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ABSTRACT 
 

Municipal solid waste (MSW) is becoming a concern as population in urban area is increasing. 
Several disposal methods (landfill and biochemical) have been used. However, waste to energy 
(WTE) particularly gasification technology is a potential technology for energy recovery. The system 
is used to convert biodegradable material into syngas under limited gasifying media. This study 
presents numerical analysis of producer gas for the two air paths in the hybrid fixed bed gasifier 
(HFBG). It was revealed that the optimum operating condition was achieved when the air ratio at the 
first air flow path (AIR1) was 0.3. Furthermore, the exergy efficiency of about 81.51% was   
achieved. 
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Graph 1. Graphical abstract 
 

 
Keywords: Gasification; aspen plus; waste to energy; fixed bed gasifier; exergy. 

 

STATEMENT OF NOVELTY 
 

The aim of this study is to analyze the optimal 
operating parameter for the hybrid fixed bed 
gasifier. Although several studies have been 
undertaken on the performance of the gasifier, 
none have worked on the hybrid fixed bed 
gasifier which combines the crossdraft and 
downdraft features. Air was the main gasifying 
media involved in this study and the two air inlets 
were considered. The optimal air ratio between 
the two air paths was analyzed. The equilibrium 
model and exergy analysis for the HFBG was 
also studied in this work. 
 

1. INTRODUCTION 
 
One of the basic needs of a human being in daily 
life is energy. Commonly fossil fuel has remained 
the main source of energy worldwide [1]. 
However, the excessive use of fossil fuel has 
been the main source of green house gases 
emission which results in a global warming [2]. It 
is also known that fossil fuel deplete with time 
depends on consumption rates on a particular 
reserve area [4]. Therefore, the need for 
alternative and sustainable energy source has 
been a concern to many researchers. Currently, 
the most common source of renewable energy 
includes:  solar, ocean tides, wind, geothermal 
and biomass [5-6]. The biomass outweigh the 
other renewable sources since it can be used in 
many ways to provide energy in form of heat and 
electricity [7].  Biomass comprises among other 
sources the municipal solid waste biological 
residue. 

Municipal solid waste (MSW) is one of the 
contentious topics in the world due to its side 
effect when not handled properly [8]. These 
problems bring a concern for the continuous 
research on both areas: energy and municipal 
solid waste management (MSWM).Waste to 
energy (WtE) has been one of the proper 
methods for MSW disposal since some of the 
energy can be recovered from the waste [9-10]. 
The biomass WtE conversion technology 
depends on the proximate and ultimate analysis 
results. Proximate analysis is carried out to 
analyze the amount of moisture content, ash 
content, volatile matters and fixed carbon 
existing in the MSW, whereas ultimate analysis is 
carried out to determine the chemical 
composition of MSW. The High Heating Value 
(HHV) for MSW in Tanzania which was used as 
a sample is 12.42 MJ/kg. The HHV indicates that 
material can support burning although not as 
reactive as coal due to its high content of 
oxygen. 
 

To improve MSW combustion reactivity require 
means of reducing oxygen content and this can 
be done by limiting the supply of oxygen for 
combustion [11]. Four methods are encountered 
on WtE conversion technology: thermo-chemical 
(torrefaction, plasma, gasification, pyrolysis and 
liquefaction), biochemical (fermentation and 
anaerobic digestion), thermal (incineration), and 
mechanical and thermal method (pulverization 
and drying) [12-13]. Among all these 
technologies, pyrolysis and gasification are the 
technologies which involve a limited supply of 
oxygen. While pyrolysis is carried out at nearly 
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0:1 air fuel ratio, gasification occurs at about 
1.8:1 air fuel ratio [14]. Currently, incineration 
and gasification are becoming the most used 
WtE technology [15]. 
 
Gasification is a thermochemical process which 
converts carbonaceous solid fuel into syngas 
under restricted oxygen environment without 
having an intermediate product [16-17]. 
Conversely, MSW gasification requires a special 
attention due to its high moisture content (MC). 
Usually, combustion is considered possible for 
biomass with moisture content less than 50% 
[18-19]. Solid waste gasification is possible at a 
MC less than 20 % for downdraft and  MC less 
than 50% for updraft gasifier [20]. However, 
random collected MSW is reported to have more 
than 50 % moisture content [21-23]. 
 
Generally, feedstock is dried and pyrolysed 
before being combusted by gasifying media, the 
last stage being reduction to release syngas [24]. 
These processes are done in fixed bed, 
entrained flow bed or fluidized bed gasifier 
depends on the factor such as size of the gasifier 
as well as the intended quality of producer gas. 
In this context fixed bed is chosen for small scale 
while fluidized bed is preferred for large scale 
systems [25].  
 
Various types of fixed bed gasifier have been 
employed for biomass gasification in small scale 
unit. Initially, three types of fixed bed gasifiers 
were commonly employed for biomass 
gasification including updraft, downdraft and 
cross draft gasifiers [26]. In all the three fixed bed 
gasifier design, the feedstock is fed at the top 
flowing downwards. Updraft gasifier operates in a 
manner that allows feedstock to move in 
opposite direction to the gasifying media. In the 
updraft gasifier the feedstock moves in opposite 
direction to the gasifying media. However, in the 
downdraft gasifier the feedstock moves in the 
same direction to the gasifying media which is 
usually introduced in the gasifier just above the 
center. In the cross draft gasifier, gasifying media 
flows across the diameter of the reactor. In these 
three types of fixed bed gasifier each has 
advantages and disadvantages (Table 1) which 
makes them suitable for specific purpose. 
 
Because of the aforementioned advantages, a 
number of researchers have shown an interest 
on investigating MSW gasification process. 
Arena [20] carried out a review study on the 
MSW gasification technology. The author 
concluded that gasification technology is a viable 

option for waste conversion. Bhoi et al. [29] 
investigated the gasification of MSW with switch 
grass using downdraft gasifier. They concluded 
that the co-gasification of about 40 % MSW offer 
better results accompanied by better reduction of 
ash agglomeration. Therefore MSW gasification 
is viable option for MSWM.  
 
Although gasification is common process for 
biomass waste, the process is currently 
considered as alternative method for MSW 
management [30] [31]. When employed as 
MSWM method gasification process offers two 
advantages: energy recovery and MSW volume 
reduction of almost 90%. Maya et al. [32] 
conducted a review study on MSW gasification 
for power generation. They concluded that 
gasification is a technically viable option for 
MSWM with high reduction of mass and volume 
of about 70-80% and 80-90% respectively. The 
main advantage of gasification process over 
incineration and pyrolysis is low environmental 
pollution [33] [34]. 
 
Generally, simulators are used to investigate the 
performance of the system before the actual 
process implementation. ASPEN Plus is one 
among other simulators which have been used to 
simulate MSW gasification processes [35] [36] 
[34]. Begum et al. [37] performed a numerical 
investigation of a fixed bed gasifier for MSW 
gasification using ASPEN Plus. They reported 
that, results obtained using Aspen plus were in 
good agreement with experimental results. Chen 
et al. [38] develop a numerical model for 
predicting the syngas output in a fixed bed 
gasifier using aspen plus. They concluded that 
factors such as temperature, air equivalent ratio, 
and moisture content affect syngas composition. 
 
Based on the aforementioned factors, the critical 
analysis is required for the successful design of 
the gasification system. Additionally, in order to 
analyze the performance of the systemthe 
energy efficiency should be determined. On the 
other hand, the exergy analysis has been used to 
evaluate the potential efficiency of the system. 
This thermodynamic concept reveals the energy 
loss due to irreversibility.  
 
At presents, many researchers have discussed 
the exergy analysis for the gasification system 
involving dowdraft, updraft, and fluidized bed 
gasifier. Zhong et al. [39]  carried out an exergy 
analysis for the hydrothermal upgrading of 
biomass (HTU) process. They revealed that the 
exergy efficiency of the process was as higher as 
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86 %. With respect to the gasifying media, it has 
been reported that the energy and exergy 
efficiencies are higher when air is used as 
compared to steam [40]. However, none of them 
have performed the exergy analysis for the 
combined system such as HFBG. Therefore, the 
aim of this study was to investigate a lab scale 
HFBG for its exergy efficiency. 
 

2. MATERIALS AND METHODS 
 

The study of the gasifier unit (Fig. 1) was based 
on the HFBG that combines advantages of 
downdraft and cross draft into one gasifier. The 
dimensions of the gasifier were adapted from the 
previous published article by the same author 
[41]. In this design air was supplied into the 
gasifier through two inlet path, one being on the 
throat few millimeters above the narrow diameter 
and the second below the throat. The overall 
length and its diameter were 1250mm and 280 
mm respectively. The narrow part of the gasifier 
(throat) was designed with a diameter of about 
80mm. On top of the gasifier is a hopper with 
outer diameter of 780mm. 

The gasifier involves a number of reaction zones 
(drying, pyrolysis, first combustion gasification, 
and second combustion). In the drying section, 
the water content contained in the feedstock is 
reduced before the decomposition of the 
feedstock into conversional components 
including sulphur, oxygen, hydrogen, nitrogen, 
carbon and ash. Air is supplied for the first and 
second combustion reactions by varying their 
ratio. In between the two combustion zones is 
gasification section which involves partial 
oxidation of feedstock to produces fuel gas 
commonly hydrogen, methane, carbon monoxide 
and carbon dioxide [42]. 
 
The feedstock characteristic was adapted from 
the previous published data as shown in Table 2 
[43]. This includes the proximate and ultimate 
analysis of the MSW randomly collected at 
Arusha municipality. It was revealed that the 
collected wastes have high moisture content 
(MC) of almost 59.79 wt% which is beyond the 
level suitable for gasification [43]. 

 
Table 1. Advantages and disadvantages of fixed bed gasifier [27] [28] 

 

Gasifier type Advantages Disadvantages 

Updraft Produces gases with low 
temperature 

High tar output in the producer gas 

Downdraft Low tar content in the producer gas Difficult in handling biomass with higher 
moisture content 

Cross draft Has shorter startup time. 
Produce low tar in the produced gas. 
Suitable for small scale plant as well 
as high moisture feedstock. 

High  temperature in the producer gas 
High producer gas velocity 
 

 

 
 

Fig. 1. The gasifier air path 
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Table 2. Arusha MSW proximate and ultimate data [43-44] 
 

Ultimate Analysis(wt%) Carbon 54.82 

Hydrogen 5.29 
Oxygen 34.62 
Nitrogen 2.36 
Sulfur 0.30 
Chlorine 0.05 
Phosphorous 0.11 

Proximate Analysis(wt%) MC 59.79 
VM 78.91 
FC 10.54 
Ash 10.55 

 
The information’s from Table 2 was used in the 
ASPEN Plus to simulate the gasifier output [45]. 
In order to study the performance of the HFBG, 
the study was carried out in both: Equilibrium 
modeling and numerical simulation using ASPEN 
Plus software. 
  

2.1 Numerical Simulation  
 
Biomass gasification is a complex process in 
which any changes in feedstock characteristics 
or the fluctuation of operating parameters will 
lead into variations of syngas output. Gasifier 
operating parameter include gasifying media (air, 
steam, carbon dioxide and pure oxygen), and 
operating temperature. Furthermore, the gasifier 
design plays the important role on the quality and 
quantity of the output snygas. In this context it is 
important to simulate the designed gasifier so as 
to predict the output before manufacturing [46].  
 
Assumption: Several assumptions were taken 
into consideration in the simulation process: 
 

1. Carbon and ash are the key components 
of the char 

2. Tar was not taken into consideration 
throughout the entire process. 

3. The main constituent of volatile products 

were
2

H , 2H O , CO ,
2

CO , and 4CH  

while 
2

N was considered to be inert. 

 
In this study, comparative performance 
simulation of the air feed as gasifying media for 
the two paths (AIR 1 and AIR 2) in Fig. 2 was 
analyzed. Five reactor blocks namely Rstoic, 
Rgibbs were used for drying, pyrolysis, first 
combustion, gasification, and second combustion 
respectively. The selection of these reactor 
models were based on their properties and its 
application (Table 3). An IDEAL property method 

was used since conversional components such 

as 
2

H , 2H O , CO , and 
2

O were used under low 

pressure. 
 
Addition to these reactor blocks the model 
consists of one Fsplit block and three Ssplit 
block. Rstoic were used to lower the MSW 
moisture content under stoichiometry reaction 1, 
supported by the Fortran expression 2 [37]. 
 

                            1 

 

   
2 

 
Ash and Biomass (MSW) were represented as 
non-conventional components where 
HCOALGEN and DCOALIGT models were used 
to calculate the enthalpy and density of these 
components respectively. 
 
The total air flow rate supplied in the gasifier 
(AIR) was kept at 8.95 kg/hr and the feedstock 
flow rate was kept at 6 kg/hr. The simulation of a 
gasifier output was achieved by varying the air 
ratio for both air paths where air ratio at the first 
path (AIR1) was varied from 0 to 1 in the mixer at 
an interval of 0.1.When the air ratio was varied at 
AIR1 in the mixer (Fig. 2) the air ratio in the 
second air path (AIR2) was also affected. 
 
Operating parameters for the simulation process  
 
The operating parameters for the entire 
simulation process are described in Table 4 
  

2.2 Heating Values 
 
The amount of heat acquired when the biomass 
is incinerated is termed as heating value. The 
heating value usually is divided into two 

20.0555084Biomass H O

2 16H ODRY 

2 2 2( ) / (100 )CONV H OIN H ODRY H ODRY  
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categories: the high heating value (HHV) and the 
lower heating value (LHV). The HHV is the total 
amount of heat energy contained in a particular 
fuel including the energy available in the water 
vapor that has been exhausted. The LHV does 
not include the energy contained in the water 
vapor. In this study, the syngas HHVwas 

calculated using equation 3 whereas the LHV 
was calculated using equation 4[47]. 
 
HHV=12.76(%H2) + 12.63 (%CO) + 39.75 
(%CH4)..........3 
LHV =10.8(%H2) + 12.63 (%CO) + 35.8 
(%CH4)..............4 

 
Table 3. Properties and uses of the reactors 

 

S/N Type of reactor Properties Uses  

1 Rstoc i. This is the reactor model 
which can model reaction that occur 
simultaneously  

i. Used when reaction 
kinetics is not important 

ii. Used when 
stoichiometry for each reaction 
is known 

2 Rgibbs i. This reactor predicts the 
product in the system through Gibbs 
energy minimization concepts 

i. Used when the    
reaction kinetics is not known 
ii. Used when the system 
involves many products 

 

 
 

Fig. 2. Aspen plus simulation model [45] 
 

Table 4. The description of operating parameters 
 

Streams and reactors Parameter Value 

Feed Temperature 25 ˚C 
Pressure 1 bar 
Flow rate 6 kg/hr 

Air Temperature 25 ˚C 
Pressure 1 bar 
Flow rate 8.95 kg/hr 

Drier Temperature 25 ˚C 
Pressure 1 bar 

Decomp Temperature 500 ˚C 
Pressure 1 bar 

Combustion1 Temperature 1000 ˚C 
Pressure 1 bar 

Gasifier Temperature 800 ˚C 
Pressure 1 bar 

Combustion2 Temperature 1500 ˚C 
Pressure 1 bar 
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Heating power of the MSW was calculated using 
equation 5where LHV of biomass was taken to 
be 12 MJ/kg and fuel consumption rate was 6 
kg/h which resulted into heating power of           
20 kW. 
 

1

3.6
B BP LHV FCR   .....................              .5 

 
Stoichiometric air ratio (SR) needed the biomass 
combustion was calculated using equation 6 
where CC, CH, CO and CA are the percentage of 
carbon hydrogen oxygen and ash respectively 
determined through ultimate analysis. 
Substituting these values in equation 6, the SR 
was determined to be 5.907 kg air for 1 kg of 
MSW 
 

79 28.84
( ) (1 ) (1 )
12 4 32 21 100 100

C OH A
C CC C

SR        

.......6 
 
The simulated Syngas flow rate (GFR) results for 
path AIR1, AIR2 and Hybrid (combined) was 
54.5721, 57.0202, and 38.3070, NM3h-1 

respectively. Therefore thermal power of 
producer gas was evaluated using equation 7. 
 

1

3.6
G GP LHV GFR                                    7 

 
The thermal power obtained in equation 7 was 
used to calculate the cold gas efficiency using 
equation 8. 
 

100%B
CG

G

P

P
   .....................                         8 

 

3. ENERGY AND EXERGY ANALYSIS 
 
3.1 Energy Balance 
 
Usually, energy balance tends to obey the 
relationship between the energy inputs to the 
system with respect to its surroundings as 
realized in equation 9. In gasification process, 
the input energy includes the energy in feedstock, 
agent gas, and the addition heat. The energy 
output sum up the useful energy and energy loss 
to the surroundings including gas products, fly 
ash, tar and char [48]. 
 

out useful lossE E E    ............................9 

3.2 Exergy Balance 
 
Exergy value for gas is grouped into two main 
classes which are physical and chemical exergy. 
The physical exergy is further sub divided into 
mechanical exergy (kinetic & potential) and 
thermo-mechanical exergy (temperature based 
and pressure based) whereas the chemical 
exergy is divided into mixing& separation and 
chemical reaction. Usually, mechanical exergies 
are neglected since it involves relatively small 
values [49]. Therefore the exergy for the material 
stream is represented using equation 10. 
 

x x x

ch phE E E  .....................                     10 

 

( ) ( )x

ph O O OE h h T s s    ................         .11 

 
Where  

O

T

O P

T

h h C dT   ....................                        12 

 

O

T

P
O

T

C
s s dT

T
   ......................                      13 

 
Where h and ho are the specific enthalpy on a 
given temperature and enthalpy under standard 
temperature (To=298K) and pressure (1 atm) 
respectively. The s and so denotes entropy under 
the specified temperature and entropy under 
standard temperature (298K) and pressure (1 
atm) respectively.  
 
The chemical exergy for gaseous is evaluated 
using equation 14 
 

.x ch

ch i i

i

E x ex  .....................                  .14 

The number mole of gas ( )ix , specific enthalpy 

( )oh , specific entropy ( )OS , standard chemical 

exergy ( )ch

iex
 
for each components are shown 

in Table 5 [50]. 
 

3.3 Exergy Efficiency 
 
The gasifier exergy efficiency is usually 
expressed based on the chemical exergy 
efficiency. It is expressed in terms of a ratio 
between chemical exergy of the producer gas to 
the total exergy input as shown in equation 15. 
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................15 

 
The total exergy input is obtained from the 
feedstock and equation 16 has been used to 
calculate the MSW exergy. 

......................16 

 
Where mMSW is the feed rate of MSW in kg/h, the 
correlation factor (β) and the low heating value 
(LHV) are calculated by the use of equation 17 
and 18 respectively [51]. 

 

Table 5. Producer gas, Specific enthalpy, specific entropy, standard chemical exergy and mole 
frac 

 

Producer 
Gas 

( )
.o

kJh
kmol

 ( )
.O

kJS
kmol K

 ( )ch

i
kJex

kmol
 ix  . ch

i ix ex
 

2O  8682 205.033 3,970 0.0597 237.009 

2N  8669 191.502 720 0.5339 384.408 

2 ( )gH O  9904 188.720 9,500 0.0098 93.1 

2H  8468 130.574 236,100 0.1671 39,452.31 

CO  8669 197.543 275,100 0.1345 37000.95 

2CO  9364 213.685 19,870 0.091 1808.17 

4CH
 

- - 831,650 0.00366 3043.84 

 

1.044 0.016( ) 0.3493( )[1 0.0531( )] 0.0493( )

1 0.4124( )

H O H N

C C C C
O

C


   





..............................................17 

0.0041868(1 0.15 )(7837.667 33888.889 )
8

O
LHV O C H    ...................................................18 

4. RESULTS AND DISCUSSION 
 
4.1 Numerical Simulation 
 
The analysis of the study was carried out through numerical simulation using Aspen plus. Fig. 3 
shows the simulation results versus air ratio on path one (AIR 1) at an interval of 0.1. In the analysis, 
measurements of flue gas composition were recorded by varying the air flow in both inlet paths (AIR1 
& AIR2). The result shows that as air ratio increases in path AIR1 there was an increase of CO which 
attained its maximum when AIR1 was 0.3. At this interval CO2 decreases with increase in CO as 
shown in Fig. 3. Further increase of air ratio in AIR1 results into the gradually increase of CO2 while 
CO decreases. The H2 was decreasing gradually throughout the entire process as the air ratio in AIR1 
was increasing. 
 
It can be revealed from Fig. 3 that the optimum operating condition was achieved when air ratio at 
AIR1 was 0.3. At this ratio the composition of CO2 was at minimum while CO was at its maximum. 
Also the result shows that when the ratio at AIR1 was 1 the flue gas contains more CO2 than CO. 
Furthermore, when the air ratio at AIR1 was 0 the composition of CO2 was observed to be low 
compared to the CO composition. However, the entire process shows that when the air ratio in path 
AIR1 is 0<AIR1<1 the HFBG model had better results. Therefore, these results show that, when 
operating at the HFBG mode, H2 and CO content has better output compared to the results for both 
downdraft mode (AIR1=1) and cross draft mode (AIR2=1). 
 

 

( )

( )

ch

x producerx

ex

x input

E

E
 

x

MSW MSW MSWE m LHV
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4.2 Heating Values 
 
The value of LHV, HHV and gas composition for 
the simulated results are shown in Table 6. As 
shown in the Table, the value of HHV for the 
hybrid model (combined) is slightly higher 
compared to the other two models when the air 
path operates independently. This shows that the 
energy conversion when the two air paths 
operates together is much better compared to 
when each path operate independently. 
Therefore at an air ratio of 0.3 on path AIR1 
gives better results. 
 

4.3 Cold Gas Efficiency 
 
According to Kirsanovs and Zandeckis [52] the 
gasifier cold gas efficiency ranges between 52.7 
to 65.4%. In this study, the result shows that air 
path that combines the flow of AIR1 and AIR2 

has better cold gas efficiency as compared to the 
results obtained when air paths operates 
independently as revealed in Table 7. 
 

4.4 Exergy Efficiency  
 
The chemical exergy for the system was 
78661.0001kJ/kmol while the physical exergy 
was 169790.22 as revealed in Table 8. 
Therefore, the gas exergy was the sum of the 
two which equals to 248,451.2201 Kj           
/kmol. 
 
The input exergy was evaluated to be 
304819.2MJ and therefore the exergy efficiency 
was 
 

...........     19 

 

 
 

Fig. 3. Simulated gas composition (error bars with standard deviation of 1 %) 
 

Table 6. Comparison of the producer gas on the air path 
 

Description Path AIR1 Path AIR2 Combined (Hybrid) 

H2 (%) 10.17 16.82 16.50 
CO (%) 12.05 13.54 20.56 
CH4 (%) 0.000627 0.368 0.211 
LHV (MJNm-3) 2.621 3.658 2.846 
HHV (MJNm-3) 2.820 4.003 4.789 
H2 (%)/CO (%) 0.844 1.24 0.804 

 
Table 7. Cold gas efficiency 

 

Air Path Simulated GFR (NM3h-1) 
BP (kW)

 
GP (kW)

 
CG (%)

 AIR1 54.57 20 39.59 50.52 
AIR2 57.02 20 57.94 34.52 
Combined 38.31 20 30.28 66.05 

248451.22
100 81.51%

304819.2

x

ex   
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Table 8. Physical exergy for some components at 800 ˚C 
 

Component 
2H  2O  

2N  
2 ( )gH O  CO  

2CO  
4CH  

Cp 
(kJ/kmol.K) 

30.68 35.28 33.24 42.312 33.48 55.65 74.78 

Oh h  24544 28224 26592 33849.6 26784 44520 59824 

Os s  40.009 46.0086 43.35 55.18 43.66 75.57 97.52 

( )O OT s s

 

11922.92 13710.56 12918.3 16443.64 13010.68 22519.86 29061.14 

x

phE

 

12621.08 14513.44 13673.7 17405.96 13773.32 67039.86 30762.86 

 

5. CONCLUSION 
 
The present study has provided a room to 
conclude that HFBG is a viable option for MSW 
gasification. Two air flow paths were provided 
and the ratio of air in both paths were varied. A 
total air flow rate of 8.95kg/hr was introduced into 
the gasifier. A means of dividing the air into the 
two paths for numerical analysis was managed 
by FSPLIT. In the analysis data were recorded 
by varying the air ratio in the first air path (AIR1) 
at an interval of 0.1. Numerical results show that 
when the air ratio at AIR1 was 0.3 a maximum of 
20.56 % CO and a minimum of 1.35 % CO2 at 
STD VOL Fraction were obtained. For an air ratio 
above 0.3 the CO decreases gradually while CO2 
increases gradually with an increase of air ratio 
at AIR1.At this air ratio the cold gas efficiency for 
the HFBG model was 66.05% while for path 
AIR1 and AIR2 was 50.52 and 34.52% 
respectively. Furthermore, the exergy efficiency 
for the HFBG model was analysed to be 81.51%. 
Therefore, this shows that when air is supplied at 
both paths (HFBG) at a given ratio gives better 
results than when air is supplied to the air paths 
independently. 
 

6. RECOMMENDATIONS 
 

The numerical analysis of the study was carried 
out by investigating the performance of the air 
flow path. The analysis mostly based on the 
simulation of the results on gas composition, 
LHV, and cold gas efficiency. It was revealed that 
the combined air flow had better results 
compared to independent air flow. However, the 
experimental comparative studies for the air flow 
path should be carried out. 
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