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Abstract

Drought is a major climatic challenge that contributes significantly to the decline of

food productivity. One of the strategies to overcome this challenge is the use of

drought-tolerant crops with a wide range of benefits. Lablab is a leguminous crop

that has been showing high promise to drought tolerance. It is reported to have

higher drought resilience compared with the commonly cultivated legumes such as

common beans and cowpeas. Because of its great genetic diversity, Lablab can

withstand high temperature and low rainfall, unlike other related crops. On top of

that, it is grown for multitudes of purposes including food, forages, conservation

agriculture, and improved soil fertility. To enhance its production and benefits during

the present effects of climate change, it is crucial to develop improved varieties that

would overcome the challenge of drought stress. In the past years, there have been

several reviews on Lablab based on origin, domestication, characterization, utilization,

germplasm conservation, some cultivation constraints, and conventional breeding

with limitations on the genomic exploitation of the crop for drought tolerance.

Conventional breeding is the major breeding technique for many Lablab cultivars.

The integration of genomic, physiological, biochemical, and molecular approaches

would be required to develop drought-tolerant cultivars of Lablab. In this review, we

discuss recent developments in Lablab genomics with a focus on drought stress

tolerance and the use of genomic resources to develop stress-resilient varieties.
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1 | INTRODUCTION

Global agricultural production will need to double by 2050 to

meet the ever-increasing food demand especially in Africa which

constitutes the fastest growing population and the second-highest

growth rate in the world (AfDB, 2014; United Nations, 2019).

A rise in food demand is likewise predicted due to a rise in

drought stress in many parts of the world (FAO, 2017). Approximately

40% of the production land and about 50% of failures of crops

have been reported due to drought stress (Fahad et al., 2017;

Kapoor et al., 2020). Such an effect on agricultural production is

projected in many areas especially in sub-Saharan Africa (SSA) due to
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the effect of climate change (FAO, 2009; Muchuru & Nhamo, 2019;

Shiferaw et al., 2014).

Maintaining production in drylands is most likely the major

challenge in modern agriculture that deserves immediate intervention.

Because we have some crops that perform well in drought-prone

environments, the solution can involve an identification of the best

cultivars and the knowledge of their drought-tolerance capability

(Zandalinas et al., 2018).

Lablab (Lablab purpureus L. Sweet) is a drought-resilient crop with

multiple benefits (Guretzki & Papenbrock, 2014; Naeem et al., 2020).

It is popularly regarded as grain legume, vegetable, and fodder which

is rich in protein (comparable with soybean), nutrients, and vitamins

(Minde et al., 2020). In the sustainability of conserved agriculture and

enhanced soil fertility, farmers have been intercropping Lablab with

their major crops or utilizing it as a cover crop and green manure

(Chakoma et al., 2016; Mkonda & He, 2017). The crop is a good

source of rare pharmaceuticals used to cure diseases in humans and

animals. It has been established recently that a carbohydrate-binding

protein from Lablab can efficiently block SARS-CoV-2 and influenza

viruses, thus providing room for a cure of infections (Liu et al., 2020).

Insulin-like protein has also been isolated from the crop (Sachin

et al., 2020). The crop also plays a great role in ensuring income

security among smallholder farmers especially in dryland and semi-

dryland ecosystems (Raghu et al., 2018).

The broad genetic diversity of Lablab has supported adaptation

and distribution of the crop over a broad range of environmental and

climatic conditions (Ewansiha et al., 2007; Venkatesha et al., 2013;

Vidigal et al., 2018). It spreads along the tropical and subtropical

region between 30�N and 30�S at an elevation of about 0–2000 m

above sea level. Lablab also adapts to a wide range of temperature

(18�C to 50�C) and annual rainfall (200–2500 mm). This is different

from other related species whose favorable growth temperature

ranges only between 18�C and 30�C while unable to survive in the

little amount of rainfall compared with Lablab (Bhandari et al., 2017;

Maass et al., 2010). Its ability to grow vigorously when rainfall

resumes after drought has led to its greater resilience compared with

other legumes such as common beans (Phaseolus vulgaris), soybeans

(Glycine max), cowpeas (Vigna unguiculata), and pigeon peas (Cajanus

cajan) (Ewansiha & Singh, 2006; Miller et al., 2018).

To enhance economic productivity and associated benefits of

Lablab in the present era of frequent drought spells, there is a need

of developing drought-tolerant varieties. In the past 10–15 years,

detailed studies and reviews on Lablab origin, domestication,

dispersal, utilization, germplasm conservation, characterization,

cultivation, some production constraints, and conventional breeding

have been written. The conventional breeding of many Lablab

varieties was focused on improvement in soil fertility, forage, high

yield, and photosensitivity while neglecting stress tolerance. The

drought-tolerant traits are polygenic and possess complex nature of

inheritance that would require integration of genomic, physiological,

biochemical, and molecular approaches for their manipulation. Until

presently, there is limited genomic information on Lablab (Rai et al.,

2018b; Wang et al., 2018). In this review, we discuss recent

developments in the genomics of the crop with a focus on drought

stress tolerance and the use of genomic resources to develop

stress-resilient varieties. This would help in improving the economic

production of the crop and its associated benefits to the farming

community.

2 | A BRIEF INTRODUCTION ON LABLAB
GENOME

Lablab, which is also known as Dolichos Lablab (in English) and Fiwi or

Ngwara (in Swahili), is a leguminous crop in the Fabaceae family. Its

genome has recently been sequenced, assembled, and compared

with related species (Chang et al., 2018; Iwata et al., 2013) (Table 1).

The comparison shows that Lablab with chromosome numbers

2n = 2x = 20, 22, and 24 is less complex, has a smaller genome size

(367 Mb), scaffold assembly (395.47 Mb), and protein-coding genes

(20,946) compared with other related species. However, these

genes possess tremendous characteristics in functionality such as

gene length and coding sequence which are longer compared with

other species. Lablab has also longer exons and introns.

Lablab and Bambara nut were compared based on their plastid

genome. While their genomes have a quadripartite structure with two

inverted repeats (IRs), a large and a small single-copy region, the

lengths of their plastomes are 151,753 and 152,015 bp, respectively.

Each of these plastomes has four rRNAs and 71 protein-coding genes.

However, their tRNA genes were not consistent in each plastome.

The plastome in Lablab has 32 tRNA genes, whereas that of Bambara

nut has 33 tRNA genes. Phylogenetically, Lablab was noted to relate

closely with common beans (Liao et al., 2019; Wang et al., 2017).

Sequenced and assembled transcriptome from Lablab was also

compared with other three legumes, that is, Bambara nut, winged

bean, and grass peas. The comparison revealed that the number of

reads (16,190,774), transcripts (52,019), and assembled bases

(51,997,858) in Lablab exceeded most of the legumes in the study.

N50 of all transcripts was also higher (1570 bp) in Lablab than other

legumes and thus formed a more complete assembly. This

corresponded also to the highest percentage of putative orthologs in

both Lablab and Bambara nut (Chapman, 2015).

3 | DROUGHT TOLERANCE IN LABLAB

3.1 | Drought-adaptive mechanisms

Crops adapt three resistance mechanisms to cope with drought, that

is, drought escape, drought avoidance, and drought tolerance. For

plants to escape drought conditions, they have to opt for rapid growth

and development which will lead to completion of the growth cycle

before drought events (Shavrukov et al., 2017). Few numbers of seeds

and reduced biomass are parameters associated with drought escape.

In drought avoidance, plants increase root growth while limiting their

vegetative growth and transpiration rates.
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The ability of the plant to produce abundantly even under optimal

water conditions is known as drought tolerance (Abobatta, 2019; Basu

et al., 2016). Early plant vigor, fast ground cover, large seed size, long

and deep root system, high root biomass, small leaflets, and high leaf

water potential are some of the attributes for drought tolerance

(Yadav & Sharma, 2016). This type of drought-adaptive mechanism

has been noted in Lablab (Robotham & Chapman, 2015) through early

or late maturing varieties. For instance, early maturing varieties can

escape terminal drought, but if they are exposed to intermittent

stress, they perform very poorly (Mai-Kodomi et al., 1999; Shavrukov

et al., 2017). For late-maturing varieties, the sensitivity of the crop to

drought stress is more during the flowering stage (Nadeem

et al., 2019). These challenges can be taken care of, first by introgres-

sion of drought-tolerant attributes to the early maturing varieties,

second by identifying late-maturing cultivars with drought tolerance,

and third by the use of a computational model to resolve various

drought scenarios influenced by climate change. Because some agro-

ecological zones are not well defined in many places (Batieno, 2016),

TABLE 1 Genomic features (de novo sequenced genome) of Lablab and other related species

No. Common name

Chromosome

number (2n)

Genome

size (Mb)

Scaffold

assembled

lengths

(Mb)

Number of

protein-coding

genes

Average

gene

length

(bp)

Average

length in

coding

sequence

(bp)

Exon

length

(bp)

Intron

length

(bp) Reference

1 Lablab (Lablab

purpureus)

20, 22, 24 367 395.47 20,946 3696 1276 239 557 Iwata et al. (2013);

Chang et al. (2018)

2 Common bean

(Phaseolus

vulgaris)

22 587 473 27,197 - - - - Schmutz et al. (2014)

3 Cowpea (Vigna

unguiculata)

22 613 519 29, 773 3881 - 313 - Lonardi et al. (2019)

4 Soybean

(Glycine max)

40 1115 950 55,137 3144 1169 232 488 Valliyodan et al. (2017);

Chang et al. (2018)

5 Adzuki beans

(Vigna

angularis)

22 542 466.7 34,183 - - - - Kang et al. (2015);

Yang et al. (2015)

6 Mung beans

(Vigna

radiata)

22 579 �431 22,427 - - - - Kang et al. (2014)

7 Bambara nut

(Vigna

subterranean)

22 864 535.05 31,707 3287 1163 222 501 Chang et al. (2018)

8 Pigeon pea

(Cajanus

cajan)

22 833 605.78 48,680 2348 959.35 - - Singh et al. (2017)

9 Groundnut

(Arachis

hypogaea)

20, 40 2552 2530 83,709 4275 226 233.21 578 Pandey et al. (2020)

10 B. trefoil (Lotus

japonicus)

12 480 554.08 29,598 - - 417.54 527.12 Kamal et al. (2020)

11 Acacia

(Faidherbia

albida)

26 - 653.73 28,979 3396 1207 226 504 Chang et al. (2018)

12 Marula

(Sclerocarya

birrea)

28 - 330.98 18,937 3561 1343 239 479 Bationo-kando

et al. (2016);

Chang et al. (2018)

13 Drumstick tree

(Moringa

oleifera)

28 - 216.76 18,451 3308 1238 232 478 Tian et al. (2015);

Chang et al. (2018)

14 Barrel medic

(Medicago

truncatula)

16 390 388 50,358 2334 986 243 440 Chang et al. (2018);

Young and

Zhou (2020)

Note: Lablab has a smaller genome size, scaffold assembly, and protein-coding genes compared with other related species. Gene length, coding sequence, exons, and

introns are longer in Lablab than in other species. This points out that Lablab has higher gene expression compared with other related species and thus suitable for

genomic exploitation.
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the model should be simulated based on crop features such as growth

development and yield, meteorological data, for example, temperature

and rainfall and soil characteristics. Finally it can be through promot-

ing intensified research based on the genomic potential of the

selected lines.

3.2 | The basis for drought tolerance

Phenotypic plasticity in plants refers to the changes in physiological

responses that contribute to their adaptability to the new environ-

ment (Alpert & Simms, 2002). The basis for such changes involves

morphological, biochemical, and molecular mechanisms (Farooq

et al., 2009). Lablab utilizes these three mechanisms to protect itself

from drought stress (D'Souza & Devaraj, 2011; Guretzki &

Papenbrock, 2014; Maass et al., 2010; Rangaiah & D'Souza, 2016).

Morphologically, the mechanisms include glabrous and trailing

stems, a vigorous extension of shoots, shifting of leaf inclinations to

reduce sun rays, decreasing in leaf sizes and structures, changing in

chlorophyll contents and greenness of the crop, alterations in stomatal

behavior, and their distribution to control evapotranspiration as well

as deep root penetration (2 m) to the soil (Chakoma et al., 2016;

USDA, 2012). There have been some “traditional (conventional)” and

“improved (modern)” ways of evaluating the phenotyping effect of

drought stress on Lablab (Guretzki & Papenbrock, 2013). The tradi-

tional method quantifies the effects on few accessions by analyzing

their easily measurable parameters such as root parameters

(e.g., length, width, and density), leaf parameters (e.g., size, number,

greenish, and waxiness), plant height, stem size, and weight of fresh

and dry biomass through destructive methods. The improved method

can screen many accessions very efficiently without destruction. It

computes the effects based on physiological processes. Some parame-

ters that are easily computed through this method are stomatal con-

ductivity (Grant et al., 2006), transpiration rate (Chaerle et al., 2009),

and chlorophyll content (Sperdouli & Moustakas, 2012). As it demands

more time and labor, the traditional method is thus regarded as less

effective compared with the improved method (Golzarian et al., 2011;

Honsdorf et al., 2014).

Despite many findings reported on morphological characteristics

in Lablab, little has been done to correlate them with drought stress in

various stages of crop development. However, there have been some

drought-tolerance studies on seedlings in Lablab (D'Souza &

Devaraj, 2011; Devaraj et al., 2014a, 2014b) and cowpeas (Agbicodo

et al., 2009; Ajayi et al., 2017; Alidu et al., 2019; Bolarinwa

et al., 2013; Muchero et al., 2008) with a limited number of acces-

sions. Legumes are highly susceptible to drought during flowering and

pod filling stages (Farooq et al., 2016; Nadeem et al., 2019). Hence,

correlation studies between reproduction efficiency and drought in

Lablab based on floral structure, pollination mechanisms, stigma

receptivity, and grain formation are recommended.

High temperature increases reactive oxygen species (ROS) mainly

hydroxyl radicals (OH˙), singlet oxygen (1O2), and hydrogen peroxide

(H2O2) that can damage physiological precursors of the crop (Foyer &

Noctor, 2012; Gill & Tuteja, 2010). However, Lablab can defend against

ROS biochemically via enzymatic and nonenzymatic actions (D'Souza &

Devaraj, 2011). Antioxidant enzymes such as peroxidase (POX), cata-

lase (CAT), polyphenol oxidase (PPO), glutathione reductase (GR),

guaiacol peroxidase (GP), superoxide dismutase (SOD), nitric oxide, sali-

cylic acid, and acid phosphatase (APs) play a great role in transforming

ROS into less harmful chemical species (Devaraj et al., 2014a, 2014b).

Non-enzymatic compounds from secondary metabolites such as flavo-

nols, flavones, polyols, phenols, proline, glutathione (GSH),

malondialdehyde (MDA), ascorbate (ASC), glycine betaines (GB), sugars,

and organic solutes accumulate in the crop to regulate and protect its

cellular and defense responses against drought (Rangaiah &

D'Souza, 2016). Some of these enzymes have also been studied to

relate them to drought tolerance in Lablab (Suzuki et al., 2012).

Molecular mechanisms of Lablab against drought stress involve

upregulation and downregulation of drought-tolerant genes (Wang

et al., 2018; Yao et al., 2013). This phenomenon of gene regulation

has been formerly studied through molecular markers. However, the

development of marker technology has been slower in Lablab and

some other legumes than in cereal crops to the point of recognizing

them as “orphan crops” (Dhaliwal et al., 2020; Vaijayanthi

et al., 2018). In their steps of advancement, the first group of markers,

amplified fragment length polymorphism (AFLP), restriction fragment

length polymorphism (RFLP), and random amplification of polymor-

phic DNA (RAPD), was employed to understand the diversity and

genetic characterization. The second group, namely, sequence-based

markers including single nucleotide polymorphism (SNPs), microsatel-

lite or simple sequence repeats (SSRs), and expressed sequence tags

(ESTs), was utilized in mapping studies (Dholakia et al., 2019;

Kamotho et al., 2016; Keerthi et al., 2018; Kimani et al., 2012; Konduri

et al., 2000; Rai et al., 2018a; Sserumaga et al., 2021; Vaijayanthi

et al., 2018). Despite their applications in Lablab, there has been little

utilization of these markers to improve drought tolerance.

Based on few studies on screening for drought tolerance and

utilization of markers for drought tolerance, we are evaluating

seedling drought tolerance among 300 Lablab accessions at the

Nelson Mandela African Institution of Science and Technology

(NM-AIST), Arusha, Tanzania (Figure 1).

To offer useful knowledge in the development and transferability

of markers in Lablab (Cheng et al., 2017; Jha et al., 2020; Lepcha

et al., 2019), some quantitative trait loci (QTLs) for drought tolerance

identified in other legumes has been presented in Table 2. This infor-

mation would increase comparative knowledge, analysis, and genomic

improvement of drought tolerance in Lablab.

4 | OMICS TECHNOLOGY AND RECENT
GENOMIC DEVELOPMENTS

“Omics technology” is a modern molecular tool useful in recognizing

functional genomic systems in an organism (Banerjee et al., 2019; Hu

et al., 2018). It involves sequencing and profiling of the expressed

transcripts and translated protein. Through this technology, it is easier
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to expand our knowledge on various genetic processes in Lablab

(Jamnadass et al., 2020; Yssel et al., 2019) and related species.

Robotham and Chapman (2015) demonstrated drought-tolerance

variation among Lablab germplasm through microsatellite genotyping

by sequencing. Established genomic resources in Lablab by African

Orphan Crops Consortium (AOCC), World Agroforestry Centre

(ICRAF), Nairobi, Kenya (Chang et al., 2018), could be utilized to

understand drought-tolerance mechanisms and their application in

crop improvement. Some of these resources include forward and

reverse Suppression Subtraction Hybridization (SSH) libraries gener-

ated from root tissues of drought-stressed Lablab accessions. This

study identified 1287 unigenes from 1400 drought-induced ESTs and

BhGRP1 drought-tolerant gene (Yao et al., 2013). A similar library was

also developed by Wang et al. (2018) where 2792 unigenes were

gathered from 4064 drought-induced ESTs. Two drought-tolerant

microRNAs (miRNAs), that is, miRNA 156 and miRNA 172, were iso-

lated from Lablab (Thilagavathy & Devaraj, 2016). As part of trans-

criptomic regulation for drought tolerance, the γECS gene was noted

to influence the free radical system and antioxidant activities during

fruit ripening in Lablab (Rai et al., 2017).

There have been also some genes, E, Dt1, GmFT2, GmGIa,

PvTFLY1, and GmPhyA3, studied to relate high temperature and

photoperiodic sensitivity in Lablab (Ramtekey et al., 2019). As temper-

ature increases in many areas, flower dropping is becoming a major

problem faced by farmers growing Lablab in Tanzania. It is also a

common problem in other Lablab-growing areas in Africa. Although in

India HA3 and HA4 Lablab varieties have been developed to

overcome this challenge of flower dropping (Ramesh & Byre

Gowda, 2016), genomic improvement of our cultivars based on

already available resources (Ramtekey et al., 2019) would create a

permanent solution (Rai et al., 2018b; Vaijayanthi et al., 2018).

5 | PROMOTING EXPLOITATION OF
GENOMIC RESOURCES IN LABLAB FOR
STRESS TOLERANCE

Lablab is increasingly becoming a popular crop in the community due

to its multitude of values. The crop has therefore been engaged in sev-

eral research programs, many of them taking place in Asia rather than

Africa where the crop originates (Maass, 2016; Maass et al., 2010).

Among research happening in Africa, it is only little or none that has

been directed to the genomic development affecting the release of

varieties for commercial purposes. So far, many of the world-known

commercial varieties in Lablab, for example, Koala, HA3, and HA4 for

grains and Rongai, Endurance, and Highworth for forage, come from

Asia and Australia (Gopalakrishnan, 2007; Maass et al., 2010;

Ramesh & Byre Gowda, 2016). In Africa, only Kenya has commercial-

ized its varieties: Eldo-KT Black 1 and 2 (Eldoret Kirkhouse Trust

black), Eldo-KT cream, and Eldo-KT Maridadi (KEPHIS, 2017;

Kirkhouse Trust, 2015). Evaluation performance of the promising culti-

vars has also been taking place in Northern Tanzania towards their

commercialization (Miller et al., 2018; Nord et al., 2020). The reason

behind these few recommended varieties was research focusing more

on morphological characterization, forage, and soil properties espe-

cially in Africa.

Making genomic information of Lablab easily available such as the

AOCC (Hendre et al., 2019) will provide inputs for translational

F IGURE 1 (a–f) Drought-tolerance evaluation of about 300 Lablab accessions at seedling stage is being carried out by the Nelson Mandela
African Institution of Science and Technology (NM-AIST), Arusha, Tanzania, in a two repeating experiment. Polythene cover noted in the picture
is used to induce high temperature inside the house
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research on its sustainable development. However, we need further

bioinformatics training among researchers for the efficient use of

genomic databases. Moreover, the adoption of high-throughput tech-

nologies such as next-generation, genome-wide association studies

(GWAS), transcript profiling, and gene and genomic editing (CRISPR/

cas9) will bring discovery of more drought-tolerant genes and their

expressed quantitative loci (eQTLs). Increased deployment of these

genomic tools with an increase of research collaboration will also

bring a new revolution in farming systems of drylands (Njarui &

Mureithi, 2010; Sennhenn et al., 2017). One of the benefits of using

new drought-tolerant varieties is to protect their productivity in dry

environments against increased aridity and semiaridity conditions

especially in SSA where desertification is highly concerned. As already

predicted that desertification will increase as noted in the Saharan

TABLE 2 Molecular markers and QTLs for drought tolerance in some other legumes

No. Crop Molecular markers/QTLs Mapping population

Features in drought

tolerance Reference

1 Common

beans

SSR; AFLP markers; 49 QTLs 82 recombinant inbred lines

(RILs)

Drought-responsive

agronomic traits

Sedlar et al. (2020)

SNP markers; 18 QTLs 97 RIL from parent lines:

Portillo � red hawk

Drought-tolerance

parameters

Onziga et al. (2019)

SSR and SNP markers; 12

QTLs

F8; SEA 5 � AND 277 Drought (stress) conditions Briñez et al. (2017)

SSR; 69 QTLs

SSR; 15 putative QTLs

DOR364 � BAT477 Drought-tolerance

parameters; root-

drought-related traits

Asfaw and Blair (2012)

AFLP, RAPD, SSR markers;

143 QTLs

100 RILs Drought-tolerance and

drought-related traits

Diaz et al. (2018)

SNP markers; 14 QTLs RILs; SEA5 � CAL96 Phenology-yield-drought Mukeshimana et al. (2014)

53 SNP markers; 11 QTLs 128-F8 RILs Drought stress conditions Nabateregga et al. (2019)

SNP markers; genes

functioning

Pinto-Villa � Pinto Saltillo,

F3:5 (289 genotypes)

Drought tolerance Villordo-Pineda et al. (2015)

2 Cowpeas 184 genome-wide EST-

derived SNP markers;

drought-tolerance QTLs

2 drought-tolerant lines

(IT93K-503-1 and IT97K-

499-35)

Green abilities and yield

under water stress

conditions

Batieno et al. (2016)

412 DArT, 80 AFLP, 28

microsatellite markers; 2

QTLs

72-F1 derived double haploid

(DH)

Stress tolerance (drought) Fan et al. (2015)

35 SNP markers; tolerance

index ranged between

69.19 and 142.01

305-F8 RILs Tolerance to water-deficit

conditions

Ravelombola et al. (2021)

3 Chickpeas SNP markers and 21 major

QTLs

232 RILs; ICC 4958 � ICC

1882

Drought-tolerance

parameters

Sivasakthi et al. (2018)

828 SNPs; DREB and CAPS

from QTL-hotspot region

264 RILs Drought tolerance Jaganathan et al. (2015)

47, 53, and 46 SSR markers in

selection; QTL-hotspot

region

3 elite cultivars Drought tolerance and grain

yield

Bharadwaj et al. (2021)

4 Soybeans 368 SSR including Satt277;

QTLs

F2 mapping population

(PK1180, SL 46 � UPSL

298, PK 1169)

Seedling survivability under

drought conditions

Sreenivasa et al. (2020)

8078 specific locus amplified

fragments (SLAF) markers;

23 QTLs

RILs Drought-tolerance traits Ren et al. (2020)

5 Mung

bean

3690 SSR; 58 QTLs for plant

parameters and 5 for

drought tolerance

256 RIL population Plant tolerance and

associated parameters

Liu et al. (2017)

6 Asparagus

bean

39 SNPs markers from GWAS 95 accessions Tolerance to soil water

stress

Xu et al. (2015)

Note: Some QTLs and molecular markers from some commonly grown legumes that could provide useful knowledge in their transferability in Lablab.

Abbreviations: AFLP, amplified fragment length polymorphism; QTLs, quantitative trait loci; RAPD, random amplification of polymorphic DNA; SNP, single

nucleotide polymorphism; SSR, simple sequence repeat.
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desert that keeps spreading to the south, sensitization of Lablab pro-

duction to the region would be an important opportunity to minimize

the effects of drought stress on the region. In return, production will

get improved to make it more commercialized.

Genomic exploitations of Lablab cannot become successful if

there is a limitation of genetic resources. This is because, useful

resources for exploitation come from a wide range of genetic mate-

rials (Azeez et al., 2018). Collections of genetic resources have been

the role of the National Plant Genetic Resource Centers (NPGRCs)

and local and international research institutions. Whereas the largest

world collections of Lablab accessions (650) have been held at the

University of Agricultural Sciences (UAS), Bengaluru, India (Ramesh &

Byre Gowda, 2016), the NM-AIST, Arusha, Tanzania, has the largest

collections (450) of Lablab in Africa (Kirkhouse Trust, 2019). This

shows that Africa has fewer collections of resources compared

with Asia.

These resources could be enhanced through an exchange of

exotic materials and collections of local farmers' landraces. Because

they are the populations of historical origin with distinct identities,

farmers' landraces have been preferred in genomic exploitation for

drought tolerance as they are more adapted to abiotic challenges and

well connected to farming practices. Despite their roles in stress

resilience, their collections have not been sufficiently exhausted in

many countries. Several NPGRCs still lack them to a high extent. Little

collections available at the centers are neither comprehensive nor

representative of the genetic diversity available from their local

context. This is because their collection missions are donor driven

with many of them influenced by external needs. Even when collec-

tions are done by local personnel for research purposes, there has

been a tendency to introduce them from international gene banks.

These local resources have also been lost in developing countries due

to urbanization and abandonment of farming activities for the farmers'

interest of moving to towns and cities for small jobs and business. To

handle this challenge, we need a strong collaboration among all

stakeholders; farmers, researchers, government, and international

agencies that will efficiently control in situ and ex situ conservation of

the resources.

6 | CONCLUSION

Lablab is exhibiting an increased research interest due to its wide

range of benefits. It has shown a great ability to withstand drought

stress compared with other related species. Despite this advantage,

there has been very little effort in exploitation of genomic resources

in Lablab for drought tolerance. As a result, the crop has been under-

utilized in many areas. However, because of this genomic potential,

the development of the crop through an application of “omics” tech-

nology is proposed so that we can convert it into a commercialized

crop. The challenge behind this mission is the high cost for most of

the tools in “omics technology.” Additionally, the methods are time

consuming, requiring very expensive consumables, and not feasible

for a quick response. Reducing their running cost while deploying

cheap and simple tools such as Nanopore MinION field sequencer

would lead to the best findings. With sustainable utilization of geno-

mic resources in Lablab, the crop can be transformed from an orphan

legume into an industrial crop.
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