressing pectinolytic, cellulolytic,

chitinolytic and proteolytic activities. Beneficial rhizobacteria that produce such en-

zymes can play significant roles in PGP by protecting plants from biotic stresses

through pathogen inhibition (Upadyay et al. 2012; Nadeem et al. 2013). For example,

glucanases synthesised by strains of Paenibacillus and Streptomyces spp. can easily

degrade fungal cell walls of pathogenic F. oxysporum (Compant et al. 2005). Similarly,

B. cepacia is also reported to synthesise glucanases that destroy the cell walls of a

number of soil-borne pathogens including R. solanacearum (Sadfi et al. 2001). Both

F. oxysporum and R. solanacearum are also pathogens of the potato (Sadfi et al. 2001);

thus, such rhizobacteria and their lytic enzymes could be handy in its bioprotection.

Rhizobacteria which produce lytic enzymes like Pseudomonas sp. and Bacillus sp.

have commonly been isolated from potato rhizospheres (Hunziker et al. 2015). These

and other potato rhizobacteria should be explored further for production of lytic

enzymes and possession of other PGP traits to come up with novel species which

can be applied and used as alternatives to synthetic pesticides and fertilisers (Gouda

et al. 2018).

Reports show that potato-associated rhizobacterial antagonists are very specific for

each microenvironment (Berg et al. 2005). Previous studies by Van Overbeek and Van

Elsas (2008), investigating the effects of genotype, plant growth, soil and season on

potato-associated rhizobacteria, revealed that plant growth stage overwhelmingly af-

fects the diversity and composition of these bacterial communities. Such differences

justify the need to ensure a compatible combination of host-rhizobacteria systems to

ensure successful application in bioprotection and yield improvement (Davies et al.

2005), in potato (Klironomos and Hart 2002), even though local or indigenous isolates

are usually recommended for biotechnological applications (Klironomos 2003).

Much attention has been drawn to the potential of plant rhizobacteria as biocontrol

and bioprotection agents of soil-borne pathogens as an alternative or complementary

strategy to synthetic pesticides (Murphy et al. 2000; Berg and Smalla 2009), and are

promising for controlling potato pathogens (Wu et al. 2013). However, rhizobacterial

biocontrol of many potato pathogens is still too poorly understood for their successful

application and more knowledge is required on their dynamics, composition and

complex disease suppression and regulatory mechanisms especially in response to

biotic and abiotic factors (Normander and Prosser 2000). Rhizobacterial selection as

potential biocontrol and bioprotection agents of potato pathogens must take into

consideration different agroecosystem properties such as temperature, salinity and soil

pH (Sturz and Christie 2003). Furthermore, knowledge of the mode of action and

activity of different rhizobacterial siderophores, lytic enzymes, antibiotics and VOCs

among the potato rhizobacteria could increase their applicability (Saraf et al. 2014).

Further research on their ecology and biocontrol activities will improve our ability to

use the potato rhizobacteria communities for effective disease control. Additionally,

studies on their genomic sequences will provide useful insights into plant-microbe-

pathogen interactions and possibly induce greater disease resistance (Saraf et al. 2014).

Phytostimulation of the Potato

The enhancement of crop productivity by beneficial rhizobacteria is largely attributed

to the production of growth-stimulating phytohormones such as IAA, GA, zeatin,
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ethylene and abscisic acid (ABA) that are responsible for increased foliage, root

elongation and fruit yield (Fahad et al. 2015; Hassen et al. 2016; Mhlongo et al.

2018). A number of studies have illustrated IAA production by potato rhizobacteria

and its role in stolon induction and tuber initiation in potato has been documented in a

previous study (Dragivec et al. 2008). According to Naqqash et al. (2016),

Azospirillum, Pseudomonas, Enterobacter and Rhizobium spp. can produce IAA with

or without L-tryptophan supplementation. In a study by Hanif et al. (2015), B. subtilis

isolated from potato rhizosphere was shown to produce up to 6.48 μg ml−1 IAA. Calvo

et al. (2010) also report that Pseudomonas sp. and Bacillus sp. associated with potato

are capable of IAA production. Earlier studies by Sessitsch et al. (2004) also revealed

the ability of Sphingomonas sp., Pseudomonas spp., Paenibacillus sp., Arthrobacter

sp., Microbacterium sp. and Clavibacter sp. isolated from potato to produce IAA. In a

quite recent study, Henagamage et al. (2016) showed that certain rhizobacterial isolates

from the potato rhizosphere can produce very high quantities of IAA in the range of

2.2–21.54 μg ml−1. Similarly, in a study by Tahir et al. (2016), several potato

rhizospheric Bacillus spp. and Serratia sp. are documented to produce relatively high

IAA ranging from 3.8 ± 1.5 μg ml−1 to 40 ± 1.29 μg ml−1.

Phytohormone production is a desirable trait alongside other PGP features among

rhizobacteria (Marschner et al. 2011). For instance, IAA is known to promote plant

growth by increasing root surface area and root tip elongation (Lu et al. 2015), and

proliferation of lateral roots and root hairs and thus enhancement of plant uptake of

minerals and nutrients from the soil (Sureshbabu et al. 2016). In some cases, IAA-

producing rhizobacteria have been implicated in PGP by lateral root development

alongside P-solubilisation potential (Venieraki et al. 2011). Interestingly, Pseudomonas

spp. which are also commonly associated with the potato rhizosphere possess many

other PGP traits in addition to IAA production and hence these organisms have a great

potential to be exploited and developed as bioinoculants (Marathe et al. 2017), and such

potential and application are worth investigating among other Pseudomonads and

rhizobacteria associated with the potato.

Biofertilisation of the Potato

The global rise in potato demand has expanded production to seasons and agroecolog-

ical conditions outside the crop’s normal range. In a quest to avail nutrients for

maximisation of yields, artificial fertilisers have constantly been used in its production.

This has not only raised the costs of production, but it has also led to environmental

degradation (Youssef and Eissa 2014). Rhizobacteria with the capability of solubilizing

insoluble soil nutrients are promising biofertilisers (Daman et al. 2016) and are worth

exploiting for potato production. Just like other crops, important nutrients that affect the

growth of potato are N, P, K and Zinc, among others. Although the average P content in

most soils is 0.05%, only about 0.1% of this is available for uptake by crops due to its

immobilisation and low solubility capacity (Jorquera et al. 2011; Alori et al. 2017).

Such low P concentration in soils makes this important nutrient very limiting for potato

growth (Rosen et al. 2014). Adequate P nutrition is critical for tuber development in

potato as well as high photosynthetic rate maintenance during tuber bulking (Wu et al.

2013), and improvement of protein contents (Mishra et al. 2007). Reports indicate that

the potato has a much lower root density and limited ability to take up P fertilisers than
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most crops; hence, P deficiency is usually a limiting factor in its cultivation (Rosen

et al. 2014).

A number of studies have focused on P-solubilisation by potato rhizobacteria. For

instance, during a study screening some endophytic potato rhizobacteria with PGP

abilities in Spain, two Erwinia species showed inorganic P-solubilisation alongside the

production of siderophores (Garcia et al. 2005). Similarly, in a study by Hanif et al.

(2015), potato rhizospheric Pseudomonas sp. and B. subtilis inoculated on insoluble

tricalcium phosphate (Ca3(PO4)2) exhibited remarkable P-solubilisation potential and

the latter was able to solubilise 66.44 μg ml−1 of Ca3(PO4)2 within 10 days of

inoculation with a P-solubilisation index of 1.62. In the same study, a greenhouse

experiment revealed that potato inoculation with B. subtilis showed increased root and

shoot lengths as well as dry and wet weights of shoots and roots in pots supplemented

with phytates, which are insoluble organic forms of P, as compared with uninoculated

plants, showing that B. subtilis can mediate the conversion of organic P substrate

(Richardson and Simpson 2011). In a different study, a number of potato rhizospheric

bacteria were also reported to be involved in P-solubilisation, and their inoculation on

potato tubers resulted in increased yields in comparison with uninoculated plants

(Vosatka and Gryndler 2000).

Although P and phytate-solubilizing bacteria are commonly found in most

soils, their establishment and activities are affected by different environmental

factors (Ahemad and Khan 2012), and this should also be investigated for potatoes

grown under different agroecosystems. The P solubilizing ability of rhizobacteria

has been linked by some researchers to their genotypic constitution (Gyaneshwar

et al. 2002). Understanding the genetic basis of P-solubilisation would be an

important element in transforming more competent potato rhizobacteria into P-

solubilizing rhizobacteria in the future (Wu et al. 2013). Such advances could

eventually lead to their effective use as biofertilisers to reduce or eliminate the use

of synthetic P fertiliser inputs (Asok and Jisha 2006; Shah et al. 2007) in potato

production.

Bacteria having the ability of both P-solubilisation, and phytate mineralisation are

widespread in the rhizosphere of different crops (Shahid et al. 2012) and offer a great

promise for agricultural applications (Khan et al. 2006; Richardson and Simpson 2011).

Evidence suggests that effective strains of P-solubilizing rhizobacteria can save up to

30–50 kg ha−1 of inorganic P2O5 fertilisers (Richardson et al. 2009). However, several

knowledge gaps still exist concerning the solubilisation of other important plant

nutrients such as potassium (K) (Parmar and Sindhu 2013), in the potato (Kumar and

Dubey 2012), yet K is one of the limiting nutrients in crop production (Gouda et al.

2018). In an Iranian study conducted by Hosni et al. (2016), it was shown that

inoculation of potato tubers with Pseudomonas spp., B. megaterium and B. subtilis

both as dual and separate cultures showed a significant positive effect on tuberisation

and yield. Studies have indicated that the ability of rhizobacteria to solubilise K

depends on soil type, microbial strain and the form of K available in soil (Sangeeth

et al. 2012). Potassium-solubilizing rhizobacteria like Rhizobium spp., Pseudomonas

spp. and Bacillus spp. have been implicated in increased plant growth and yield of

different crops (Ahmed and El-Araby 2012; Guimarães et al. 2016; Yasin et al. 2016).

These rhizobacteria have all also been isolated from potato rhizospheres and it would

be important to study their K-solubilisation potential for the potato as well. Eventually,
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such rhizobacteria can be harnessed and exploited to improve K availability in K-

limiting soils (Bationo et al. 2012) for potato cultivation.

Nitrogen is one of the most important nutrients required for plant growth, but over

80% of this is unavailable to plants and therefore must be converted to forms which can

be taken up by plants such as ammonia (NH3) and nitrates (NO3
−) (Thamer et al. 2011).

Biological N2-fixing rhizobacteria produce the nitrogenase enzyme which they use to

convert free atmospheric N2 into NH3 (Dighe et al. 2010) and hence have important

potential in biofertilisation in the absence of nitrogenous fertilisers (Kuan et al. 2016).

However, very few studies report on rhizobacterial N2 fixation in potato. In the study

done by Naqqash et al. (2016), rhizobacterial Azospirillum sp., Pseudomonas sp. and

Rhizobium sp. were all implicated in N2 fixation in the potato. The association between

symbiotic N2-fixing rhizobacteria, commonly exhibited in legumes, has also been

observed in some non-leguminous plants like sugarcane (Saccharum officinarum L.)

(Thaweenut et al. 2011), implying that endophytic N2 fixers can also form symbiotic

interactions with non-legume crops. There is need, therefore, to investigate such

potential among the endophytic rhizobacteria of potato as this can increase their

applicability. It is especially important to understand endophytic N2 fixation since

endophytic rhizobacteria exhibit greater PGP abilities than the free-living external

rhizobacteria (Diallo et al. 2011).

Future Prospects and Research on Rhizobacteria-Based Technology
for Sustainable Cropping of Potato

Several beneficial rhizobacterial strains are now being formulated and made commer-

cially available as biofertilisers and biocontrol agents (Jha and Saraf 2015; Mhlongo

et al. 2018), and are substantially gaining popularity due to extensive research that has

enhanced their effectiveness and understanding (Berg 2009). However, biofertilisers of

the potato are still rare in the global market, hence the need for more research on their

applicability. Research shows that potatoes harbor diverse communities of indigenous

bacteria in their rhizospheres which can be important in growth promotion especially in

nutrient deficient soils (Wu et al. 2013), as has also been demonstrated in different

crops (Guimarães et al. 2016). Such rhizobacterial communities should be studied

extensively if their successful application is to be realised for the sustainable cropping

of the potato.

With regard to biocontrol agents, complications often arise because crops are grown

under varying climatic conditions causing discrepancies in their potentiality (Gupta

et al. 2015). Understanding the relationships between the potato and its rhizospheric

communities under different climatic and agroecological conditions is therefore critical

to the development and success of rhizobacteria-based technology for its production. It

is also necessary to screen and optimise these microbes for more novel PGP abilities

which could eventually lead to the full understanding of how they can successfully be

harnessed for potato productivity. With time, researchers should be able to develop

better biofertilisers and/or bioprotectants with improved shelf life and possessing better

and efficient traits for the potato just as has been done for other plants.

Microbial formulations have immense advantages over their synthetic counterparts

and rhizobacteria-based technology is a promising, sustainable and environmentally
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friendly approach for fertilizing the potato. There is still a huge scope for enhancing

potato productivity using this technology. Areas of research should focus on isolation

and screening of potential beneficial rhizobacteria and their mass production, viability,

safety and stability of biofertiliser formulations, as well as quality control and field

efficacy tests (Vijay et al. 2017). The screening, selection and optimisation of novel

beneficial rhizobacteria of potatoes will require comprehensive knowledge and con-

trolled field trials for maximum exploitation and commercialisation (Bhattacharyya and

Jha 2012). Furthermore, the effect of inoculations in field conditions is a complex

phenomenon (Farmer et al. 2007), and more attention should be paid to the appropriate

screening and selection of potato rhizobacterial communities (Wu et al. 2013). Such

efforts will eventually increase our knowledge of the composition, diversity and

community dynamics and offer possibilities for their advancement in potato production

(Wu et al. 2013).

Molecular genetic studies have been used to reveal the interaction between

rhizobacteria and potato plants as well as rhizobacterial genetic diversity (Wu et al.

2013). However, it is still unclear whether functional genes and their activities identi-

fied by such approaches can explain the effects of microbial communities on plant

biofertilisation and biocontrol (Wu et al. 2013). Future research in potato rhizosphere

biology should rely on developing molecular and/or biotechnological approaches to

increase our knowledge of soil microbial populations (Vijay et al. 2017; Gouda et al.

2018). Researchers have indicated that current and future knowledge about

rhizobacterial diversity, colonisation potential, mechanisms of action, formulation and

application as well as assays for efficacy in vitro and in vivo in different plants,

including the potato, could help facilitate their development and adoption as reliable

components in crop production (Vijay et al. 2017). Hence, all these aspects must be

investigated extensively for the potato. Over the past few decades, great strides have

been made to enhance rhizobacterial antagonisms to improve their spectrum of activity

against plant pathogens and enhance their tolerance to abiotic stresses (Saraf et al.

2014). For instance, several attempts have been made to improve biocontrol agents of

different plant pathogens including F. solani, R. solani and F. oxysporum using physical

mutagens (Wafa 2002). However, the literature on such attempts with rhizobacteria of

the potato is still scarce and more needs to be done.

Some researchers have indicated that the production of PGP substances by

rhizobacteria is related to the improvement of plant water stress tolerance (Khalil and

El-Noemani 2015), but this is not clear for the potato. Such rhizobacteria can become

immensely important especially in the wake of climate change. It is suggested that the

application of multi-strain bacterial consortia over single inoculants is an effective

approach to plant stress control (Wu et al. 2013; Vijay et al. 2017) and provides better

PGP (Hungria et al. 2013), and this can also be investigated in potato to enhance its

biofertilisation.

Current and future developments in understanding the functional diversity, rhizo-

sphere colonizing ability, modes of action and optimisation of nutrient-solubilizing

rhizobacteria are likely to facilitate their use as sustainable components in potato

productivity. This will not only increase the field of the inoculants but also create

confidence among the farmers for their use. Future research on beneficial rhizobacteria

of potato should also focus on optimizing growth conditions, increasing shelf life,

tolerance to diverse environmental conditions and cost-effectiveness to ensure their
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adoption as viable alternatives to chemical inputs for increased production and pro-

ductivity (Vijay et al. 2017). In the same perspective, current and future research also

needs to focus on rhizoengineering of potatoes (Tewari and Arora 2013), by manipu-

lating the rhizosphere to favor the growth of targeted rhizobacteria (Lugtenberg et al.

2001), and to optimise the rhizobacteria-based technology for their production.

Matching appropriate rhizobacteria with the right potato cultivars and environmental

conditions will also be helpful in achieving the best results from this promising

technology (Arora et al. 2012).

Conclusion

Crop production, productivity and sustainable agriculture are some of the pressing

issues in the world today. The potato holds a special place in present and the future

global food security systems and the search for environmentally friendly and sustain-

able technologies for its production is both urgent and crucial. Previous studies have

shown that this crop hosts numerous communities of native rhizobacteria which can be

important in its growth promotion, as has been discovered in other plants. The literature

also reveals that only a fraction of these root-inhabiting bacteria in the potato have been

discovered and rigorous research is needed in this area. Future work should focus on

fully understanding these communities and their associated roles in the potato rhizo-

sphere and physiology. Such efforts could eventually show the magnitude of their

potential as biofertilisers and bioprotectants of this crop and steer the way for the

adoption and full exploitation of rhizobacteria-based technology for the sustainable

cropping of the potato as food for the future.
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