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ABSTRACT 

The shift of growing seasons onset due to rainfall and seasonal variability are among the 

climate change impacts affecting agricultural productivity in semi-arid. Seasonal variations in 

planting dates in semi-arid Tanzania because of climate variability and change make 

difficulties among farmers in determining the appropriate planting dates. Climate-smart 

agriculture (CSA) practices are reinforced to mitigate such climate change impacts and 

sustain crop production, though there is limited information on the performance of CSA 

practices under the uncertainty of planting dates due to unpredictable rainfall on-set and 

patterns. This study assessed the effects of CSA practices, planting dates and interaction on 

soil moisture, maize growth and yield and their economic benefits at Mlali village of 

Dodoma, Tanzania. A split-plot experimental design was adopted, treatments involved four 

CSA practices and three planting dates. Maize plant height, leaf area index and biomass were 

measured during growth while grain, nutrient uptake and economics monitored at harvest. In 

both seasons, chololo pits and tied ridges CSA practices demonstrated the highest soil 

moisture at 10.8% and 13% that influenced maize growth and yield. Chololo pits at early and 

tied-ridges at late planting dates significantly (p = 0.047 and p = 0.001) increased grain yield 

respectively in both seasons. In 2017/2018, tied ridges at normal planting dates had higher 

marginal net return of 910 USD ha-1 and 697 USD ha-1 similarly in 2018/2019, tied ridges at 

late (315 USD ha-1) and chololo pits at early planting (434 USD ha-1). These results 

recommend chololo pits at early and tied ridges at late planting dates as appropriate CSA 

practices for resilience and economic benefits among smallholder farmers in semi-arid 

Tanzania. 
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CHAPTER ONE 

INTRODUCTION 

1.1  Background of the problem 

Climate variability constrains agricultural productivity of many crops in most sub-Saharan 

African (SSA) countries including Tanzania (Midega et al., 2015; Thornton et al., 2014; 

Thornton et al., 2018). Shifting of rainfall patterns due to climate change is the main weather 

element that constrains soil moisture availability in the soils and contributing to low maize 

production (Demeke et al., 2011; Omondi et al., 2014). The impacts of climate variability are 

compounded by farming practices such as intercropping, tied ridges and planting basins or 

chololo pits which are poorly adapted to optimize the use of available water and thus have 

also contributed to reduced agricultural productivity (Porter et al., 2017; Thornton et al., 

2014). 

Studies show that 80% of the world’s croplands is under rain-fed agriculture whereby food 

supplies and maize produce in East Africa covers 95% and 60% respectively under the same 

farming system (FAO., 2014; Woomer et al., 1998). In Tanzania, more than 70% of the 

population lives in rural areas (Mayaya et al., 2014), and depends on rain fed agriculture for 

their survival and economic development similar to many smallholder farmers in other SSA 

countries (Scherr et al., 2012; Thornton et al., 2014; Watkiss et al., 2010). Part of the 

challenges caused by climate change is unpredictable precipitation patterns, inconsistence of 

rainfall onsets, insufficient soil moisture, increases in soil temperature and other socio-

economic factors (FAO., 2014; Mongi et al., 2010; Msongaleli, 2015). The rise in mean 

annual temperature coupled with shifting of rainfall onset may reduce maize production by 

13% in Tanzania by 2030 (FAO, 2013; MALFs, 2014). These increasingly shifting and 

unpredictable rainfall patterns not only affect production but also make it difficult for farmers 

to decide on the appropriate practices and planting time (Kimaro et al., 2016; Nyagumbo et 

al., 2017). Consequently, various farming systems such as conservation agriculture, cereal-

legume intercropping, agroforestry, use of disease and drought tolerant crop varieties and 

integrated soil fertility management practices have been considered as climate-smart 

agriculture practices  (Rosenstock et al., 2016; Thierfelder et al., 2013). However, the 

resilience of these CSA practices under climate variability associated with inappropriate 
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planting dates due to inconsistent rainfall patterns has been less researched and demonstrated 

in many semi-arid conditions (Kimaro et al., 2016; Lamanna et al., 2016).  

There are unpredictable planting dates among smallholder farmers in Tanzania due to 

inconsistence of rainfall onsets, insufficient soil moisture, increases in soil temperature and 

other socio-economic factors (Kangalawe & Lyimo, 2013; Msongaleli, 2015). Such factors 

have also led to maize crop failure and decline in yields by 5% (Nyagumbo et al., 2017). To 

mitigate these climate variability and change, several climate-smart agriculture (CSA) 

practices like tied ridges, Chololo pits and intercropping are recommended (Lipper et al., 

2014). Such rain water harvesting practices are good mitigation and adaptation measures to 

sustainably increase agricultural productivity and build resilience under extreme climate 

(Kizito et al., 2016). Conservation Agriculture (CA) has been recognized as the best fit CSA 

practices in most Sub-Saharan African countries due to their resilience to climate change 

(FAO., 2014; Kangalawe & Lyimo, 2013; Neufeldt et al., 2013). Adoption of CSA practices 

and appropriate planting dates to address effects of climate change and variability is a 

promising option to mitigate the climatic extremes and to build agroecosystem resilience 

among smallholder farmers (Niang et al., 2017).  

Using climate resilient CSA practices and better management of the current climate 

variability may enhance farmer adaptation to the increasing threats of climate change 

(Kimaro et al., 2016; Mupangwa et al., 2017). Potential adaptation options that would help to 

build resilience of maize production systems include better access and use of weather 

information coupled with the use of climate resilient technologies of appropriate CSA 

practices (Kimaro et al., 2019; Lamanna et al., 2016). Conservation Agriculture as a CSA 

practice increased water and nutrient use efficiency that lead to higher yields and economic 

benefits (Campbell, 2011).  Reduced input costs by more than 40% were achieved by farmers 

practiced CSA practices like chololo pits and intercropping while crop yield increased at 6% 

(LI et al., 2011; Ndakidemi et al., 2006; Thornton et al., 2018). The agro ecological 

approaches under CSA practices links the social and environment that account of potential 

cost benefits of these CSA practices. The uncertainty of margin costs over climate variability 

is higher, calls for cost benefit analysis of the resilience agricultural practices to thrive under 

such climate change (Campbell, 2016; Thornton et al., 2018). Therefore, in this study, 

selected CSA practices and planting dates were assessed in the farming systems of semi-arid 

central Tanzania to address climate variability and change to propose useful practices in the 

existing knowledge that can be adopted by smallholder farmers in their local settings. 
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1.2  Statement of the problem 

The occurrence of extreme climatic events and unpredictable rainfall patterns are increasingly 

threatening economic growth and development in Tanzania. Climatic extremes are projected 

to cost the country a loss in GDP of about 1–2%, with severe consequences on the livelihoods 

of its population (UNEP, 2009; Watkiss et al., 2011). Agriculture sector is prone to such 

climatic extremes as 80% decline in yields is expected due to unreliable rains and prolonged 

droughts (Ehrhart & Twena, 2006). Kongwa district is among the semi-arid areas in Tanzania 

vulnerable to these climate extremes as currently it experiences decline in crop productivity 

(Mayaya et al., 2014; Mongi et al., 2010; Msongaleli, 2015). Those extremes are due to short 

and unpredictable rainfall patterns with an average of 570 mm annual rainfall (Mayaya et al., 

2014). These increasingly shifting and unpredictable rainfall patterns not only affect 

production but also make it difficult for farmers to decide on the appropriate CSA practices 

and planting time. There is need to address the problem of low yield and cost implications 

among smallholder farmers due to inappropriate farming practices and planting dates which 

are highly aggravated by climate variability and change.  

1.3  Rationale of the study 

A better understanding of the resilient adaptation and mitigation strategies such as CSA 

practices required to improve soil moisture and crop production is highly needed. 

Furthermore, there is limited information and knowledge among smallholder farmers and 

actors on appropriate planting dates coupled with improved farming practices for optimal and 

beneficial resilient crop production in semi-arid areas. In this context, a study to assess the 

resilient effects and economic benefits of Climate Smart Agriculture practices in Semi-arid 

areas Tanzania was designed and conducted during the 2017/2018 and 2018/2019 cropping 

seasons at Mlali village of Kongwa District. 

1.4  Objectives 

1.4.1  General objective 

The general objective of this study was to assess the resilience and economic benefits of 

selected CSA practices and planting dates as Climate Smart Agriculture practices in Semi-

arid areas Tanzania. 
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1.4.2  Specific objectives 

(i) To assess soil moisture content dynamics in selected CSA practices at different 

planting dates. 

(ii) To determine the effects of selected CSA practices, planting dates and their 

combination on growth and yield of maize. 

(iii) To evaluate the economic benefits of selected CSA practices, planting dates and their 

combination. 

1.5  Hypothesis 

1.5.1  Null hypothesis (Ho) 

The selected CSA practices, planting dates and their combination have no effect on soil 

moisture content, maize yield and economic benefits. 

1.5.2  Alternative hypothesis (Ha) 

The selected CSA practices, planting dates and their combination have an effect on soil 

moisture content, maize yield and economic benefits. 

1.6  Significance of the study 

This study within BCfRFS project, through Capacity 1 implemented by ICRAF, will 

contribute to address the existing knowledge gap by determining the potential benefits and 

trade-offs of CSA practices under different local conditions by region and production system. 

Through strengthening of CSA knowledge base and provide scientific information to 

underpin wide scaling of CSA practices in Tanzania, this will help to build the capacities of 

farmers and other stakeholders under Ministry of Agriculture (MoA) in quantifying the 

benefits and trade-offs of CSA practices compared with conventional practices in terms of 

agricultural productivity (yield and biomass), costs and benefits, and the resulting 

adaptation/resilience and mitigation benefits and developed reference and demonstration 

sites/plots that can be used as field learning laboratories to demonstrate, teach, and 

communicate to different stakeholders (farmers, researchers, National Agricultural Research 

Systems, non-government organizations and policy makers) on the benefits of CSA practices. 
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1.7  Delineation of the study 

This study adopted a split-plot experimental with four CSA practices as a main factor and 

three planting dates as sub-factor replicated three times to assess the effects of CSA practices, 

planting dates and interaction on soil moisture, maize growth and yield and their economic 

benefits at Mlali village of Dodoma, Tanzania. In this study treatments involved were CSA 

practices (Chololo pits, tied ridges, intercropping and Ox-cultivation – as a control) and/at 

planting dates (Early, Normal and Late planting). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Climate-Smart agriculture (CSA) 

 Climate-smart agriculture (CSA) is a concept that reflects the integration of agricultural 

development and climate responsiveness, with the aim of achieving food security and broader 

development goals under a changing climate and increasing food demand. Climate-smart 

agriculture (CSA) is agriculture that sustainably increases productivity and income, ability to 

adapt and build community resilience to climate change and enhances food and nutrition 

security while achieving mitigation co-benefit in line with national economic development 

priorities  (Thornton et al., 2018). Climate-smart agriculture (CSA) initiatives focus is to 

increase productivity, enhance resilience, and minimize greenhouse gas emissions. The 

overall goal is to address tradeoffs and synergies between the three pillars i.e. productivity, 

adaptation, and mitigation (Lobell et al., 2008; Mertz et al., 2009; Ramírez & Thornton, 

2015). Maize-pigeon pea intercropping can be a good option to deal with climate uncertainty 

for late planting windows within a cropping season (Liebman & Dyck, 1993). Conservation 

Agriculture practices of ideal farming practices and planting dates are among the key 

components and farming operations necessary for the development of CSA practices.  

2.2  Principles of conservation agriculture (CA) as CSA Practice 

Conservation agriculture (CA) is an approach to managing agro-ecosystems for improved and 

sustained productivity, increased benefits and food security while preserving and enhancing 

the resource base and the environment (Derpsch et al., 2010). CA helps to restore soil fertility 

and it has potential for mitigating and adapting to the impacts of climate change (Shetto & 

Owenya, 2007). As a CSA practice, CA has potential to increase crop yield and economic 

returns due to its ability to minimize risks of crop failure in droughts (Hobbs et al., 2008; 

Mupangwa et al., 2017). Practicing CA principles significantly increase and stabilize crop 

yields and preserves the natural resources that are critical for food production, especially in 

areas with low rainfall (ACT, 2008; Marongwe et al., 2011). Yields of maize grown under 

different CA systems in Southern Africa were reported to be higher than maize yield grown 

under non-CA at 80% (Rusinamhodzi et al., 2011; Thierfelder et al., 2013). Apart from 

yielding, CA integrated with leguminous crops like pigeon pea, subsequently combats 
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climate change through emissions by modifying nutrient stocks that affect greenhouse gas 

fluxes (Kimaro et al., 2009; Liebman & Dyck, 1993).  

2.3  Climate-Smart agriculture (CSA) practices in smallholder farmers 

Smallholder farmers in East Africa have well adapted to mono cropping, crop rotation, 

sequential cropping, mixed cropping, inter cropping, tied ridging, planting basins and 

terracing CSA practices (Gebregergs et al., 2016). The decision on which CSA practices to 

use is determined by the need for diversification and increased climate variability as the 

emphasis is to increase soil fertility and soil moisture regimes to sustain or increase crop 

productivity. A CSA practice can predict the seasonal rainfall at the start of each rainy 

season, and modifying the CSA practices accordingly (Mupangwa et al., 2017; Thierfelder et 

al., 2013). Studies by (Tsubo & Walker, 2007) observed that management of CSA practices 

according to the rainfall pattern improved water and crop productivity in dry land rain-fed 

systems. The temporal and spatial high climate variability often results to incoherent farmer’s 

decisions on CSA practices due to variation in planting dates from one cropping season to the 

next and other localized and hard to quantify socio-economic factors (Kimaro et al., 2016). 

2.3.1  Chololo pits CSA practices 

In Sub Sahara Africa, CSA is encompassing a wide range of tillage techniques ranging from 

non-ploughing and reduced tillage to ripping and sub-soiling (Mupangwa et al., 2017; Shetto 

& Owenya, 2007). Eastern and Southern Africa countries are commonly using planting 

basins/chololo pits as CSA practices that are well known as soil moisture retention and water 

harvesting techniques (Biazin et al., 2012). Due to dependence on rain-fed agriculture, 

chololo pits ensure soil moisture availability for plant growth and resilient crop production in 

semi-arid conditions susceptible to climate change (Nellemann & MacDevette, 2009). 

CSA/CA practices has shown that reduced soil disturbance and crop residue retention 

changes to soil physical properties such as hydraulic conductivity and bulk density,  can 

increase water infiltration rates and soil moisture retention helping crops cope with intra-

seasonal dry spells (Kimaro et al., 2008; Thierfelder et al., 2013).  CSA practices like 

planting basins regulate soil temperature and precipitation capable to increase production by 

6% as compared with 19% decline in yield in prolonged drought or poor precipitations  

(Ramirez-Villegas & Thornton, 2015). In semiarid areas of Tanzania, 26.2% farmers of 

Dodoma region are practicing chololo pits/planting basins which is a well-known CSA 
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practices (Kahimba et al., 2014). The practice holds runoff and allows retention of extra 

moisture in pits during crop establishment in semi-arid areas with initial erratic rainfall as 

their spaces between the pits act as micro-catchments (Mkoga et al., 2010). But still rainfall 

variability affects maize crop negatively and is predicted to be further declined due to 

unpredictable rainfall which results into long-term droughts and shortens the growing season 

(EU, 2014; Nelson et al., 2014). Shifting of rainfall patterns as impact of Climate change will 

therefore inevitably affect the economy and livelihood of people. Thus, use of chololo 

pits/planting basins as one of the adaptation strategies to cope with such climatic extremes 

would be a best Climate Smart Agriculture option in terms of resilience crop production and 

economic benefits among smallholder farmers.  

2.3.2  Intercropping as CSA practice 

Intercropping of cereal and legumes requires the arrangement of the planting patterns and 

dates of the companion crops (Lingaraju et al., 2008). Consideration of designs is important 

to reduce crop resources competition (Liebman & Dyck, 1993). There are fewer risks of crop 

failure under intercropping in areas with unreliable rainfall as compared with sole cropping 

(Cooper et al., 2008) as intercropping enhance the productivity of the main crop (Giller, 

2001). Grain yield under maize legume intercrops was reported higher (LER ≥ 1), efficient in 

resource utilization and improved yield of the main crop (Baldé et al., 2011). The crop yield 

varies with respect to location, radiation, temperature, and water supply conditions, however, 

PAR is determined by leaf area index (LAI) (Birch et al., 2003; Lizaso et al., 2003). Light 

competition in intercrop affects the crop performance as shading effect reduce LAI, which 

consequently reduces the growth performance of the minor crop. Nevertheless, intercropping 

increase the radiation, maintain higher radiation use efficiency and crop productivity (Keating 

& Carberry, 1993; Mariscal et al., 2000). Maize-pigeon pea intercropping has found positive 

significance to maize yield  (Sakala, 1994) as it improves the socioeconomic and ecological 

intensification particularly increase in soil organic carbon (Rusinamhodzi et al., 2011). Such 

practice economizes the use of nitrogenous fertilizers and increasing the productivity and 

profitability per unit area and time (Nyoki & Ndakidemi, 2016) leads to improved soil 

fertility and enhanced ability of the land to capture and store rainfall, creating resilient CSA 

practices (Sileshi et al., 2011). 
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2.3.3  Tied ridges as CSA practice 

Crop production in semi-arid areas is strongly affected by soil moisture availability during 

the growth period. Adoption of CSA practices like in-situ water harvesting techniques such as 

tied ridges are needed to improve water availability for resilient crop productivity (Grum et 

al., 2017; Kimaro et al., 2019). The study by Grum et al. (2017) to test the efficacy of using 

tied ridges to improve soil water availability for plant growth in Ethiopia revealed that there 

was a significant (22.4%) increase in average soil moisture content relatively to ox-

cultivation (19.9%). The findings suggest that tied ridges enhance water infiltration into the 

soil and improve water availability during the growing season, thereby protecting crops from 

dry periods (Wiyo et al., 2000). Tied ridges is one of the CSA practices recommended in 

semi-arid areas with short rains and prolonged droughts in reducing runoff and improved soil 

water management for resilient crop growth (Biazin et al., 2012; Jones & Tengberg, 2000; 

Hobbs, 2007). Tied ridges CSA practice minimizes the loss of water in the soil by 

evaporation similarly to chololo pits or planting basins which has also demonstrated high rain 

water use efficiency (Stewart & Steiner, 1990). 

2.4  Decision on planting dates in smallholder farming systems 

Planting dates are important to ensure a favorable climate for critical plant growth as early-

planted crops encounter lower soil and air temperatures in early developmental stages (Sacks 

et al., 2010). The timing for planting is associated with seasonal environmental changes such 

as sunshine and temperature that affects the growth and development of plants.  

The use of weather information in deciding the appropriate planting window in combination 

with best bet farming practices can play a great role in maize yield optimization (Kirui et al., 

2010). It needs a clear understanding and use of weather information trends as an essential 

tool that provides early warning sign to design adaptation measures such as adjustment to 

planting dates to cope with unpredictable rainfall patterns (Kirui et al., 2010; Osbahr et al., 

2011). The decision for appropriate planting dates among smallholder farmers in most sub-

Sahara Africa relies on rainfall distribution patterns. In Tanzania, rainfall information over 

more than 30 cropping seasons are used to determine planting dates (Daly et al., 2016; 

Luhunga et al., 2019). However, there are no empirical evidence in terms of extent of 

contribution to maize production that farmers will gain or lose if they don’t use the TMA 

weather information on cropping season. Studies by EU (2014) recommend that due to short 

rain fall season during the third week of November to early January, maize sown in mid-
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December would be exposed to less risks of crop failure thus be reasonable early planting 

date. TMA (2017) recommends the rain onset in mid-December to early January is mostly 

recognized by farmers in Kongwa as normal planting date however due to shifting in rain 

onset pattern sometimes it starts much earlier or delayed to the normal range (Fig. 1).  

 

Figure 1: Dates for the beginning (onset) of the short rainfall seasons in Kongwa District 

from the periods of 1982 to 2010 (TMA, 2017) 

2.4.1  Effects of planting dates on soil moisture 

The growth of rhizosphere microorganisms is influenced by soil moisture deficit below 

critical tolerance limits and indirectly by altering plant growth, root architecture and 

exudations (Badri & Vivanco, 2009). The decrease in soil water results in dried root hair, 

retard nodule growth and reduced nitrogen fixation in the soil (Hsiao & Xu, 2000). The onset 

and cessation dates, amount, distribution, duration, and intensity of rainfall help to know the 

crop response at different planting dates for optimized yield and water productivity of a given 

CSA practice (Brown, 2015; Cirilo & Andrade, 1994; Cooper et al., 2008; Kurukulasuriya & 

Rosenthal, 2013). Soil moisture deficit associated with short rains and late planting interfere 
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with photosynthesis to cause reduced crop growth and yield (Pandey et al., 1984; Yordanov 

et al., 2000). Climatic extremes like drought occur at any time during the growing season 

(Schneider et al., 1997) which may cause plants to be stressed with water deficit during later 

stages of reproductive growth or when crops are planted at the beginning of a dry season 

(Frahm et al., 2004).  Pigeon pea is a potential crop to cope with changing climate in 

droughts as it can persist and increase resilience (Kimaro et al., 2016; Saxena et al., 1998). 

2.4.2  Effects of planting dates on crop growth and grain yield 

Crops need optimum planting time as the deviation from this may lead to yield loss (Brown, 

2015; Kamara et al., 2009; Mertz et al., 2009). Early planting produces short plants with 

small leaf areas and low temperature makes a plant grow slowly (Aldrich et al., 1975). In the 

growing season where the atmospheric evaporative demand is small, early-planted maize 

tends to silk earlier (Matzenauer et al., 1998) which effect leaf number and thermal time 

between female bud differentiation and skin (Otegui & Melon, 1997). Furthermore, planting 

date affects intercepted photosynthetic active radiation (PAR) and radiation use efficiency 

(RUE). Dry matter accumulation was reported to be faster before silking and slower after 

silking in late plantings compared with the early plantings (Cirilo & Andrade, 1994). 

Delayed rainfall onset that subjects to late planting window results in a shorter growing 

season that affects crop growth and yield (Kamara et al., 2009). Late planting of maize 

prolongs days to flowering hence reduced dry-matter production and yield components 

(Beiragi et al., 2011; Tefera et al., 2009). The use appropriate CSA practices planted at 

optimum planting dates such as intercropping supplemented with farm yard manure (FYM) in 

the open grazing systems has been reported to improve water uptake capacity of fodder crops 

(Hobbs, 2007). Managing optimum minimum tillage like planting basins and planting date 

that accord with a given crop requirement can reduce soil erosion and suppress weed. Such 

combination of CSA practices and planting date would be valuable for improved soil fertility 

and water productivity and increased crop yield in semi-arid areas and thus make resilience to 

crops under climate change extremes (ACT, 2008). 

2.4.3  Economic benefits for climate smart agriculture (CSA) practices 

Making investment decisions about CSA priorities requires understanding trade-offs between 

promoting one practice versus another, and using the data available to make best-bet 

decisions in the face of uncertainty (Birol et al., 2010). Cost benefit Analysis (CBA) provides 
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one way of looking in-depth at critical economic factors related to profitability, risk and 

impact which can be strengthened by the inclusion of analyses of associated environmental 

and social externalities (Thornton et al., 2018; Tsubo & Walker, 2007; Watkiss et al., 2011). 

Cost benefit Analysis is an economic tool of choice for evaluating investment decisions 

(Birol et al., 2010). 

The study conducted in Senegal found that there were farm level ecological benefits of CSA 

practices to compensate the economic benefits at farm level (Boillat & Bottazzi, 2020). A 

selection of CSA practices that are locally adapted may increase economic benefits for the 

farmer. The better understanding of CSA practices resilient to climate change may 

particularly reduce risks of production losses among Small-scale farmers (Arango-Aramburo 

et al., 2020).  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1  Description of the study site 

The project was established for the purpose of testing the CSA practices to address the 

existing knowledge gap by determining the potential benefits and trade-offs of CSA practices 

under different local conditions by region and production system. Specifically, the study was 

conducted at Mlali village which lies at latitude 6°16'384"S and longitude 36°44'787"E at an 

elevation of 1220 m above sea level in Kongwa district, Dodoma region, Tanzania (Fig. 2) in 

the central zone of Tanzania for 2017/2018 and 2018/2019 cropping seasons.  

 

Figure 2: Map of Tanzania, Dodoma Region and Kongwa District indicating the study 

site Mlali village 

3.2  Materials 

Maize is the major food and cash crop grown in the study area. Hybrid seed varieties of 

Maize (Staha) was selected as the best fit variety of the study area (MAFS, 2014; Kimaro, 

2016) while pigeon pea (ICEAP 0040, Mali) is known as a potential variety to cope with 

changing climate in droughts (Kimaro et al., 2016; Saxena et al., 1998). DAP fertilizer (18 

P+46 N+0 K) was applied at a rate of 15 kg P ha-1 while Nitrogen (Urea - 46% N) was 

applied during the fourth week after planting at a rate of 60 kg N ha-1 for all treatments. 
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3.3  Methodology 

3.3.1  Site selection 

Initially, discussions were held between with ICRAF Tanzania - the project and implementer 

and the Ministry of Agriculture (MoA), Local Government Authorities through Kongwa 

District Agricultural, Irrigation and Cooperative Officer (DAICO) on the general overview on 

agriculture in the study site. The experiment in Kongwa District was conducted at Mlali 

village which is the former site for Africa RISING project implemented by ICRAF Tanzania. 

This site was preferred to because it allowed the use of existing farmer network and CSA 

practices established which were yet not evaluated for crop yields and resilience benefits. 

Thus, the study site was considered potential due to its uniqueness like being susceptible to 

droughts, short and unpredictable rainfall pattern, existing farmer’s network with basic 

knowledge in CSA practices in addressing key issues in the dryland agroecology.  

3.3.2  Experimental design and treatments 

The experiment was laid out in a split-plot design (Appendix 1) with selected CSA practices 

as treatments (consisting of tied ridges, chololo pits, intercropping and ox-cultivation – as a 

control) assigned as main plots and three planting dates (early, normal and late) assigned as 

sub-plot replicated three times. The selected four CSA practices were tested across the three 

planting dates mentioned above. This made a total of 12 treatments which were then 

randomized in three replications and thus made a total of 36 experimental plots. The decision 

for planting dates were based on the past 3 decades’ rainfall information from 1982 to 2010 

collected by Tanzania Meteorological Agency (TMA) cropping seasons for Kongwa district. 

Similar studies by (EU, 2014) recommends that due to short rain falls during the third week 

of November to early January, maize sown in mid-December would be exposed to less risks 

of crop failure thus be reasonable early planting window. The rain onset in mid-December is 

mostly recognized by farmers in Kongwa as normal planting window however due to shifting 

in rain onset pattern sometimes it starts much earlier or later to the normal range (Fig. 1).  

3.4  Experimental management 

3.4.1 Land preparation and planting 

The land was prepared two weeks prior to rainfall onset and/or planting whereby in Ox-

cultivation practice, land was prepared by using an ox-plough, and hand hoe was used for tied 
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ridges and intercropping CSA practices while for chololo pits, a rectangular basin of 20 cm 

length, 15 widths and 20 cm depth were dug by using a hand hoe. The experimental treatment 

plot size was the 7 m × 5 m and the unplanted buffer strips between plots and blocks were 1-

m and 2 m respectively. For intercropping treatments which involved maize and pigeon peas 

planted across three planting dates, three seeds were sown per hill at a spacing of 0.6 m 

within rows and 0.9 m for maize and in alternate rows for pigeon peas. One week after 

germination, one plant per hole was thinned leaving out 2 plants per hole.  

3.4.2  Weeding and fertilizer application (Top dressing) 

Manual weed control is the most common method used by farmers in the study area similar to 

most smallholder farmers in Tanzania. Weeding was done manually by hand hoe two times in 

the fourth weeks after germination prior to topdressing and the eighth week at pre-tussling 

stage to avoid competition of resources i.e. light, water, nutrients between weeds and crops 

and also to improve soil physical conditions. DAP fertilizer (18 P + 46 N + 0 K) was applied 

as basal fertilizer during planting at a rate of 15 kg P ha-1, then during topdressing Nitrogen 

source fertilizer (Urea 46% N) was applied at a rate of 60 kg N ha-1 in the fourth week after 

germination that was done immediately after weeding for all treatments.  

3.4.3  Pests and diseases control 

Pest and diseases control was done by use of pesticides and insecticides effective against 

detected pests and diseases in the plots. Common pests detected were Crickets (Gryllus 

assimilis), Fall Armyworm (FAW) (Spodoptera frugiperda) which mostly affected maize and 

pigeon peas during germination and vegetative phase respectively. Pesticides and insecticides 

like Cutter (Acetamiprid 64 g l-1 + Emmamectin benzoate 48 g l-1) at a rate of 40 mls 20 l-1, 

Duduba and Karate (Lambda cyhalothrin) insecticides were applied after every two weeks 

until tasseling in maize and flowering in pigeon peas was set as recommended by Pipoly et 

al. (2020). 

3.5  Data collection 

3.5.1  Rainfall information 

The daily rainfall was recorded within 24 hours at 0900 am and same time the following day. 

The rainfall data were recorded from manual rain gauge, installed on a post and placed on the 

clear ground to avoid errors associated with leaf obstructions.  
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3.5.2  Soil Sampling and laboratory analysis 

Prior to sowing, soil samples at a depth of 0-20 cm were collected from five random points 

within and outside each block using soil auger for laboratory analysis to establish the initial 

soil fertility status. These samples were mixed thoroughly and sub-sampled to obtain six 

composite soil samples whereby to have general soil characteristics of the site, three were 

from within blocks and other three from outside blocks of the experimental site. The samples 

were well packed and labelled, and were transported to the soil laboratory at Tanzania Coffee 

Research Institute (TACRI), Moshi Kilimanjaro, Tanzania. The samples were air-dried and 

analyzed for Total N, extractable P Bray 1 method, exchangeable bases (Ca, Mg, K and Na) 

by atomic absorption spectrophotometer after extraction with 1N ammonium acetate. pH, and 

Cation Exchange Capacity as described by Anderson and Ingram (1993). 

3.5.3  Soil Moisture determination 

Soil samples were collected in every two weeks after planting to assess soil dynamics for 

each treatment across the growing season. Soil sampling was done every two weeks from 

crop emergence of early planting date to its physiological maturity (Karuma et al., 2014). 

Soil samples (at least 50 g) were randomly collected in each treatment, after thoroughly 

mixed from four points at 0-20 cm depth by using a soil auger within a net area (4 m x 3.6 

m). These soil samples were packed in doubled layered plastic bags and shipped to Sokoine 

University of Agriculture at the department of Ecosystems and Conservation laboratories for 

soil moisture analysis by the gravimetric method oven dry weight to constant weight at 105 

0C (Karuma et al., 2014; Mkoga et al., 2010). Also, to assess the resilience of established 

CSA practices on moisture retention capacity and regimes, soil sampling was done even for 

normal and late planting dates which were not yet planted.  

3.5.4  Maize plant growth and yield parameters 

The stem girth (mm) and height (cm) of five randomly-selected plants per row within a net 

area (4 m x 3.6 m) were measured by using a wood a digital Vernier caliper and meter ruler 

done at flowering stage (Tewodros et al., 2009). 

AccuPAR LP-80 Ceptometer (Decagon Divices 2015) was used to measure the Leaf Area 

Index (LAI) and photosynthetically active radiation (PAR) for the same sampled five maize 

plants in each CSA treatment as described by Chen (1997). Determination of dry biomass 
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weight of maize plants was done at flowering stage for each CSA practice/treatment within 

plot net area (4 m x 3.6 m). Days to flowering were determined as the number of days from 

planting to tasseling of the plants (Tewodros et al., 2009). To achieve this, three plants were 

sampled from the maize rows and its fresh weights were recorded, packed in a brown paper 

bag after optimal air dry then shipped to laboratory for oven dry analysis (Ghosh et al., 

2017). These samples were oven dried at 70 ºC until constant weight was obtained for 

determination of whole dry matter yield per each treatment. 

Maize plants within a net area (4 m x 3.6 m) were counted and harvested at their full 

physiological maturity, then maize yield components were partitioned into grain, cobs and 

stover weighed separately at same time number of cobs were counted and recorded. The 

subsamples of approximately 200 g for maize grain, three stover and their respective cobs 

were taken to the laboratory to obtain their oven dry weights at 70 ºC. Its final grain data was 

adjusted to 12% storage moisture content. Thereafter, dry maize cobs, grain and stover yields 

result from laboratory were then extrapolated to a hectare (ha) based on yield per sampled net 

area (4 m x 3.6 m).  

 

Plate 1: Intercropping CSA practices 
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Plate 2: Tide ridges CSA practices  

3.5.5  Assessment of maize nutrient uptake for each treatment 

Five maize plants at roasting growth stage in each treatment combination were sampled from 

the maize rows and their fresh weights were recorded. Prior to analysis, the fresh maize plant 

samples were washed using distilled water and oven dried of biomass samples at 70 ºC for 48 

hours to constant weights, then grounded into fine powder passed through 0.5 mm sieve. 

Thereafter, wet digested for analysis of N by Kjedahl method, P by stannous chlorine P Bray 

1 method while K, Mg, and Ca using atomic absorption spectrophotometer procedures as per 

(Anderson, 1993; Kihara et al., 2015). Nutrient content in this were calculated as a product of 

biomass (Mg ha-1) and the corresponding concentration of each element and the values were 

expressed in Kg ha-1. All the procedures for nutrient uptake by maize plant were as per 

Anderson and Ingram (1993).  

3.5.6  Assessment of economic benefits for CSA practices 

A market survey conducted during the study period observed that maize grain price including 

transport to the market at local market known as Kibaigwa cereals market was 0.26 USD/kg. 

The Marginal Net Return (MRR) were estimated by partial budget technique which 

considered changes only in costs and returns associated with the treatment application (Mtei, 

2013; Ndakidemi et al., 2006). 
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Marginal net return (MNR) was used to analyze the change across CSA practices, planting 

dates and their interactions by considering the costs that varies, as reduced cost, income and 

additional cost were considered. Reduced operational costs were due to reduced number of 

labour and time used per CSA practice especially during land preparation however all of the 

CSA practices have the same maintenance costs which is normally done every planting 

season. Added revenue included the revenue gained from yield increase and added expenses 

were the cost for labour during for various farming operations (land preparations, planting, 

pesticides application, weeding and harvesting).  

The comparison between the margin net of return and total costs per treatment was done, then 

the decision on which treatment to adopt was based on the MNR = TR - TVC equation as the 

positive difference indicates the change is benefitable (Ndakidemi et al., 2006; Kay et al., 

2008). To compare the additional costs that varied with the benefits, marginal analysis 

involving dominance analysis was used whereby MRR for each cost un dominated treatments 

were calculated as the marginal net return (MNR) among treatments divided by the total 

variable costs (TVC) as described by Mtei et al. (2013).  

Total variable cost (TVC) were summed from experimental inputs and management costs 

while output was calculated from maize grain yield (Y) in (kg ha-1), multiplied by its market 

selling prices (P) in (USD/kg) for 2017/18 and 2018/2019 cropping seasons. Therefore, 

marginal net return (MNR) was computed for each treatment by the formula whereby MNR = 

Y × P – TVC, Then the marginal rate of return (MRR) for each treatment was calculated by 

using the formula: MRR = MNR/TVC. Then the recommendations were made based on the 

comparisons of the marginal rates of return among treatments to the minimum rate of return 

acceptable to farmers ranging from zero (Birol et al., 2010). As for this study any treatment 

that has MRR above zero is considered benefitable investment to farmers.  

3.6  Statistical analysis 

Graphical analysis of residuals was used to test for normality and constant variance before 

running the analysis of variance (ANOVA).  Soil moisture, growth and yield data were 

normally distributed, thus were subjected to analysis of variance (ANOVA) using the 

GenStat software (15th Edition) in a Split Plot Design. Significant treatment means separation 

test were done by using Turkey’s-Test at 5% level of significance.  Descriptive analysis was 

conducted on soil moisture levels for each treatment i.e. ox-cultivation - as a control, tied 

ridges, chololo pits and intercropping CSA practices each planted under early, normal and 
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late planting dates. In addition, rainfall data and soil moisture was subjected to descriptive 

statistics by using Microsoft Excel. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION  

4.1  Results 

4.1.1  Soil characteristics of the experiment site 

The results in Table 1 show the soil characteristics of the experiment site whereby the ratings 

were according to Landon (1991). Soil was found to be sandy loam soil texture with a pH of 

6.2 and rated as slightly acid.  Organic carbon content of the soil was 0.39%, rated as very 

low, total N of the soil was 0.031%, rated as very low and extractable P was 5.38 mg kg-1, 

rated as low, exchangeable Ca and K were 34 cmol kg-1 and 0.35 cmol (+) kg-1, rated as 

medium. Previously land use on this site was for subsistence farming where maize and 

pigeon peas were intercropped under ox-cultivation and allow free grazing of livestock after 

harvesting. However, the farming activities in the study site are severely affected by climatic 

impacts that affect crop productivity and hence the livelihood of the local farming 

communities.  

 Table 1: Soil characteristics of the experiment site 

Soil Properties Unit Values Soil Fertility rating (Landon, 1991). 

pH (H20)    - 6.2 Slightly acid 

Organic Carbon % 0.39 Very low 

Total Nitrogen % 0.031 Very low 

Exchangeable K  cmol kg-1 0.35 Medium 

Exchangeable Na  cmol kg-1 0.31 Medium 

Exchangeable Ca  cmol kg-1 34 Medium 

Exchangeable Mg  cmol kg-1 1.08 Low 

CEC cmol kg-1 6 High 

Bray 1 P  Mg kg-1 5.38 Low 

Sand (%) % 84   

Silt (%) % 7   

Clay (%) % 9   

Textural Class   Sandy loam   

Potential of hydrogen (pH), Organ Carbon (OC), Nitrogen (N), Phosphorus (P), Potassium 

(K), Sodium (Na), Calcium (Ca), Magnesium (Mg), Copper (Cu), Iron (Fe), Manganese 

(Mn), and Zinc (Zn). Cation Exchange Capacity (CEC). Units for parameters are expressed as 

percentage (%). Cent moles per kilogram (cmol kg-1) and parts per million (ppm) 
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4.1.2  Rainfall distribution in the study area 

The area receives an average annual rainfall of 570 mm with almost 85% of rain falling 

between December and April (Fig. 3). Long-term average rainfall recorded by using rain 

gauges installed at the research site for the five consecutive cropping seasons from 2014-

2019 were below the average by 40%. The site received rains mostly in January and March 

with a dry spell in February that sometimes led to crop failures due to its inconsistence and 

insufficient soil moisture. 

 
Figure 3: Long-term monthly average (2014/2015–2018/2019) and monthly rainfall 

recorded during the three consecutive cropping seasons 2016/2017–

2018/2019 at Mlali, Kongwa-Dodoma, Tanzania 

4.1.3  The effects of CSA practices on soil moisture content 

The results on influence of CSA practices and planting dates on gravimetric soil moisture are 

presented in (Fig. 4, 5, 6 and 7) in both cropping seasons. The study findings reveal that 

planting date treatments (early, normal and late) varied in soil moisture retention ranging 

from 2% to 10% and 3% to 12% in 2017/2018 and 2018/2019 cropping season, respectively. 
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Late planting had the highest soil moisture retention (10.2%) in May 2017/2018 while early 

planting date resulted into significant difference (p = 0.034) soil moisture content (13.17%) in 

April 2019. In this study, soil moisture dynamics reflect the rainfall patterns for the two 

cropping seasons of 2017/2018 and 2018/2019 respectively.  Among the treatments, it was 

revealed that chololo pits at normal and tied ridges at early planting dates had resilient high 

soil moisture retention of 10.26% and 10.25% in January for the two cropping seasons (Fig. 6 

and 7). Generally, based on monthly soil moisture dynamics, there were a slight increase of 

2% on soil moisture retention for chololo pits and tied ridges across the planting dates. 

Chololo pits and tied ridges performed better almost in all parameters tested as compared 

with ox-cultivation and intercropping CSA practices. Figure 6 and 7 shows that there was 

higher amount of soil moisture content in chololo pits and tied ridge across different planting 

dates which depicts their resilience effects and water conservation capacity. Higher soil 

moisture content was recorded in months of January, March and April for 2017/18 season 

and January, February and May for 2018/2019 cropping season in chololo pits at early and 

tied ridges at late planting dates (Fig. 3).  

 
Figure 4: Effects of Planting dates on gravimetric soil moisture at Mlali village during 

2017/18 cropping season (n = 3) 
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Figure 5: Effects of Planting dates on gravimetric soil moisture at Mlali village during 

2018/19 cropping season (n = 3)  

 

 
Figure 6: Effects of CSA practices on gravimetric soil moisture at Mlali village during 

2017/18 cropping season (n = 3) 
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Figure 7: Effects of CSA practices on gravimetric soil moisture at Mlali village during 

2017/19 cropping season (n = 3) 

4.1.4  Growth and yield parameters of maize crop under selected CSA practices 

The study assessed the resilience and economic benefits of Climate Smart Agriculture 

practices under treatments (ox-cultivation, tied ridges, chololo pits and intercropping) and 

three planting dates (early, normal and late) for two cropping seasons. The results showed 

that there were significant differences on growth and yield parameters across the treatments. 

The parameters included were maize plant stem girth, height, LAI, biomass at 50% 

flowering, cob number, grain and stover/biomass weight at harvesting. The results showed 

that CSA practices and planting dates were significantly different (p < 0.05) on LAI and 

biomass. 

Maize stem girth: The results for maize stem girth under selected CSA practices, planting 

dates and their interaction are shown in Table 2. In 2017/2018 cropping season, CSA 

practices significantly (p = 0.009) affected maize stem girth while in 2018/2019 cropping 

season CSA practices had no significant effect on maize stem girth. Planting dates had highly 

significance differences in both cropping seasons whereby p = 0.024 in 2017/2018 and p = 

0.007 in 2018/2019 cropping seasons on average stem girth of maize plant. Interaction 
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between CSA practices and planting dates, in 2017/2018 cropping season were not significant 

difference as compared with 2018/2019 cropping season whereby the interaction between 

CSA practices and planting dates were significant difference (p = 0.037) on maize stem girth 

(Fig. 8).  However, the results show that chololo pits and tied ridges CSA practices had the 

highest stem girth in both cropping seasons at 24.71 mm and 23.50 mm in 2017/2018 seasons 

respectively. Resiliently similar CSA practices i.e. chololo pits and tied ridges had the highest 

stem girth of 20.54 mm and 20.39 mm in following 2018/2019 cropping season.   

Across planting dates, the results show that normal and late planting dates consistently 

maintained a comparatively higher stem girth at 21.71 mm and 23.50 cm in 2017/2018 and 

same increase at 20.49 mm and 20.86 mm in 2018/2019 cropping season while decline trend 

were noted in early planting date. In both cropping seasons the results (Table 2), depict that 

the interaction between chololo pits and tied ridges CSA practices and late planting dates 

performed better on stem girth as compared with intercropping and ox-cultivation at early 

planting dates during this study. 

Maize plant height: Results on the influence of CSA practices in combination with planting 

dates on maize plant height are presented in (Table 2). In both cropping seasons planting 

dates significantly (p < 0.001) increased maize plant height. However, CSA practices and 

their interactions between CSA practices and planting dates did not significantly ((p > 0.05) 

influence plant height. Generally, for the two cropping seasons, the highest maize plant 

heights were 101 cm and 96.83 cm in chololo pits and tied ridges CSA practices respectively. 

Based on planting date alone, the highest maize plant height was in late planting with 95.99 

cm and 91.35 cm followed by early planting date with 87.81 cm and 83.5 cm in both 

cropping seasons. The results show that in the first season plant height increased among CSA 

practices whereby chololo pits at 45%, tied ridges at 38.3% and intercropping at 27% as 

compared with ox-cultivation. Similarly, in the second season plant height increased at 41% 

in chololo pits, 47.5% in tied ridges and 30% in intercropping as compared to ox-cultivation. 

Similar to early and late planting date maize plant increased height at 4% and 14% as 

compared to normal planting date respectively in both cropping seasons. Their interaction 

showed that chololo pits at late planting increased plant height by 76% followed by tied 

ridges at late (56%) and chololo pits at early (53.3%) as compared to ox-cultivation at late 

planting date (4%) and ox-cultivation early planting date (13%). However, results in table 2 

show that, maize plant height was not significantly different (p > 0.05) both in planting date 

and the interaction of CSA practices and planting dates. 
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Leaf Area Index: In both cropping seasons, Climate Smart Agriculture (CSA) practices and 

Planting dates significantly (p = 0.034 and p = 0.022) increased the leaf area index of maize 

crops (Table 2). However, the combination of CSA practices and planting dates resulted to no 

significant difference (p > 0.05). Leaf Area Index (LAI) for the tested CSA practices ranged 

from 0.8 to 1.1 in 2017/2018 and 1.25 to 1 in 2018/2019 cropping seasons. For planting dates 

LAI ranged from 0.6 to 1.1 and from 1.2 to 1.6 for 2017/2018 and 2018/2019 cropping 

seasons while in the combination of these CSA practice LAI ranged from 03 to 1.6 in 

2017/2018 and from 1.07 to 1.76 in 2018/2019 cropping season. The highest value of LAI 

was recorded from intercropping (1.01) in 2017/2018 and tied ridges (1.00) in 2018/2019. 

Table 2 shows overall, tied ridges increased LAI by 43% as compared by intercropping, early 

planting window had less leaf area index at 51% between 2017/2018 and 2018/2019 and their 

combination showed tied ridges at early planting increased leaf area index by 48% when 

compared with ox-cultivation at early planting. 

Biomass: In 2017/2018 CSA practices and planting dates had significant differences at p = 

0.002 and p = 0.008 (Fig. 8). Similar to 2018/2019 cropping season whereby CSA practices 

and planting dates were significant at p = 0.008 and p = 0.002 respectively on biomass at 

50% flowering (Table 2). Also, in both cropping seasons the interaction between CSA 

practices and Planting date were significant difference (p = 0.048) respectively on maize 

biomass (Fig. 9 and 10). Above ground maize biomass at 50% flowering s increased from 1.3 

t ha-1 to 1 t ha-1 in 2017/2018 and from 0.93 t ha-1 to 1.16 t ha-1 in 2018/2019 cropping 

seasons across treatments i.e. chololo pits, tied ridges and intercropping as compared to ox-

cultivation. Similarly, in planting dates, above ground biomass increased at a range of 1.3 t 

ha-1 to 11 t ha-1 in 2017/2018 and from 0.96 t ha-1 to 1.18 t ha-1 in 2018/2019 cropping 

seasons respectively (Fig. 8 and 9). The lowest dry biomass (1.2 t ha-1) was obtained under 

intercropping in both season that was 1.5 t ha-1 in 2017/18 and 1.2 t ha-1 in 2017/2018/19 

cropping season. In both cropping seasons, normal planting dates had a lowest dry biomass 

(1.3 t ha-1) similar to their combination intercropping at normal planting date depicts the 

lowest dry biomass (0.93 t ha-1). 
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Table 2: Main, sub and interaction effects of CSA practices on maize growth components for the 2017/2018 and 2018/2019 growing 

seasons at Mlali village Dodoma, Tanzania. Means with different letters indicate statistical differences (p = 0.05) 

  2017/2018 Cropping season   2018/2019 Cropping season 

  
Stem girth 

(mm) 

Plant 

height (cm) 

Leaf Area 

Index (%) 

Biomass  

(t ha-1)  

Stem girth 

(mm) 

Plant height 

(cm) 

Leaf Area 

Index (%) 

Biomass  

(t ha-1) 

CSA practices (CSA)  
    

 
   

Intercropping 21.41a 89.41b 1.01a 1.264a 
 

20.06a 85.13b 1.252a 0.93a 

Ox-cultivation 19.22ab 69.96a 1.06a 1.36ab 
 

19.2a 65.66a 1.315a 1.026ab 

Tied ridges 23.50b 96.86b 0.89a 1.452b 
 

20.39a 926b 1.499a 1.119b 

Chololo pits 24.71b 101.61b 0.7a 1.489b 
 

20.54a 96.83b 1.398a 1.156b 

LSD 2.478 14.308 0.381 0.131 
 

1.488 6.867 0.28 0.131 

CV (%) 5.3 16.4 42.3 9.7 
 

7.6 17.1 20.9 12.7 

P-Value 0.009 <.001 0.229 0.002 
 

0.27 <.001 0.311 0.008 

Planting date (PD)  
    

 
   

Normal 21.79ab 848a 17ab 114b 
 

20.49a 80.20a 1.358ab 1.181ab 

Early 21.34a 87.81a 1.086b 1.294a 
 

18.79a 83a 1.194a 0.960a 

Late 23.28b 95.99a 0.664a 1.366a 
 

20.86b 91.35a 146b 1.032b 

LSD 1.388 12.391 0.33 0.114 
 

1.289 5.947 0.242 0.114 

CV (%) 5.6 16.4 42.3 9.7 
 

7.6 17.1 20.9 12.7 

P-Value 0.024 0.168 0.034 0.008 
 

0.007 0.184 0.022 0.002 

Interaction: CSA x PD  
    

 
   

LSD 3.091 24.781 0.66 0.228  2.578 11.894 0.484 0.228 

CV (%) 7.2 16.4 42.3 9.7  7.6 17.1 20.9 12.7 

P-Value 0.227 0.345 0.181 0.048  0.037 0.369 0.388 0.048 
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Figure 8: Effects of interaction between CSA practices and Planting date (PD) on Maize 

stem girth at Mlali village determined during 2018/2019 cropping season (n = 

3). Means with different letters indicate statistical differences (p = 0.05) 

 

 

Figure 9: Effects of interaction between CSA practices and planting date (PD) on Maize 

biomass at Mlali village determined during 2017/2018 cropping season (n = 3). 

Means with different letters indicate statistical differences (p = 0.05) 
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Figure 10: Effects of interaction between CSA practices and planting date (PD) on 

Maize biomass at Mlali village determined during 2018/2019 cropping 

season (n = 3). Means with different letters indicate statistical differences (p 

= 0.05) 

Maize cobs: Results in Table 3, Fig. 11 and 12 show that in both cropping seasons, CSA 

practices were significant difference (p < 0.001) and (p = 0.003) on number of cobs per plot 

in 2017/2018 and 2018/2019 cropping seasons at harvest respectively. Similarly, planting 

dates significantly (p = 0.002) and (p < 0.001) affected number of maize cobs per plot at 

harvest in 2017/2018 and 2018/2019 cropping seasons respectively. In both cropping seasons 

(Fig. 11 and 12) the interaction between CSA practices and planting dates on number of 

maize cobs were also significant difference (p = 0.039) in 2017/2018 and (p = 0.005) in 

2018/2019 respectively. In both cropping seasons there were a consistently increase in 

number of maize cobs per plot at harvest whereby chololo pits and tied ridges CSA practices 

had the highest number of cobs per plot i.e. 51 cobs and 49 maize cobs in 2017/2018 and 52 

and 48 maize cobs in 2018/2019 cropping season respectively. Intercropping and ox-

cultivation had the lowest number of maize cobs at late and early planting dates compared 

with mid planting date treatments (Table 3, Fig. 11 and 12). This implies that treatments with 

the highest cob numbers were also the highest grain yield treatments.  

Maize grain: In 2017/2018 cropping seasons, both CSA practices and planting dates were 

significantly (p = 0.049) and (p = 0.047) affected maize grain respectively. However, in 

2018/2019 cropping season only planting date was significant difference (p = 0.001) contrary 
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to 2017/2018 cropping season where both CSA practices and planting dates were significant 

different on maize grain. Overall maize grain yield under chololo pits and tied ridges were 

considerably higher than corresponding yields under ox-cultivation and intercropping CSA 

practices for the two consecutive (2017/2018 and 2018/2019) cropping seasons (Table 11).  

Based on CSA practices (chololo pits and tied ridges) maize grain yield ranged from 3 t ha-1 

to 4.7 t ha-1 in 2017/2018 and from 1.7 t ha-1 to 2.8 t ha-1 in 2018/2019, then planting dates 

ranged from 3 to 4.1 t ha-1 in 2017/2018 and 1.4 t ha-1 to 2.8 t ha-1 in 2018/2019 while maize 

grain yield of the interaction of CSA practices and planting dates ranged from 3.09 t ha-1 to 5 

t ha-1 in 2017/2018 and 0.96 t ha-1 to 3.6 t ha-1 in 2018/2019.  

Generally, chololo pits and tied ridges consistently resulted in higher maize grain yields at 

3.66 t ha-1 and 4.7 t ha-1 respectively in 2017/2018. Similar trend was noted at 2.75 t ha-1 and 

2.25 t ha-1 in 2018/2019 cropping season (Table 3). Maize grain yield in 2017/2018 cropping 

season was relatively higher two-folds of the 2018/2019 cropping season as this might have 

been associated with poor rainfall distribution across the two cropping seasons (Fig. 3). 

Chololo pits and Tied ridges increased maize grain yield by 12% and 2.3% respectively as 

compared with ox-cultivation in both cropping seasons. Although the combination of CSA 

practices and planting dates was not significantly different (p > 0.05) on maize grain yield, 

CSA practice specifically intercropping reduced maize grain yield by 25% and 10% in 2018 

and 2019 cropping seasons respectively. Unlike, there was increase in maize grain yield by 

10% at early and 13% at late planting dates respectively as compared to Normal planting that 

reduced maize grain yield at 37%.  

Maize Stover: In 2017/2018 cropping season, only CSA practices was significantly (p = 

0.01) increased maize stover yield. Climate-Smart Agriculture (CSA) practices, planting 

dates and their combination in 2018/2019 cropping season were not significantly difference. 

Tied ridges had the highest stover yield of 8.2 t ha-1 and 3.9 t ha-1 in 2017/2018 and 

2018/2019 cropping seasons respectively. Similar trend in 2018/2019 cropping season was 

noticed in chololo pits (3.332 t ha-1) which were relatively low as compared with ox-

cultivation and intercropping CSA practices. Maize stover yield across CSA practices ranged 

from 6 t ha-1 to 9.4 t ha-1 in 2017/2018 and 3.3 t ha-1 to 4 t ha-1 in 2018/2019 cropping seasons 

respectively. Moreover, stover yields under planting dates ranged from 33 to 4.13 t ha-1 in 

2017/2018 and 1.35 t ha-1 to 2.78 t ha-1 in 2018/2019 while their interaction between CSA 
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practices ranged from 3.09 t ha-1 to 5.47 t ha-1 in 2017/2018 cropping season and 0.96 t ha-1 to 

3.6 t ha-1 in 2018/2019 cropping season (Table 3).  
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Table 3: Main, sub plots and interaction effects of CSA practices on maize yield parameters for the 2017/2018 and 2018/2019 growing 

seasons at Mlali village Dodoma, Tanzania. Means with different letters indicate statistical differences (p = 0.05) 

 2017/2018 cropping season  2018/2019 cropping season 

 

Mean Cob 

No 

Mean Grain Yield 

(t ha-1) 

Mean Stover 

Yield (t ha-1) 

 

Mean 

Cob No 

Mean Grain 

Yield (t ha-1) 

Mean Stover 

Yield (t ha-1) 

CSA practices  

   

 

  Intercropping 37.89a 2.987a 6.624 a 

 

38.33a 1.66a 3.574 a 

Ox-cultivation 40.00a 3.739ab 5.997 a 

 

39.89a 1.975a 3.822 a 

Tied ridges 48.89b 4.717b 8.165 ab 

 

48.33b 2.246a 3.908 a 

Chololo pits 50.78b 3.86ab 9.383 b 

 

52.00b 2.747a 3.332 a 

LSD 9.72 1.194 1.705 

 

5.651 1.149 1.29 

CV (%) 4.3 32.3 20.9 

 

6.3 26.7 17.6 

P-Value <.001 0.049 0.01 

 

0.003 0.227 0.704 

Planting date (PD)  

 
 

 

 

 
 

Normal 39.50a 4.127a 7.028a 

 

39.38a 1.347a 4.047a 

Early 47.33b 3.674a 7.316a 

 

44.00a 2.343b 3.734a 

Late 46.33ab 3.526a 8.283a 

 

50.33b 2.782b 3.197a 

LSD 5.68 1.034 1.399 

 

4.092 0.679 1.367 

CV (%) 4.3 32.8 20.9 

 

6.3 26.7 38.8 

P-Value 0.02 0.0467 0.7 

 

<.001 0.001 0.43 

Interaction: CS x PD  

   

 

  LSD 9.72 2.067 2.486 

 

8.118 1.435 2.486 

CV (%) 14.3 32.8 20.9 

 

10.6 39.3 40.1 

P-Value 0.039 0.963 0.153 

 

0.005 0.212 0.659 
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Figure 11:  Effects of interaction between CSA practices and planting date on number 

of maize cob per plot at Mlali village determined during 2017/2018 

cropping season (n = 3). Means with different letters indicate statistical 

differences (p = 0.05) 

 
Figure 12: Effects of interaction between CSA practices and planting date on number of 

maize cob per plot at Mlali village determined during 2018/2019 cropping 

season (n = 3). Means with different letters indicate statistical differences (p 

= 0.05) 
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4.1.5  Effects of CSA practices on maize nutrient uptake 

The results in Table 4, show that CSA practices had a significant (p = 0.006) effect on 

Nitrogen (N) nutrient uptake. Alike, Magnesium (Mg) nutrient uptake were significantly 

affected by both CSA practices (p = 0.05) and Planting dates (p = 0.048). Also, there were 

significant differences (p = 0.038) for the interaction between CSA practices and planting 

dates on Phosphorus (P) nutrient uptake by maize plant (Fig. 13). Although the interaction 

between CSA practices and planting date were not significant on N, K, Mg and Ca nutrient 

uptake (Table 4).  

Nitrogen (N), Potassium (K) and Magnesium (Mg) were high in ox-cultivation CSA practices 

followed by chololo pits practices, whereby chololo pits and Tied ridges had the higher 

amount of Phosphorus (P) and Calcium (Ca) nutrient uptake by maize plant. Nutrient uptake 

by maize plant ranged from 5.5 kg ha-1 to 10 kg ha-1 across CSA practices, whereby chololo 

pits and ox-cultivation had the highest N uptake at 9.8 kg N ha-1 and 9.2 kg N ha-1 

respectively.  

Planting date had the nutrient uptake ranged from 0.9 kg ha-1 to 9 kg ha-1 whereby normal 

planting date resulted into the highest nutrient uptake as compared with early and late 

planting dates. Magnesium (Mg) nutrient uptake was significantly affected by planting date 

with the highest 2.47 kg Mg ha-1 at late planting window absorbed by maize plant. Early 

planted maize resulted into higher amount of P uptake by the plant (at 2.5 kg P ha-1) which is 

0.58% increase when compared with nutrient uptake under early planting date (1.89 kg ha-1).   
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Table 4: Biomass yield (t ha-1) and nutrient uptake (kg ha-1) of maize for 2018/19 

cropping season under different CSA practices planting date treatments at 

Mlali Dodoma, Tanzania 

Treatment 
Maize 

Biom. N P K Mg Ca 

CSA practices 
     

 Intercropping 0.93a 5.46a 4.17a 1.963a 1.90a 0.297a 

Ox-cultivation 1.026ab 9.15b 4.47a 2.653a 2.44b 0.263a 

Tied ridges 1.119b 8.95b 45a 257a 2.36b 0.362a 

Chololo pits 1.156b 9.82b 5.40a 2.337a 2.35b 0.344a 

LSD 0.131 1.980 0.938 0.973 000 0.103 

CV (%) 14.3 42.2 25.9 28.4 25.6 38 

P-Value 0.002 0.006 0.094 0.315 0.05 0.177 

Planting date (PD) 
      

Normal 1.181b 9.04a 5.309a 2.493a 2.42a 2.423a 

Early 0.960a 7.11a 4.217a 2.127a 1.89a 1.892a 

Late 1.032ab 8.88a 4.409a 213a 2.47b 2.470a 

LSD 0.114 3.046 1.040 084 000 0.106 

CV (%) 14.3 42.2 25.9 28.4 25.6 38 

P-Value 0.008 0.355 0.089 0.315 0.048 0.945 

Interaction: CSA x PD       

LSD 24.8 0.135 0.0256 0.617 0.586 0.248 

CV (%) 16.4 42.2 25.9 28.4 25.6 38 

P-Value 0.345 0.436 0.038 0.185 0.172 0.148 

Organ Carbon (OC), Nitrogen (N), Phosphorus (P), Potassium (K), Sodium (Na), Calcium 

(Ca), Magnesium (Mg), Copper (Cu), Iron (Fe), Manganese (Mn) and Zinc (Zn). Units for 

parameters are expressed as percentage (%). Cent moles per kilogram (cmol kg-1) and parts 

per million (ppm) 
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Figure 13: Effects of interaction between CSA practices and planting date on 

Phosphorus (P) nutrient uptake by maize at Mlali village during 2018/2019 

cropping season (n = 3). Means with different letters indicate statistical 

differences (p = 0.05) 

 4.1.6  Economic assessment of climate smart agriculture (CSA) practices 

The study assessed economics of CSA practices (ox-cultivation, tied ridges, chololo pits and 

intercropping) and three planting dates (early, normal and late) for two cropping seasons. The 

result shows that CSA practices varied in total variable costs. In the order chololo pits (518 

USD ha-1), tied ridges (513 USD ha-1) and intercropping (419 USD ha-1) and similar trend 

was observed in their marginal net return (MNR). Total variable costs in planting dates were 

slightly different but there was typical variation in marginal net return ranging from 440 USD 

ha-1 to 540 USD ha-1 across planting dates i.e. marginal net return in early planting date (583 

USD ha-1) normal planting date (441 USD ha) and late planting date (659 USD ha).  Further 

assessments were made on the marginal rates of return (MRR) among treatments. Marginal 

rate of return (MRR) shows how revenue able to cover all total variable cost of a treatment 

and by how many time (CIMMYT, 1988). Thus, for this study any treatment that has MRR 

above zero is considered benefitable investment and vice versa by farmers.  

Costs - Benefit Analysis of the selected CSA practices: In both cropping seasons (2017/2018 

and 2018/2019), total variable costs (TVC) were significantly affected (p < 0.05) by Climate 

smart agriculture (CSA) practices. There were higher TVC in chololo pits and tied ridges 
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CSA practices while intercropping had the lowest costs as compared with ox-cultivation CSA 

practices. Table 5, show that, chololo pits and tied ridges CSA practices had the highest TVC 

by 526.17 USD ha-1 and by 515.30 USD ha-1 respectively in 2017/2018 cropping season.  

In 2018/2019 cropping season, both chololo pits and tied ridges had TVC of 510.52 USD ha-1 

followed by 509.86 USD ha-1 and 485.52 USD ha-1 in 2018 and 2018/2019 cropping seasons 

respectively in intercropping CSA practice. Generally, in 2018 and 2018/2019 cropping 

seasons, the TVC in chololo pits increased by 2.1% and 6.3%, tied ridges by 2.8% and 6.3% 

while the decrease in total variable costs by 1.7% and 1.12% was noted on intercropping 

CSA practice in the 2018 and 2018/2019 cropping season, respectively.  

The Marginal Net Return was higher in tied ridges at 715.22 USD ha-1, chololo pits at 

480.79 USD ha-1, followed by ox-cultivation at 474.17 USD ha-1 whereby intercropping had 

the lowest MNR of 269.35 USD ha-1 in 2018 cropping season. Dissimilar to 2018/2019 

cropping season, there was less MNR as compared with 2018 cropping season (Table 5). 

However, CSA practices consistently increased MNR in the tied ridges by 75.40 USD ha-1, 

chololo pits by 206.09 USD ha-1, ox-cultivation by 35.08 USD ha-1 while intercropping CSA 

practice made loss by 52.47 USD ha-1. 

Marginal rate of return (MRR) was significantly affected (p < 0.05) by CSA practices 

whereby in both cropping season tied ridges and chololo pits had the highest MRR. But 

MRR was less in intercropping CSA practices (0.53) in 2018 cropping season while in 

2018/2019 cropping season failed to cover the total variable costs of at - 0.12 (Table 5).  

In this study, the results show that MRR increased across CSA practices whereby in 2018 

cropping season tied ridges (1.39), chololo pits (0.91), and Ox-cultivation (0.94) compared 

with less MRR in 2018/2019 cropping season whereby, tied ridges (0.15), chololo pits (0.4), 

and Ox-cultivation (0.07). Among CSA practices, intercropping resulted into the lowest 

MRR in both cropping seasons at 0.53 in 2017/2018 and negative 0.12 in 20187/2019 

cropping season (Table 5). 

In this study the average total variable costs of the treatment, ranged from 1.4% to 5.7%. 

Specifically, chololo pits increased TVC by 5.6%, followed by tied ridges by 4.5% and the 

lowest cost was in intercropping by 1.6% comparative to ox-cultivation.  Also, MNR 

increased from 34% to 55% between tied ridges and chololo pits respectively while 

intercropping generated negative MNR of 43% as compared to the rest tested CSA practices. 
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Table 5: Total variable costs, marginal net return and marginal rate of returns (USD) of 

selected CSA practices for 2017/18 and 2018/19 cropping seasons. NB: 1 USD = 

2300 TZS 

 CSA practices 

2017/2018 Cropping season   2018/2019 Cropping season 

TVC  

(USD ha-1) 

MNR 

(USD ha-1) 
MRR  

 

TVC  

(USD ha-1) 

MNR 

(USD ha-1) 
MRR  

Intercropping 509.86 269.35 0.53 

 

485.52 - 52.47 - 0.12 

Ox-cultivation 501.22 474.17 0.95 

 

480.14 35.08 0.07 

Tied ridges 515.30 715.22 1.39 

 

510.52 75.40 0.15 

Chololo pits 526.17 480.79 0.91 

 

510.52 206.09 0.40 

 

Costs and Benefit Analysis of Planting dates as CSA practices: In both cropping seasons, 

total variable costs (TVC) were not significantly affected (p > 0.05) by planting dates. Across 

all the three planting dates (early, normal and late), the TVC were the same whereby in 2018 

cropping season, TVC was 501.22 USD ha-1 while in 2018/2019 cropping season was 485.57 

USD ha-1 respectively. Planting date in 2018/2019 cropping season had lower TVC by 15.65 

USD ha-1 that is 3.12% decrease as compared with 2018 cropping season. The lower the TVC 

in 2018/2019 was due to less frequency of pesticides spraying. Also, the average TVC for the 

two cropping seasons was 493.40 USD ha-1 across the tested planting dates was recorded.  

The result in Table 6, shows that in 2017/2018 cropping season, the highest MNR was in 

normal planting date (575 USD ha-1) which outperformed the early planting date (457 USD 

ha-1) and late planting date (419 USD ha-1). Moreover, in 2018/2019 cropping season normal 

planting date generated a loss/negative MNR of 132 USD ha-1 but early and late planting 

dates generated a positive MNR of 126 USD ha-1 and 240 respectively. In both seasons, 

generally the average MNR early and late planting dates increased from 32% to 49% for 

2018 and 2018/2019 cropping seasons respectively as compared with normal planting dates 

(Table 6).  
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Table 6: Total variable costs and marginal net return marginal rate of returns (USD ha-

1) under selected planting dates as CSA practices for 2017/18 and 2018/2019 

cropping seasons. NB: 1 USD = 2300 TZS 

Planting dates 

2017/2018 Cropping season   2018/2019 Cropping season 

TVC  

(USD ha-1) 

MNR  

(USD ha-1) 
MRR  

 

TVC  

(USD ha-1) 

MNR 

(USD ha-1) 
MRR  

Normal 501.22 575.39 1.15 

 

485.57 - 134.18 - 0.28 

Early 501.22 457.21 0.91 

 

485.57 125.65 0.26 

Late 501.22 418.60 0.84 

 

485.57 240.17 0.50 

 

Costs benefit Analysis of Interaction between CSA practices and Planting dates: In both 

2017/18 and 2018/19 cropping seasons, the highest total variable costs were in chololo pits at 

early and late planting dates (526.17 USD ha-1 and 510.52 USD ha-1) similar to MNR 

generated under these respectively. Results in Table 7 showed that, the chololo pits at early 

and tied ridges CSA practices at late planting dates resulted into the highest marginal net 

return of 841.2 USD ha-1 and 691.87 USD ha-1 as compared with negative MNR of 135.04 

USD ha-1 and 202.15 USD ha-1 made from intercropping and tied ridges CSA practices at 

normal planting dates respectively (Table 6). Chololo pits and tied ridges CSA practices at 

early and late planting dates resulted into positive MNR increases by 25.4% and 30.8% 

respectively. This is contrary to intercropping and tied ridges CSA practices both at normal 

planting date which made a negative MNR by 63% and 47.7% respectively. The MNR 

generated for the first season ranged from 175 USD ha-1 to 911 USD ha-1 while in the second 

season MNR ranged from -240 USD ha-1 to 440 USD ha-1 across tested CSA practices i.e. 

interaction between CSA practices and planting date. 
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Table 7: Total variable costs, marginal net return and marginal rate of returns (USD 

ha-1) for the interaction of CSA practices and planting dates for 2017/2018 and 

2018/2019 cropping seasons. NB: 1 USD = 2300 TZS 

 CSA practices 

2017/2018 Cropping season   2018/2019 Cropping season 

TVC 

(USD ha-1) 

MNR 

(USD ha-1) 
MRR 

 

TVC 

(USD ha-1) 

MNR 

(USD ha-1) 
MRR 

Intercropping Normal 501.22 354.17 0.71 

 

490.95 239.73 - 0.5 

Tied ridges Normal 515.30 910.88 1. 77 

 

510.52 206.34 - 0.40 

Ox-cultivation Early 501.22 420.95 0.84 

 

485.57 137.05 - 0.28 

Ox-cultivation Normal 501.22 502.08 1.17 

 

485.57 -74.18 - 0.15 

Chololo pits Normal 526.17 422.88 0.80 

 

510.52 -72.26 - 0.14 

Intercropping Early 501.22 304.34 0.61 

 

485.57 27.04 0.6 

Intercropping Late 501.22 175.73 0.35 

 

485.57 49.73 0.10 

Tied ridges Early 515.30 697.48 1.35 

 

510.52 128.88 0.25 

Chololo pits Late 526.17 495.66 0.94 

 

510.52 256.44 0.50 

Ox-cultivation Late 501.22 499.73 1.00 

 

485.57 300.43 0.62 

Tied ridges Late 515.30 537.31 1.04 

 

499.65 314.79 0.63 

Chololo pits Early 526.17 497.74 0.95 

 

510.52 434.09 0.85 

 

4.2  Discussion 

4.2.1  Effects of CSA practices, planting date and their interaction on soil moisture 

content dynamics 

Soil moisture dynamics influenced maize grain yield across CSA practices. Soil moisture 

data under chololo pits and tied ridges CSA practices planted at early and late planting dates 

were resiliently higher in both cropping seasons despite the poor rainfall pattern. Soil 

moisture under chololo pits and tied ridges were significant higher as compared to 

intercropping and ox-cultivation CSA practices due to higher soil water conservation 

capacity. Similar to planting dates, the late planting had higher soil moisture content than 

early and normal planting dates. The higher soil moisture content in months of January, 

March and April for 2017/18 season and January, February and May for 2018/19 cropping 
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season in chololo pits at early and tied ridges at late planting dates might have been 

influenced by the rainfall distribution (Fig. 3). Generally, chololo pits had the highest average 

soil moisture content followed by tied ridges intercropping and lastly ox-cultivation (control). 

Higher soil moisture content in chololo and tied-ridges reflects moisture conservation 

benefits of these practices. This aligns with the study by Biazin et al. (2012) that chololo pits 

are the most effective water harvesting and soil moisture conservation method in semi-arid 

areas. The resilience of these CSA practices demonstrated high productivity in grain yield 

and increased MNR. The better performance is due to its high capacity on soil moisture and 

rain water use efficiency (Gamba et al., 2020). Such CSA practices are useful as adaptation 

and mitigation measures of climate change. Early and late planting data recorded the highest 

soil moisture due to high precipitations at the beginning and end of the growing season with a 

prolonged drought in February and March. Chololo pits consistently maintained a relatively 

higher soil moisture across these planting dates while a declining trend was noted for tied-

ridge and a slight increase in ox-cultivation and intercropping treatments. The lower the soil 

moisture on tied ridges compared with chololo pits would be due to fact that soil on top of 

ridges loose soil moisture faster than in chololo pits and other treatments. A strong 

relationship was observed between soil moisture and precipitation distribution particularly in 

the months of January, February and May. This boosted late planting dates at booting and 

grain filling growth stages, similar to the study in Ethiopia on influence of soil moisture and 

planting dates by Tewodros (2009) which argues that insufficient soil moisture caused poor 

grain tasseling and filling at late planting date as they were in a critical stage for cob and 

grain formation. Similar trend on increase in moisture content observed on grain yield under 

chololo pits and tied ridges at early and late planting dates (Stewart & Steiner, 1990; 

Tewodros et al., 2009; Yordanov et al., 2000). Overall chololo pits and tied ridge holds a 

promise to mitigate drought conditions and improve resilience of CSA practices in the study 

site.   

4.2.2  Effects of CSA practices, planting date and their interaction on maize plant 

growth parameters 

The poor performance of normal planting dates on maize plant height and stem girth might be 

associated with poor rainfall distribution and a drought spell in late February to mid-April 

2019. Consequently, other maize plant growth parameters (Leaf Area Index, light 

interception/PAR) were affected by the drought spells which occurred prior to the flowering 
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but plants under chololo pits and tied ridges had shown resilience due to its high capacity of 

soil moisture conservation. Few plant leaves at 50% flowering were affected by drought spell 

that had influenced light interception and fresh biomass but were promising state in chololo 

pits and tied ridges as compared with ox-cultivation and intercropping CSA practices. 

Chololo pits outperformed tied ridge on maize plant height for the two consecutive cropping 

seasons, which is expected in drought areas as described by Boillat and Bottazzi et al. (2020). 

Maize plants at 50% flowering stage showed that late planting dates recorded the tallest plant 

height almost twice of maize plants from early and normal planting date treatments in both 

cropping seasons. The shorter maize plant height treatments resulted to low grain yield as 

compared with taller maize treatments. Also, the study by Birch et al. (2003); Liebman and 

Dyck (1993) contends that such shorter plants would be an indicator of low grain yield. 

However, CSA practices and the interactions between CSA practices and planting dates was 

not significantly influenced plant height. Maize planted under normal planting window in 

2018/2019 cropping season might have stopped growth due to early flowering because of 

water deficit compared with early and late maize planted (Parthasarathi et al., 2013). Limited 

water availability to plant during flowering affects its physiological status causing decline in 

photosynthetic rates and plant growth (Hatfield & Prueger, 2015). Normally under limited 

water availability normal and progressive drought stress in maize resulted to poor maize plant 

growth and low yield. 

4.2.3  Effects of CSA practices, planting date and their interaction on maize yield 

parameters 

The results presented show that chololo pits and tied ridges CSA practices have potential to 

improve crop production and reduce the risks of crop failure in semi-arid conditions. With 

regards to this study, crop production is mainly constrained by shifting on rainfall patterns 

and inappropriate planting dates and this cause crop failure due to water losses during the 

cropping season. Although there was decline in yield due to delayed rain onset and unreliable 

rainfall distribution below the average of 40.13% noted during this study, chololo pits at early 

and tied ridges at late planting dates respectively proved the drought resilience capacity to 

adapt with such climatic extremes. Higher maize stover and grain yield observed in chololo 

pits and tied ridges CSA practices could be attributed to the higher soil moisture capacity of 

these CSA practices observed during the grain filling stages especially for early and late 

planting dates. These CSA practices demonstrated their adaptive capacity as resilience on soil 
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water conservation and rain use efficiency that enhanced maize grain yield (Baldé et al., 

2011; Berhanu et al., 2020; Sanders, 2000). Previous studies in semiarid areas of West Africa 

also noted higher sorghum grain yield in Basin pits/Half-moon used as rain water harvesting 

technologies (Boillat & Bottazzi, 2020). Similarly, this study noted chololo pits and tied 

ridges planted at early and late planting dates respectively significantly (p < 0.05) increased 

maize grain yield for the two consecutive cropping seasons despite the poor rainfall 

distribution in the two cropping seasons. The better performance of these CSA practices 

proves their resilience in maintaining higher level of moisture retention as a rainwater 

harvesting technology in dry areas like Kongwa (Wiyo et al., 2000) despite the grain yield 

decline in 2018/2019 as compared with 2018 cropping season. In this study, chololo pits and 

tied ridges CSA practices in semi-arid areas showed an increase in grain yield as compared 

with ox-cultivation/control in both cropping seasons. Poor distributions of rain (Fig. 2) at the 

critical stages of plant development mainly accounted for low soil moisture and suppressed 

growth of maize (Birch et al., 2003; Demeke et al., 2011; Karuma et al., 2014) leading to low 

grain and non-significant maize grain yield under intercropping and ox-cultivation CSA 

practices. Similar studies on rainwater harvesting in East Africa showed that the higher soil 

moisture retention in planting basins and tied ridges CSA practices resulted into higher maize 

grain yield at 6.8% increase for a period of three years (Berhanu et al., 2020; Biazin et al., 

2012; Tewodros et al., 2009). These results, however, are in line with high soil moisture at 

the beginning (December and January) and towards the end (End of March to Early May) of 

the growing season due to poorly distributed rainfall patterns noted during the two 

consecutive cropping seasons. Thus, maize planted at the normal planting window 

particularly in 2018/2019 cropping season suffered from the drought spell in February and 

March, leading to suppressed growth and yield in all. Maize stover yield in 2018/2019 

cropping season were relatively lower by 50% as compared with 2017/2018 cropping season, 

and this might have been associated with poor rainfall distribution similar to grain yield. The 

decline in grain and stover yields under tied ridges in year one and year two in the study 

aligns with arguments that tied ridges yield better for annual crops, under heavy rains planted 

early in the growing season (Jones & Clark, 1987). The low stover and grain yield at harvest, 

indicate severe drought stress during maize grain filling. For intercropping and ox-cultivation 

practices performed poor similarly to normal planting window, as this was caused by less 

precipitation after flowering ideally in the months of February to March (Fig. 3). 
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4.2.4  Effects of CSA practices, planting date and their interaction on maize nutrient 

uptake 

Climate Smart Agriculture (CSA) practices improved uptake of nitrogen which is a critical 

nutrient for increased crop yield. In this study, soil moisture recorded under chololo pits CSA 

practices is highly associated with higher nitrogen nutrient uptake as similarly reported by 

Lipper et al. (2014). Soil moisture is greatly influencing nutrient uptake of any crops as it 

involves direct in microbial activities, transportation to the root and solution equilibrium 

(Lipper et al., 2014). This supports the findings that chololo pits CSA practices makes 

available soil water potential at the soil root surface to regulate nutrient concentration for 

enhanced nutrient uptake. Similarly, the uptake of water and ions by a plant around root zone 

seems to concentration gradient in response to which water and ion flow from the root 

surface thus made it easier for Mg uptake by plant. Soil moisture in chololo and tied ridges at 

normal and late planting dates made nutrient uptake possible through diffusion process where 

dissolved Mg+2 in soil solution. The site was found to be P limited as there was no significant 

differences across tested CSA practices as this would also have influenced photosynthesis 

and biomass production, however P was not statistically significant. The increase in P uptake 

by the plant for early planting date reflects 5.8% as compared with early planting date. 

4.2.5  Economic benefits for CSA practices, planting date and their interaction 

The costs of experimental materials such as fertilizer, seeds and pesticides used in this study 

as well as market selling prices of maize grains for 2017/2018 and 2018/2019 cropping 

season were recorded. In this study, it was found that chololo pits and tied ridges practices 

had the highest total variable costs (TVC), Margin Net Return (MNR) and Margin Rate of 

Return (MRR) as compared with intercropping and ox-cultivation practices. The results on 

TVC agrees with Mafongoya et al. (2016) that the demand for labour on farm management 

practices (farm equipment, land preparation, weeding and pesticides spray) increase costs of 

production. Despite the higher TVC in chololo pits and tied ridges CSA practices, its grain 

yield was higher which resulted into profit. Similarly, the MNR and MRR among these CSA 

practices and planting dates were higher as compared to intercropping and Ox-cultivation 

CSA practices. The initial costs of making chololo pits and tied ridges did not vary 

significantly with the costs for making tied ridges however time used and number of labour 

were considered in calculating its MNR and MRR. These results agree with CIMMYT (1988) 

that for any innovation to be sustainable must be economically profitable.  
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The results show that frequency of pesticides and insecticides application demanded labors 

and thus increased costs of production. This agrees with Muoni et al. (2013) that the trade-off 

due to additional costs on frequencies of pesticide applications may also be determined by 

farming practices and planting dates used.  Mafongoya et al. (2016) reported that sometimes 

two or more pesticide chemicals must be combined to effectively control one pest or disease 

thus lead to extra costs. Time used for management of each practice varied quietly as chololo 

pits and tied ridges were reported to require more time for carrying out some activities in 

making ridges and basins.    

The negative MNR reflects economic loss observed in the intercropping and ox-cultivation 

CSA practices similarly to normal planting dates. However, studies in Kenya argued that this 

type of losses can be partially compensated for, by adopting best practices like chololo pits 

and tied ridges which are resilient and economically sound in semi-arid areas (Mtei et al., 

2013). The added advantage of maize stovers during harvesting is an advantage to be used as 

fodder crops or hay and act as a trade-off with the income from animal products (Kimaro et 

al., 2016). Agronomic assessment coupled with economic evaluations can help in defining 

production constraints and site-specific requirements thus providing the basis for targeting 

‘best-fit’ specific technology options to specific site (socio-ecological niche) and defining 

extrapolation domains for technology adoption. Therefore, with improved extension efforts 

and market access coupled with site- specific targeting of technology options to crop 

productivity could be improved and ultimately the rural livelihood in Kongwa Tanzania.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1  Conclusion 

The general aim of this study was to assess the resilience and economic benefits of the 

selected Climate Smart Agriculture (CSA) practices (ox-cultivation, tied ridges, chololo pits 

and intercropping) and three planting dates (early, normal and late). In Semi-arid areas 

Tanzania. The CSA practices/treatments were evaluated for their resilience on soil moisture 

retention, maize growth, yield and their economic benefits.  

The result showed that CSA practices/treatments performed differently on soil moisture 

retention, growth and yield parameters (height of plants, stem girth of plants, above ground 

biomass dry weight of plants, leaf area index, photo-synthetically active radiation, number of 

cobs, grain and stover weight of maize crop) across the tested CSA practices/treatments. 

This study revealed that chololo pits at early and tied ridges at late planting dates as CSA 

practices could be appropriate options among smallholder farmers to reduce the negative 

impacts of climate change, build climate resilient agricultural production systems, and 

harness the drought spells affecting crop production in semi-arid areas like Kongwa district. 

Grain yield is the most valued component due to its food importance and selling for surplus. 

This study recommends chololo pits and tied ridges (at early and late planting date 

respectively) which demonstrated a higher grain yield and economic benefits as appropriate 

practise among vulnerable farmers to climate change in semi-arid conditions like Kongwa 

District in Tanzania. 

Climate Smart Agriculture (CSA) practices showed a variation in costs and economic 

benefits, and their implementation requires appropriate investment decisions in both on-farm 

capital and for wider agricultural outreach programmes. Therefore, prioritization, evaluation 

and development of location specific portfolios of CSA practices linked to climatic risks are 

pre-requisite for developing scaling up/out pathway and CSA implementation plan. The 

rationale of understanding CSA practices and planting dates is also a critical issue to be 

considered in designing and deciding which CSA practices to suit sustainable and increased 

crop production under stressed areas like semi-arid conditions where the study was 

conducted. 



 
 

48 
 

5.2  Recommendations 

The findings of this study revealed that CSA practices which consider appropriate CSA 

practices and planting dates on specific local settings can improve households’ ability to 

adapt while delivering resilience environmental benefits in semi-arid areas which are 

vulnerable to climate change.  The use of chololo pits at early and tied ridges at late maize-

based framing systems in semi-arid areas should be promoted for improving maize 

production and building resilience. To provide a complete understanding of the influence of 

rainfall uncertainty on crop production, more studies are recommended to investigate the 

relationship between agro-climatic variability and suggested CSA practices in relation to 

economic implications in semi-arid conditions of Sub-Sahara Africa including Tanzania. 

However, the adoption of CSA practices will depend in part on the ability to make a business 

case for their benefits to the farmers, a cost benefit analysis of implementing CSA practices 

should be conducted.  
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